JPH05320785A - Method for degassing from al alloy powder - Google Patents

Method for degassing from al alloy powder

Info

Publication number
JPH05320785A
JPH05320785A JP12651092A JP12651092A JPH05320785A JP H05320785 A JPH05320785 A JP H05320785A JP 12651092 A JP12651092 A JP 12651092A JP 12651092 A JP12651092 A JP 12651092A JP H05320785 A JPH05320785 A JP H05320785A
Authority
JP
Japan
Prior art keywords
degassing
temperature
alloy powder
primary
degassing treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12651092A
Other languages
Japanese (ja)
Inventor
Kenji Okamoto
憲治 岡本
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
規明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12651092A priority Critical patent/JPH05320785A/en
Priority to EP93108091A priority patent/EP0570910A1/en
Publication of JPH05320785A publication Critical patent/JPH05320785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the method for degassing from Al allay powder in which the removal of a hydrogen gas and the suppression of the destruction of the fine structure caused by rapid solidification are enabled. CONSTITUTION:As for the method for degassing from Al alloy powder, Al allay powder having an amorphous phase whose crystallization temp. is defined as Tx is subjected to primary degassing treatment under the condition in which the temp. T1 satisfies Tx-100K<=T1<=Tx+150K to change the amorphous phase into a crystalline phase. Next, this Al alloy powder is subjected to secondary degassing treatment under the condition in which the temp. T2 satisfies Ti+50K<=T2<=T1+150K. A stable crystalline structure can be obtd. by the primary degassing treatment, and degassing can efficiently be executed by the secondary degassing treatment. At this time, because the crystalline structure of the Al allay powder is stable, the diffusion of atoms at a high temp. can be suppressed to prevent the coarsening of the structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl合金粉末、特に非晶
質相を有するAl合金粉末の脱ガス法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for degassing Al alloy powder, particularly Al alloy powder having an amorphous phase.

【0002】[0002]

【従来の技術】非晶質相を有するAl合金粉末は、その
製造方法に起因して水素ガスを内蔵している。この水素
ガスは、Al合金粉末より圧縮成形、熱間押出し加工等
を行うことによって成形体を製造した場合、その成形体
内に残存して強度低下の要因となるので、除去されるべ
きものである。
2. Description of the Related Art An Al alloy powder having an amorphous phase contains hydrogen gas due to its manufacturing method. This hydrogen gas should be removed because it remains in the molded body and causes a decrease in strength when the molded body is manufactured by performing compression molding, hot extrusion processing or the like from the Al alloy powder. ..

【0003】従来は、Al合金粉末の脱ガス処理を効率
良く行うために、脱ガス処理時の温度を、非晶質相の結
晶化温度Tx+150K〜Tx+300K(ただし、T
xにより異なる)といったように、かなり高く設定して
いる。
Conventionally, in order to efficiently perform the degassing treatment of Al alloy powder, the temperature during the degassing treatment is set to the crystallization temperature of the amorphous phase Tx + 150K to Tx + 300K (however, T
(It depends on x).

【0004】[0004]

【発明が解決しようとする課題】しかしながら脱ガス処
理の温度が高すぎると、Al合金粉末の残存水素量は減
少する反面、その急冷凝固による微細組織が破壊されて
しまうため、その組織を有効に利用した高強度な成形体
を得ることができなくなる。
However, if the temperature of the degassing process is too high, the amount of residual hydrogen in the Al alloy powder decreases, but on the other hand, the fine structure is destroyed by the rapid solidification, so that the structure is effectively removed. It becomes impossible to obtain a high-strength molded product that is used.

【0005】本発明は前記に鑑み、脱ガス処理を二段階
に分けることによって水素ガスの除去と急冷凝固による
微細組織の破壊抑制とを可能にした前記脱ガス法を提供
することを目的とする。
In view of the above, it is an object of the present invention to provide the degassing method capable of removing hydrogen gas and suppressing the destruction of the fine structure by rapid solidification by dividing the degassing process into two stages. ..

