JPH05331585A - High strength al alloy - Google Patents

High strength al alloy

Info

Publication number
JPH05331585A
JPH05331585A JP16028992A JP16028992A JPH05331585A JP H05331585 A JPH05331585 A JP H05331585A JP 16028992 A JP16028992 A JP 16028992A JP 16028992 A JP16028992 A JP 16028992A JP H05331585 A JPH05331585 A JP H05331585A
Authority
JP
Japan
Prior art keywords
imc
crystals
alloy
crystal
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16028992A
Other languages
Japanese (ja)
Inventor
Kenji Okamoto
憲治 岡本
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
規明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16028992A priority Critical patent/JPH05331585A/en
Publication of JPH05331585A publication Critical patent/JPH05331585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide an Al alloy having high strength. CONSTITUTION:This alloy is an Al alloy prepared by crystallizing an Al alloy material having a metallic structure with amorphous phase. This alloy has a matrix consisting of Al crystals and intermetallic compound crystals (IMC crystals, the same applies to the following) (c) which have a grain diameter (d) satisfying d<=1.2mum and are dispersed in the crystal grain boundaries in the matrix M. Further, part of the IMC crystals (c) constitute plural chain IMC crystals C1-C4 where three or more IMC crystals (c) are bonded into linear state, and the proportion A of the volume fraction Vf2 of the chain IMC crystals C1-C4 to the volume fraction Vf1 of the IMC crystals is set so that it satisfies A>=30%. By this configuration, the slip resistance of the matrix M and the crystalline grain boundaries among the chain IMC crystals C1-C4 can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度Al合金、特に、
非晶質相を有する金属組織を備えたAl合金素材を結晶
化して得られたAl合金に関する。
This invention relates to high strength Al alloys, especially
The present invention relates to an Al alloy obtained by crystallizing an Al alloy material having a metal structure having an amorphous phase.

【0002】[0002]

【従来の技術】従来、高強度Al合金としては、微細な
Al結晶よりなるマトリックスの結晶粒界に、微細な金
属間化合物結晶(以下、IMC結晶と称す)を均一に分
散させたものが知られている(特開平1−275732
号公報参照)。この場合、各IMC結晶はその殆どが独
立して存在しており、その形状は丸みを帯びたものであ
る。
2. Description of the Related Art Conventionally, as a high-strength Al alloy, there has been known one in which fine intermetallic compound crystals (hereinafter referred to as IMC crystals) are uniformly dispersed in the crystal grain boundaries of a matrix made of fine Al crystals. (Japanese Patent Laid-Open No. 1-275732)
(See the official gazette). In this case, most of the IMC crystals exist independently of each other, and the shape thereof is rounded.

【0003】[0003]

【発明が解決しようとする課題】従来例Al合金の変形
は、Al結晶の微細化に伴いマトリックスにおける結晶
粒界のすべりによって発生する。したがってAl合金の
強度はマトリックスおよびIMC結晶間における結晶粒
界のすべり抵抗に依存することになるが、従来例Al合
金においては、そのIMC結晶が、前記のように独立し
て存在し、しかも丸みを帯びた形状を有することからマ
トリックスとの間の結晶粒界のすべり抵抗が比較的低
く、その結果、Al合金の高強度化を十分に達成するこ
とができない、という問題があった。
The deformation of the Al alloy of the prior art occurs due to the slip of the crystal grain boundaries in the matrix as the Al crystals are refined. Therefore, the strength of the Al alloy depends on the slip resistance of the crystal grain boundary between the matrix and the IMC crystal. However, in the conventional Al alloy, the IMC crystal exists independently as described above, and the roundness is rounded. Since it has a rounded shape, the slip resistance of the crystal grain boundary between the matrix and the matrix is relatively low, and as a result, there is a problem that it is not possible to sufficiently achieve high strength of the Al alloy.

【0004】本発明は前記に鑑み、マトリックスの結晶
粒界に連鎖状IMC結晶を分散させることによって、そ
れとマトリックスとの間の結晶粒界のすべり抵抗を高
め、これにより高強度化を達成されたAl合金を提供す
ることを目的とする。
In view of the above, the present invention achieves high strength by dispersing the chain-shaped IMC crystal in the crystal grain boundary of the matrix to increase the slip resistance of the crystal grain boundary between the matrix and the matrix. The purpose is to provide an Al alloy.