【0006】[0006]

【課題を解決するための手段】本発明に係るAl合金粉
末の脱ガス法は、結晶化温度がTxである非晶質相を有
するAl合金粉末に、温度T1 がTx−100K≦T1
≦Tx+150Kの条件下で1次脱ガス処理を施して前
記非晶質相を結晶質相に相変化させ、次いで前記Al合
金粉末に、温度T2 がT1 +50K≦T2 ≦T1 +15
0Kの条件下で2次脱ガス処理を施すことを特徴とす
る。
Degassing method of the Al alloy powder according to the present invention SUMMARY OF THE INVENTION may, in Al alloy powder having an amorphous phase crystallization temperature is Tx, the temperature T 1 is Tx-100K ≦ T 1
≦ Tx + 150K said subjected to primary degassing treatment under conditions of an amorphous phase is a phase change in the crystalline phase, and then the Al alloy powder, temperature T 2 is T 1 + 50K ≦ T 2 ≦ T 1 +15
It is characterized in that the secondary degassing treatment is performed under the condition of 0K.

【0007】[0007]

【作用】1次脱ガス処理において、温度T1 を前記のよ
うに比較的低く設定すると、脱ガスは緩徐に行われる
が、急冷凝固による微細組織から微細で、且つ安定した
結晶組織が得られる。
In the primary degassing process, if the temperature T 1 is set relatively low as described above, degassing is performed slowly, but a fine and stable crystal structure can be obtained from the fine structure produced by rapid solidification. ..

【0008】2次脱ガス処理においては温度T2 が比較
的高く設定されているので、脱ガスが効率良く行われ
る。この場合、Al合金粉末の結晶組織は安定している
ので、高温下での原子の拡散が抑制されて組織の粗大化
が防止される。
Since the temperature T 2 is set relatively high in the secondary degassing process, degassing can be performed efficiently. In this case, since the crystal structure of the Al alloy powder is stable, the diffusion of atoms at a high temperature is suppressed and the coarsening of the structure is prevented.

【0009】1次脱ガス処理において、その温度T1
1 <Tx−100では実用的な範囲ではAl合金粉末
の結晶化が終了せず、一方、T1 >Tx+150Kでは
急激な相変化に伴い急冷凝固による微細組織が破壊され
る。また2次脱ガス処理において、その温度T2 がT2
<T1 +50Kでは1次脱ガス処理で組織の不均一性が
生じた場合、それを2次脱ガス処理時に除去することが
できず、一方、T2 >T1 +150Kでは、1次脱ガス
処理による組織の安定化が2次脱ガス処理において有効
に生かされず、成形体の低強度化を招来する。
In the primary degassing process, when the temperature T 1 is T 1 <Tx-100, the crystallization of the Al alloy powder is not completed within a practical range, while when T 1 > Tx + 150K, a rapid phase change occurs. Along with that, the fine structure is destroyed by the rapid solidification. In the secondary degassing process, the temperature T 2 is T 2
When <T 1 + 50K, non-uniformity of the structure occurs in the primary degassing process, it cannot be removed during the secondary degassing process, while when T 2 > T 1 + 150K, the primary degassing process occurs. Stabilization of the structure due to the treatment is not effectively utilized in the secondary degassing treatment, resulting in lower strength of the molded body.

【0010】[0010]

【実施例】〔実施例1〕Al90Fe7 3 (数値は原子
%)の組成を有する溶湯を調製し、次いで超音波ガスア
トマイズ装置を用いて、Heガス圧100kgf/cm2
条件下でAl合金粉末を製造した。その後、Al合金粉
末に分級処理を施して、その粒径を22μm以下に調整
した。
EXAMPLES Example 1 A molten metal having a composition of Al 90 Fe 7 Y 3 (numerical value is atomic%) was prepared, and then, using an ultrasonic gas atomizer, under a He gas pressure of 100 kgf / cm 2 . An Al alloy powder was produced. Then, the Al alloy powder was subjected to classification treatment to adjust its particle size to 22 μm or less.

【0011】Al合金粉末について、X線回折および示
差熱量分析(DSC)を行い、その組織を調べたとこ
ろ、結晶質相と非晶質相とよりなる混相組織であり、ま
た非晶質相の結晶化温度Txは653Kであることが判
明した。
The Al alloy powder was subjected to X-ray diffraction and differential calorimetric analysis (DSC), and the structure thereof was examined. As a result, it was found that the structure was a mixed phase structure composed of a crystalline phase and an amorphous phase, and that of the amorphous phase. The crystallization temperature Tx was found to be 653K.

【0012】次いで、Al合金粉末を用い、次のような
各工程を経て各種成形体を製造した。即ち、Al合金粉
末に4000kgf/cm2 の条件下で冷間静水圧プレス
(CIP)を施して圧粉体を製造する工程、圧粉体に脱
ガス処理を施す工程、圧粉体に押出し温度673Kの条
件下で熱間押出し加工を施す工程である。
Next, using the Al alloy powder, various compacts were manufactured through the following steps. That is, a step of producing a green compact by subjecting the Al alloy powder to cold isostatic pressing (CIP) under the condition of 4000 kgf / cm 2 , a step of degassing the green compact, and an extrusion temperature of the green compact. This is a step of performing hot extrusion under the condition of 673K.

【0013】脱ガス処理は、10-3Torr以下の真空中に
て、1次脱ガス処理、それに次ぐ2次脱ガス処理の2段
階で行われた。
The degassing process was carried out in a vacuum of 10 -3 Torr or less in two steps, a primary degassing process and a secondary degassing process.

【0014】表1は脱ガス処理条件および各種成形体の
特性を示す。
Table 1 shows the degassing conditions and the characteristics of various molded products.

【0015】[0015]

【表1】 表1において、成形体(3)〜(5)は、1次脱ガス処
理の温度T1 がTx−100K≦T1 ≦Tx+150K
の条件を満たし、また2次脱ガス処理の温度T 2 がT1
−50K≦T2 ≦T1 +150Kの条件を満たしている
ので、高強度である。
[Table 1]In Table 1, the molded bodies (3) to (5) are the primary degassing treatments.
Reason temperature T1Is Tx-100K ≦ T1≤Tx + 150K
And the temperature T of the secondary degassing process 2Is T1
-50K≤T2≤T1Meets the condition of + 150K
So it has high strength.

【0016】成形体(1)は、脱ガス処理の温度T1
高すぎるため急冷凝固による微細組織が破壊されて低強
度となる。成形体(2)は、1次脱ガス処理の温度T1
と2次脱ガス処理の温度T2 との差が小さすぎるため低
強度となる。成形体(6),(7)は、1次脱ガス処理
の温度T1 と2次脱ガス処理の温度T2 との差が大きす
ぎるため、1次脱ガス処理による組織の安定化が2次脱
ガス処理において有効に生かされておらず、低強度とな
る。成形体(8),(9)は、1次脱ガス処理の温度T
1 が比較的低く、また時間も短いため非晶質相の結晶化
が終了しておらず、その結果2次脱ガス処理において急
激な相変化が生じるため低強度となる。
Since the temperature T 1 of the degassing process is too high, the molded body (1) becomes low in strength because the fine structure due to rapid solidification is destroyed. The molded body (2) has a temperature T 1 of the primary degassing process.
If the difference between the temperature T 2 of the second degassing process has a low strength because it is too small. Since the difference between the temperature T 1 of the primary degassing treatment and the temperature T 2 of the secondary degassing treatment is too large in the formed bodies (6) and (7), the stabilization of the structure by the primary degassing treatment is 2 It is not effectively used in the subsequent degassing process and has low strength. The molded bodies (8) and (9) are the temperature T of the primary degassing process.
Since 1 is relatively low and the time is short, the crystallization of the amorphous phase is not completed, and as a result, a rapid phase change occurs in the secondary degassing process, resulting in low strength.