【0005】[0005]

【課題を解決するための手段】本発明は、非晶質相を有
する金属組織を備えたAl合金素材を結晶化して得られ
たAl合金であって、Al結晶よりなるマトリックス
と、そのマトリックスの結晶粒界に分散する粒径dがd
≦1.2μmであるIMC結晶とを有し、それらIMC
結晶のうち、少なくとも一部のものは、3個以上のIM
C結晶が線状に結合した複数の連鎖状IMC結晶を構成
し、IMC結晶の体積分率Vf1 に対する連鎖状IMC
結晶の体積分率Vf2 の比率AをA≧30%に設定した
ことを特徴とする。
The present invention is an Al alloy obtained by crystallizing an Al alloy material having a metallographic structure having an amorphous phase, the matrix comprising Al crystals, and the matrix of the matrix. The grain size d dispersed in the grain boundaries is d
And IMC crystals with ≦ 1.2 μm
At least some of the crystals are three or more IM
A plurality of chain-shaped IMC crystals in which C crystals are linearly bonded to each other are formed, and the chain-shaped IMC with respect to the volume fraction Vf 1 of the IMC crystals.
It is characterized in that the ratio A of the crystal volume fraction Vf 2 is set to A ≧ 30%.

【0006】[0006]

【作用】非晶質相を有する金属組織とは、組成の制御、
冷却速度の抑制、急冷後の熱履歴等により非晶質相中に
粒径30nm以下の微細Al結晶を均一に分散させた、
非晶質相と結晶質相とよりなる混相組織および非晶質単
相組織の一方を意味する。
[Function] The metal structure having an amorphous phase is to control the composition,
Fine Al crystals having a grain size of 30 nm or less were uniformly dispersed in the amorphous phase by suppressing the cooling rate, heat history after rapid cooling, and the like.
It means one of a mixed phase structure composed of an amorphous phase and a crystalline phase and an amorphous single phase structure.

【0007】混相組織および非晶質単相組織の非晶質相
を結晶化すると、微細なAl結晶およびIMC結晶が析
出する。粒径d≦1.2μmのIMC結晶よりなる連鎖
状IMC結晶は非球形であって、マトリックスとの間に
凹凸係合部を形成するので、連鎖状IMC結晶およびマ
トリックス間における結晶粒界のすべり抵抗が高められ
る。このような連鎖状IMC結晶を前記比率Aにて存在
させることによりAl合金の高強度化が達成される。
When the mixed phase structure and the amorphous phase of the amorphous single phase structure are crystallized, fine Al crystals and IMC crystals are precipitated. The chain-shaped IMC crystal composed of IMC crystals with a grain size d ≦ 1.2 μm is non-spherical and forms a concavo-convex engagement portion with the matrix. Therefore, the slip of the crystal grain boundary between the chain-shaped IMC crystal and the matrix Resistance is increased. By making such a chain-shaped IMC crystal exist in the above ratio A, the Al alloy can have a high strength.

【0008】その上、IMC結晶の粒径dを前記のよう
に特定することによって、連鎖状IMC結晶を構成する
IMC結晶相互間の結晶粒界のすべり抵抗が、連鎖状I
MC結晶およびマトリックス間のすべり抵抗よりも高く
なるので、マトリックスおよび連鎖状IMC結晶間にす
べりを生じる前に、連鎖状IMC結晶自体にすべりが生
じるようなことはない。
Moreover, by specifying the grain size d of the IMC crystals as described above, the slip resistance of the grain boundaries between the IMC crystals forming the chain-shaped IMC crystal is determined by the chain-shaped I
Since it is higher than the slip resistance between the MC crystal and the matrix, the chain IMC crystal itself does not slip before the slip occurs between the matrix and the chain IMC crystal.