【0017】表2は、表1に対応する他の成形体(1
a)〜(10a)についての脱ガス処理条件および特性
を示す。各成形体(1a)〜(10a)の組成、その製
造方法は表1のものと同じである。
Table 2 shows another molded article (1
The degassing conditions and characteristics for a) to (10a) are shown. The composition of each of the molded bodies (1a) to (10a) and the manufacturing method thereof are the same as those in Table 1.

【0018】[0018]

【表2】 表2において、成形体(4a)〜(6a)は、1次脱ガ
ス処理の温度T1 がTx−100K≦T1 ≦Tx+15
0Kの条件を満たし、また2次脱ガス処理の温度T2
1 −50K≦T2 ≦T1 +150Kの条件を満たして
いるので、高強度である。
[Table 2] In Table 2, the molded body (4a) ~ (6a), the temperature T 1 of the primary degassing process Tx-100K ≦ T 1 ≦ Tx + 15
Satisfies the condition of 0K, also the temperature T 2 of the second degassing process satisfies the condition of T 1 -50K ≦ T 2 ≦ T 1 + 150K, a high strength.

【0019】成形体(3a)は、1次脱ガス処理の温度
1 が高すぎるため急冷凝固による微細組織が破壊され
て低強度となる。成形体(9a),(10a)は、1次
脱ガス処理の温度T1 が低すぎるため非晶質相の結晶化
が終了しておらず、その結果2次脱ガス処理において急
激な相変化が生じるため低強度となる。
The molded body (3a) is a fine structure by rapid solidification because the temperature T 1 of the primary degassing process is too high to come into low-strength destroyed. The formed bodies (9a) and (10a) did not complete the crystallization of the amorphous phase because the temperature T 1 of the primary degassing process was too low, and as a result, a rapid phase change occurred in the secondary degassing process. Results in low strength.

【0020】次に、前記Al合金粉末を用い、脱ガス処
理の時間を変えると共に1次脱ガス処理の温度T1 と2
次脱ガス処理の温度T2 との差を50K,150Kにそ
れぞれ設定し、また他の条件を前記と同一に設定して各
種成形体を製造した。
Next, using the above Al alloy powder, the degassing time was changed and the temperatures T 1 and 2 of the primary degassing were changed.
Various molded products were manufactured by setting the difference from the temperature T 2 in the subsequent degassing treatment to 50 K and 150 K, respectively, and setting other conditions to the same as above.

【0021】表3は、温度差を50Kに設定した場合の
脱ガス処理条件および各種成形体の特性を示し、また表
4は温度差を150Kに設定した場合の脱ガス処理条件
および各種成形体の特性を示す。
Table 3 shows the degassing treatment conditions and the characteristics of various molded products when the temperature difference was set to 50K, and Table 4 shows the degassing treatment conditions and various molded products when the temperature difference was set to 150K. Shows the characteristics of.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 表3,4において、成形体(12)〜(18)および
(22)〜(28)は高強度である。このことから、1
次脱ガス処理の時間は0.2時間を超えるように設定す
ればよいことが判る。
[Table 4] In Tables 3 and 4, the molded bodies (12) to (18) and (22) to (28) have high strength. From this, 1
It can be seen that the time of the subsequent degassing treatment should be set to exceed 0.2 hours.

【0024】1次脱ガス処理の時間が0.2時間以下で
は、Al合金粉末の組織が安定化せず、残存した固溶原
子が2次脱ガス処理において拡散するため、成形体(1
0),(11)および(20),(21)のように強度
が低くなる。
When the time of the primary degassing treatment is 0.2 hours or less, the structure of the Al alloy powder is not stabilized, and the remaining solid solution atoms diffuse in the secondary degassing treatment.
The strength becomes low as in 0), (11) and (20), (21).

【0025】一方、2次脱ガス処理の時間が4時間を超
えると、それまで抑えられていた原子の拡散が生じるた
め成形体(19),(29)のように強度が低くなる。
On the other hand, when the time of the secondary degassing treatment exceeds 4 hours, the diffusion of atoms, which has been suppressed until then, occurs, so that the strength becomes low like the molded bodies (19) and (29).

【0026】図1は2次脱ガス処理の時間と強度との関
係を示す。線aは1次脱ガス処理の温度T1 が723K
の場合に、また線bは1次脱ガス処理の温度T1 が62
3Kの場合にそれぞれ該当する。各符号(15)〜(1
9)および(25)〜(29)は成形体(15)〜(1
9)および(25)〜(29)にそれぞれ該当する。
FIG. 1 shows the relationship between the time and strength of the secondary degassing process. The line a indicates that the temperature T 1 of the primary degassing process is 723K.
In the case of, the line b shows that the temperature T 1 of the primary degassing treatment is 62.
It corresponds to the case of 3K respectively. Each code (15) to (1
9) and (25) to (29) are molded bodies (15) to (1).
9) and (25) to (29), respectively.

【0027】表3,表4および図1から明らかように、
2次脱ガス処理の時間は4時間以下に設定するのが良
い。またその時間の下限値は脱ガス効果の上から0.5
時間に設定される。
As is clear from Tables 3 and 4, and FIG.
The time of the secondary degassing treatment is preferably set to 4 hours or less. The lower limit of the time is 0.5 from the degassing effect.
Set in time.

【0028】なお、1次脱ガス処理後、示差熱量分析で
10J/g以上の発熱を示すようなAl合金粉末の脱ガ
ス法としては本発明は適用されない。
The present invention is not applicable as a method for degassing an Al alloy powder which shows a heat generation of 10 J / g or more in differential calorimetric analysis after the primary degassing treatment.

【0029】〔実施例2〕Al89Ni8 Mm3 (Mmは
ミッシュメタル、数値は原子%)の組成を有する溶湯を
調製し、次いで実施例1と同様の方法でAl合金粉末を
製造し、その後実施例1と同様の分級処理を行った。
Example 2 A molten metal having a composition of Al 89 Ni 8 Mm 3 (Mm is misch metal, numerical values are atomic%) was prepared, and then Al alloy powder was produced by the same method as in Example 1, Then, the same classification treatment as in Example 1 was performed.

【0030】Al合金粉末について、X線回折および示
差熱量分析(DSC)を行い、その組織を調べたとこ
ろ、結晶質相と非晶質相とよりなる混相組織であり、ま
た非晶質相の結晶化温度Txは623Kであることが判
明した。
The Al alloy powder was subjected to X-ray diffraction and differential calorimetric analysis (DSC), and its structure was examined. As a result, it was a mixed phase structure composed of a crystalline phase and an amorphous phase, and an amorphous phase. The crystallization temperature Tx was found to be 623K.

【0031】次いで、Al合金粉末を用いて実施例1と
同様の方法で各種成形体を製造した。
Next, various molded products were manufactured by using the Al alloy powder in the same manner as in Example 1.

【0032】表5は脱ガス処理条件および各種成形体の
特性を示す。
Table 5 shows the degassing conditions and the characteristics of various molded products.

【0033】[0033]

【表5】 表5において、成形体(32),(34)〜(36),
(39),(40),(42),(45)は、1次脱ガ
ス処理の温度T1 がTx−100K≦T1 ≦Tx+15
0Kの条件を満たし、また2次脱ガス処理の温度T2
1 −50K≦T2 ≦T1 +150Kの条件を満たして
いるので高強度である。
[Table 5] In Table 5, molded bodies (32), (34) to (36),
In (39), (40), (42), and (45), the temperature T 1 of the primary degassing process is Tx-100K ≦ T 1 ≦ Tx + 15.
Satisfies the condition of 0K, also a high strength because the temperature T 2 of the second degassing process satisfies the condition of T 1 -50K ≦ T 2 ≦ T 1 + 150K.