【0009】ただし、連鎖状IMC結晶を構成するIM
C結晶の粒径dがd>1.2μmになると、連鎖状IM
C結晶自体の大型化に伴いそれを構成するIMC結晶相
互間の結晶粒界にすべりを生じ易くなるため、Al合金
の高強度化を達成することができない。また連鎖状IM
C結晶の比率AがA<30%になると、その連鎖状IM
C結晶の存在量が少なくなるため、同様にAl合金の高
強度化を達成することができない。
However, the IM that constitutes the chain-shaped IMC crystal
When the grain size d of C crystal is d> 1.2 μm, chained IM
As the C crystal itself becomes larger, slippage is likely to occur at the crystal grain boundaries between the IMC crystals that compose the C crystal, so that it is not possible to achieve high strength of the Al alloy. Also chained IM
When the ratio A of C crystals becomes A <30%, the chained IM
Since the amount of C crystals is small, it is not possible to achieve the high strength of the Al alloy as well.

【0010】[0010]

【実施例】本発明に係るAl合金の製造に当っては、非
晶質相および結晶質相よりなる混相組織を有する金属組
織を備えた粉末状Al合金素材または非晶質単相組織を
有する金属組織を備えた粉末状Al合金素材を製造する
工程、Al合金素材を用いてビレットを製造する工程、
ビレットに熱処理を施す工程、およびビレットを用いて
熱間押出し加工を行う工程が用いられる。
EXAMPLES In producing an Al alloy according to the present invention, a powdery Al alloy material having a metal structure having a mixed phase structure composed of an amorphous phase and a crystalline phase or an amorphous single phase structure is used. A step of producing a powdered Al alloy material having a metallographic structure, a step of producing a billet using the Al alloy material,
A step of heat-treating the billet and a step of hot extrusion using the billet are used.

【0011】熱処理工程は2段階で行われる。1次熱処
理の温度は非晶質相の結晶化温度Tx以下に設定され、
これにより微細なAl結晶および粒径dがd≦1.2μ
mであるIMC結晶が徐々に析出し、その際、時間を変
化させることによって非晶質相の結晶化度が調整され
る。2次熱処理は結晶化温度Txよりも高い温度で行わ
れ、これにより非晶質相は完全に結晶化し、微細Al結
晶よりなるマトリックスの結晶粒界に、粒径d≦1.2
μmのIMC結晶が優先的に分散状態で配置され、それ
らIMC結晶のうち、少なくとも一部のものは、3個以
上のIMC結晶が線状に結合した複数の連鎖状IMC結
晶を構成する。
The heat treatment process is performed in two stages. The temperature of the primary heat treatment is set to be equal to or lower than the crystallization temperature Tx of the amorphous phase,
As a result, fine Al crystals and grain size d are d ≦ 1.2 μ
The IMC crystals of m gradually precipitate, and the crystallinity of the amorphous phase is adjusted by changing the time. The secondary heat treatment is performed at a temperature higher than the crystallization temperature Tx, whereby the amorphous phase is completely crystallized, and the grain size d ≦ 1.2 at the grain boundaries of the matrix made of fine Al crystals.
μm IMC crystals are preferentially arranged in a dispersed state, and at least some of the IMC crystals form a plurality of chain-shaped IMC crystals in which three or more IMC crystals are linearly bonded.

【0012】この場合、粒径d≦1.2μmのIMC結
晶の体積分率Vf1 は5%≦Vf1≦40%に設定さ
れ、またその体積分率Vf1 に対する連鎖状IMC結晶
の体積分率Vf2 の比率、即ち連鎖状IMC結晶の比率
A=(Vf2 /Vf1 )×100(%)はA≧30%に
設定される。粒径d≦1.2μmのIMC結晶の体積分
率Vf1 がVf1 <5%では、それらIMC結晶が連鎖
状IMC結晶を構成していてもAl合金の高強度化を図
ることができない。一方、体積分率Vf1 がVf1 >4
0%では、IMC結晶相互が凝集して塊状体となるた
め、前記比率AをA≧30%にすることができなくな
る。また比率AがA<30%ではAl合金の高強度化を
達成することができない。
In this case, the volume fraction Vf 1 of the IMC crystal having the grain size d ≦ 1.2 μm is set to 5% ≦ Vf 1 ≦ 40%, and the volume fraction of the chain-shaped IMC crystal with respect to the volume fraction Vf 1 is set. The ratio of the ratio Vf 2 , that is, the ratio A = (Vf 2 / Vf 1 ) × 100 (%) of the chained IMC crystal is set to A ≧ 30%. When the volume fraction Vf 1 of the IMC crystals with the grain size d ≦ 1.2 μm is Vf 1 <5%, it is not possible to increase the strength of the Al alloy even if the IMC crystals form a chain IMC crystal. On the other hand, the volume fraction Vf 1 is Vf 1 > 4
At 0%, the IMC crystals aggregate to form a lump, so that the ratio A cannot be A ≧ 30%. Further, when the ratio A is A <30%, it is not possible to achieve high strength of the Al alloy.

【0013】なお、1次熱処理の温度を結晶化温度Tx
を超える温度に設定すると、急激にAl結晶およびIM
C結晶が析出するため、IMC結晶の配列が乱れて連鎖
状IMC結晶の比率AがA<30%となる。
The temperature of the primary heat treatment is set to the crystallization temperature Tx.
If the temperature is set higher than, suddenly the Al crystal and IM
Since the C crystals are precipitated, the arrangement of the IMC crystals is disturbed, and the ratio A of the chain-shaped IMC crystals becomes A <30%.

【0014】〔実施例1〕Al89Fe8 3 (数値は原
子%)の組成を有する溶湯を調製し、次いで超音波ガス
アトマイズ装置を用いて、Heガス圧100kgf/cm2
の条件下で粉末状Al合金素材を製造した。その後、粉
末状Al合金素材に分級処理を施して、その粒径を22
μm以下に調整した。
Example 1 A molten metal having a composition of Al 89 Fe 8 Y 3 (numerical value is atomic%) was prepared, and then He gas pressure was 100 kgf / cm 2 using an ultrasonic gas atomizer.
A powdery Al alloy material was manufactured under the conditions of. After that, the powdered Al alloy material is subjected to classification treatment so that the particle size is 22
It was adjusted to be not more than μm.

【0015】Al合金素材について、X線回折および示
差熱量分析(DSC)を行い、その金属組織を調べたと
ころ、それは結晶質相と非晶質相とよりなる混相組織を
有し、また非晶質相の結晶化温度Txは653Kである
ことが判明した。
The Al alloy material was subjected to X-ray diffraction and differential calorimetry (DSC), and its metal structure was examined. It had a mixed phase structure composed of a crystalline phase and an amorphous phase, and was amorphous. The crystallization temperature Tx of the substance phase was found to be 653K.

【0016】次いで、Al合金素材を用い、次のような
各工程を経て各種Al合金を製造した。即ち、Al合金
素材に4000kgf/cm2 の条件下で冷間静水圧プレス
(CIP)を施して複数のビレットを製造する工程、各
ビレットに熱処理を施す工程、各ビレットに押出し温度
673Kの条件下で熱間押出し加工を施す工程である。
熱処理において、1次熱処理は温度623K、時間15
〜75分間の条件下で行われ、2次熱処理は723K、
1時間の条件下で行われた。
Next, using an Al alloy material, various Al alloys were manufactured through the following steps. That is, a step of producing a plurality of billets by subjecting an Al alloy material to cold isostatic pressing (CIP) under the conditions of 4000 kgf / cm 2 , a step of subjecting each billet to a heat treatment, and an extrusion temperature of 673 K for each billet. This is a step of performing hot extrusion.
In the heat treatment, the first heat treatment is performed at a temperature of 623 K for 15 hours.
~ 75 minutes, the second heat treatment is 723K,
It was carried out under the condition of 1 hour.

【0017】表1は、各種Al合金(1)〜(5)にお
ける1次熱処理の時間、粒径dがd≦1.2μmである
IMC結晶の体積分率Vf1 、連鎖状IMC結晶の体積
分率Vf2 、連鎖状IMC結晶の比率Aおよび引張り試
験結果を示す。なお、各Al合金(1)〜(5)におい
て、略全部のIMC結晶の粒径dがd≦0.9μmであ
った。
Table 1 shows the time of the primary heat treatment in each of the Al alloys (1) to (5), the volume fraction Vf 1 of the IMC crystal having a grain size d of d ≦ 1.2 μm, and the volume of the chain-shaped IMC crystal. The fraction Vf 2 , the ratio A of the chained IMC crystals and the tensile test result are shown. In each of the Al alloys (1) to (5), the grain size d of almost all the IMC crystals was d ≦ 0.9 μm.