【0034】成形体(31)は実施例1の成形体(1)
同様に低強度である。成形体(31)においては1次脱
ガス処理の温度T1 と2次脱ガス処理の温度T2 との温
度差が小さすぎ、また成形体(33),(45)におい
ては1次脱ガス処理の時間が短かすぎ、さらに成形体
(37),(38)においては、1次脱ガス処理で十分
な結晶化が行われない。成形体(41),(43)にお
いては2次脱ガス処理の時間が長すぎる。
The molded body (31) is the molded body (1) of Example 1.
Similarly, it has low strength. The temperature difference between the temperature T 1 of the primary degassing treatment and the temperature T 2 of the secondary degassing treatment is too small in the molded body (31), and the primary degassing is performed in the molded bodies (33) and (45). The treatment time is too short, and the molded bodies (37) and (38) are not sufficiently crystallized by the primary degassing treatment. In the molded bodies (41) and (43), the time for the secondary degassing treatment is too long.

【0035】なお、本発明は非晶質単相組織のAl合金
粉末にも適用される。
The present invention is also applicable to an Al alloy powder having an amorphous single phase structure.

【0036】[0036]

【発明の効果】本発明によれば、脱ガス処理を2段階に
分け、各処理における温度を特定することによって、水
素ガスの除去と急冷凝固による微細組織の破壊抑制とを
達成することができ、これにより高強度な成形体を得る
ことを可能にするものである。
According to the present invention, the degassing process is divided into two stages and the temperature in each process is specified, whereby the removal of hydrogen gas and the suppression of the destruction of the fine structure by rapid solidification can be achieved. This makes it possible to obtain a high-strength molded product.

【図面の簡単な説明】[Brief description of drawings]

【図1】2次脱ガス処理の時間と引張強さとの関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the time of secondary degassing treatment and tensile strength.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月15日[Submission date] July 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【表1】 表1において、成形体(3)〜(5)は、1次脱ガス処
理の温度T1 がTx−100K≦T1 ≦Tx+150K
の条件を満たし、また2次脱ガス処理の温度T 2 1
+50K≦T2 ≦T1 +150Kの条件を満たしている
ので、高強度である。
[Table 1]In Table 1, the molded bodies (3) to (5) are the primary degassing treatments.
Reason temperature T1Is Tx-100K ≦ T1≤Tx + 150K
And the temperature T of the secondary degassing process 2ButT 1
+ 50K ≦ T 2 ≦ T 1 + 150KMeets the conditions of
So it has high strength.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】[0018]

【表2】 表2において、成形体(4a)〜(6a)は、1次脱ガ
ス処理の温度T1 がTx−100K≦T1 ≦Tx+15
0Kの条件を満たし、また2次脱ガス処理の温度T2
1 +50K≦T2 ≦T1 +150Kの条件を満たして
いるので、高強度である。
[Table 2] In Table 2, the molded body (4a) ~ (6a), the temperature T 1 of the primary degassing process Tx-100K ≦ T 1 ≦ Tx + 15
The temperature T 2 of the secondary degassing process satisfies the condition of 0K.
Since the condition of T 1 + 50K ≦ T 2 ≦ T 1 + 150K is satisfied, the strength is high.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Name of item to be corrected] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表5】 表5において、成形体(32),(34)〜(36),
(39),(40),(42),(45)は、1次脱ガ
ス処理の温度T1 がTx−100K≦T1 ≦Tx+15
0Kの条件を満たし、また2次脱ガス処理の温度T2
1 +50K≦T2 ≦T1 +150Kの条件を満たし
さらに1次、2次脱ガス処理時間も前記条件を満たし
いるので高強度である。
[Table 5] In Table 5, molded bodies (32), (34) to (36),
In (39), (40), (42), and (45), the temperature T 1 of the primary degassing process is Tx-100K ≦ T 1 ≦ Tx + 15.
The temperature T 2 of the secondary degassing process satisfies the condition of 0K.
Satisfies the condition of T 1 + 50K ≦ T 2 ≦ T 1 + 150K ,
Further, the primary and secondary degassing treatment times also satisfy the above-mentioned conditions, so that the strength is high.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】成形体(30)は実施例1の成形体(1)
同様に低強度である。成形体(31)においては1次脱
ガス処理の温度T1 と2次脱ガス処理の温度T2 との温
度差が小さすぎ、また成形体(33),(44)におい
ては1次脱ガス処理の時間が短かすぎ、さらに成形
38)においては、2次脱ガス処理の温度T2 が高す
ぎる。成形体(41),(43)においては2次脱ガス
処理の時間が長すぎる。
The molded body ( 30 ) is the molded body (1) of Example 1.
Similarly, it has low strength. In the molded body (31), the temperature difference between the temperature T 1 of the primary degassing treatment and the temperature T 2 of the secondary degassing treatment is too small, and in the molded bodies (33) and ( 44 ) the primary degassing short time of processing or too, further moldings
In ( 38), the temperature T 2 of the secondary degassing process is high.
Squeeze. Adult form (41), the time of the secondary degassing process too long in (43).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶化温度がTxである非晶質相を有す
るAl合金粉末に、温度T1 がTx−100K≦T1
Tx+150Kの条件下で1次脱ガス処理を施して前記
非晶質相を結晶質相に相変化させ、次いで前記Al合金
粉末に、温度T2 がT1 +50K≦T2 ≦T1 +150
Kの条件下で2次脱ガス処理を施すことを特徴とするA
l合金粉末の脱ガス法。
1. An Al alloy powder having an amorphous phase whose crystallization temperature is Tx has a temperature T 1 of Tx-100K ≦ T 1
A primary degassing treatment is performed under the condition of Tx + 150K to change the phase of the amorphous phase into a crystalline phase, and then the Al alloy powder having a temperature T 2 of T 1 + 50K ≦ T 2 ≦ T 1 +150.
Secondary degassing treatment is performed under the condition of K. A
Degassing of alloy powder.
JP12651092A 1992-05-19 1992-05-19 Method for degassing from al alloy powder Pending JPH05320785A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12651092A JPH05320785A (en) 1992-05-19 1992-05-19 Method for degassing from al alloy powder
EP93108091A EP0570910A1 (en) 1992-05-19 1993-05-18 High strength and high toughness aluminum alloy structural member, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12651092A JPH05320785A (en) 1992-05-19 1992-05-19 Method for degassing from al alloy powder

Publications (1)

Publication Number Publication Date
JPH05320785A true JPH05320785A (en) 1993-12-03

Family

ID=14936995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12651092A Pending JPH05320785A (en) 1992-05-19 1992-05-19 Method for degassing from al alloy powder

Country Status (1)

Country Link
JP (1) JPH05320785A (en)

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
JPH03150356A (en) Tungsten or molybdenum target and production thereof
JPH10183341A (en) Tungsten or molybdenum target
JPH05320785A (en) Method for degassing from al alloy powder
JPH05331585A (en) High strength al alloy
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
US5709758A (en) Process for producing structural member of aluminum alloy
US5900083A (en) Heat treatment of cast alpha/beta metals and metal alloys and cast articles which have been so treated
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH05320837A (en) Manufacture of structural member made of al alloy
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
US5145503A (en) Process product, and powder for producing high strength structural member
JPH04210408A (en) Manufacture of high strength and high rigidity structural member
JPH04218638A (en) Structural member made of aluminum alloy and its manufacture
JPH0688104A (en) Production of titanium powder
JP2752857B2 (en) Manufacturing method of powder alloy billet
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH0436404A (en) Manufacture of high strength structural member
JP2001011609A (en) Sputtering target and its manufacture
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JP2794473B2 (en) Method for producing sintered member made of amorphous alloy
JPH05320704A (en) Production of high-fatigue strength structural member
JPH1030136A (en) Manufacture of sintered titanium alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH0436403A (en) Manufacture of high strength structural member