【0018】[0018]

【表1】 図1は連鎖状IMC結晶の比率Aと応力との関係を示
し、図中、線a1 が引張強さに、また線a2 が0.2%
耐力にそれぞれ該当する。さらに符号(1)〜(5)は
Al合金(1)〜(5)にそれぞれ該当する。
[Table 1] FIG. 1 shows the relationship between the ratio A of chained IMC crystals and the stress. In the figure, line a 1 is the tensile strength and line a 2 is 0.2%.
Each corresponds to the proof stress. Further, reference numerals (1) to (5) correspond to Al alloys (1) to (5), respectively.

【0019】表1および図1から明らかなように、d≦
1.2μmIMC結晶の体積分率Vf1 が5%≦Vf1
≦40%であり、且つ連鎖状IMC結晶の比率AがA≧
30%であるAl合金(3)〜(5)は、連鎖状IMC
結晶による高すべり抵抗に起因して高強度である。
As is clear from Table 1 and FIG. 1, d≤
Volume fraction Vf 1 of 1.2 μm IMC crystal is 5% ≦ Vf 1
≦ 40%, and the ratio A of the chained IMC crystals is A ≧
Al alloys (3) to (5), which are 30%, are chain IMCs.
High strength due to high slip resistance due to crystals.

【0020】図2(a)はAl合金(3)の金属組織を
示す電子顕微鏡写真(20,000倍)であり、同図
(b)は同図(a)の写図である。図2(a)は、Al
合金(3)のテストピースを鏡面研磨し、その研磨面に
エッチング処理を施した後撮影されたものである。エッ
チング液としては、200mlのH2 O、20mlのHC
l、20mlのHNO3 および5mlのHFからなる混酸溶
液が用いられ、処理時間は5分間に設定された。
FIG. 2 (a) is an electron micrograph (20,000 times) showing the metal structure of the Al alloy (3), and FIG. 2 (b) is a copy of the same figure (a). FIG. 2A shows Al
The test piece of alloy (3) was mirror-polished, and the polished surface was subjected to etching treatment and then photographed. As the etching solution, 200 ml of H 2 O, 20 ml of HC
A mixed acid solution consisting of 1, 20 ml HNO 3 and 5 ml HF was used and the treatment time was set to 5 minutes.

【0021】図2(a),(b)において、Al結晶よ
りなるマトリックスMの結晶粒界に多数のIMC結晶c
(図には一部にのみ符号を付す)が分散しており、4個
の連鎖状IMC結晶C1 〜C4 が観察される。これら連
鎖状IMC結晶C1 〜C4 は3個以上のIMC結晶cが
線状に結合したものである。
In FIGS. 2A and 2B, a large number of IMC crystals c are present at the grain boundaries of the matrix M made of Al crystals.
(Only part of the figure is labeled) are dispersed, and four chain-shaped IMC crystals C 1 to C 4 are observed. These chain-shaped IMC crystals C 1 to C 4 are three or more IMC crystals c linearly bonded.

【0022】比較のためAl90Ni7 3 (数値は原子
%)の組成を有する溶湯を調製し、次いで実施例1と同
様の方法で粉末状Al合金素材を製造し、その後Al合
金素材に実施例1と同様の分級処理を施した。またAl
合金素材について、実施例1と同様の方法で金属組織を
調べたところ、そのAl合金素材は実施例1と同様に混
相組織を有し、また非晶質相の結晶化温度Txは625
Kであることが判明した。
For comparison, a molten metal having a composition of Al 90 Ni 7 Y 3 (numerical value is atomic%) was prepared, and then a powdered Al alloy raw material was manufactured by the same method as in Example 1, and thereafter, an Al alloy raw material was prepared. The same classification treatment as in Example 1 was performed. Also Al
When the metal structure of the alloy material was examined by the same method as in Example 1, the Al alloy material had a mixed phase structure as in Example 1, and the crystallization temperature Tx of the amorphous phase was 625.
It turned out to be K.

【0023】次いでAl合金素材を用い、実施例1と同
様の方法で各種Al合金(6)〜(10)を製造した。
ただし、1次熱処理の温度は593Kに、また2次熱処
理の温度は823Kにそれぞれ設定された。各Al合金
(6)〜(10)において、略全部のIMC結晶の粒径
dはd>1.2μmであった。
Then, various Al alloys (6) to (10) were manufactured by the same method as in Example 1 using the Al alloy material.
However, the temperature of the primary heat treatment was set to 593K, and the temperature of the secondary heat treatment was set to 823K. In each of the Al alloys (6) to (10), the grain size d of almost all the IMC crystals was d> 1.2 μm.

【0024】表2は、各種Al合金(6)〜(10)に
おける1次熱処理の時間、粒径dがd>1.2μmであ
るIMC結晶の体積分率Vf1 、連鎖状IMC結晶の体
積分率Vf2 、連鎖状IMC結晶の比率Aおよび引張り
試験結果を示す。
Table 2 shows the time of the primary heat treatment in various Al alloys (6) to (10), the volume fraction Vf 1 of the IMC crystal having the grain size d of d> 1.2 μm, and the volume of the chain-shaped IMC crystal. The fraction Vf 2 , the ratio A of the chained IMC crystals and the tensile test result are shown.

【0025】[0025]

【表2】 表2から明らかなように、IMC結晶の粒径dがd>
1.2μmになると、その体積分率Vf1 が5%≦Vf
1 ≦40%であり、また連鎖状IMC結晶の比率AがA
≧30%であっても、Al合金(6)〜(10)は低強
度となる。
[Table 2] As is clear from Table 2, the grain size d of the IMC crystal is d>
At 1.2 μm, the volume fraction Vf 1 is 5% ≦ Vf
1 ≤ 40%, and the ratio A of the chained IMC crystals is A
Even if ≧ 30%, the Al alloys (6) to (10) have low strength.

【0026】また比較のため前記Al合金素材(Al90
Ni7 3 )を用い、実施例1と同様の方法で各種Al
合金(11)〜(20)を製造した。ただし、1次熱処
理の時間は30分間または60分間に設定され、2次熱
処理の温度は743〜823Kに設定された。
For comparison, the Al alloy material (Al 90
Ni 7 Y 3 ) and various Al in the same manner as in Example 1.
Alloys (11)-(20) were produced. However, the time of the primary heat treatment was set to 30 minutes or 60 minutes, and the temperature of the secondary heat treatment was set to 743-823K.

【0027】表3は、各種Al合金(11)〜(20)
における1次熱処理の時間、2次熱処理の温度、粒径d
がd≦1.2μmであるIMC結晶の体積分率Vf1
連鎖状IMC結晶の比率Aおよび引張り試験結果を示
す。なお、各Al合金(11)〜(20)において、全
IMC結晶の体積分率Vf3 はVf3 ≒28%であっ
た。
Table 3 shows various Al alloys (11) to (20).
Time of primary heat treatment, temperature of secondary heat treatment, grain size d
Where d ≦ 1.2 μm, the volume fraction Vf 1 of the IMC crystal,
The ratio A of chain-like IMC crystals and the tensile test results are shown. In each of the Al alloys (11) to (20), the volume fraction Vf 3 of all IMC crystals was Vf 3 ≈28%.

【0028】[0028]

【表3】 図3は各Al合金(11)〜(20)におけるd≦1.
2IMC結晶の体積分率Vf1 と応力との関係を示し、
図中、線b1 が各Al合金(11)〜(15)の引張強
さに、一方、線b2 が各Al合金(11)〜(15)の
0.2%耐力にそれぞれ該当する。また線c1 が各Al
合金(16)〜(20)の引張強さに、一方、線c2
各Al合金(16)〜(20)の0.2%耐力にそれぞ
れ該当する。図中の符号(11)〜(20)はAl合金
(11)〜(20)にそれぞれ該当する。
[Table 3] FIG. 3 shows that d ≦ 1.
2 shows the relationship between the volume fraction Vf 1 of 2 IMC crystals and stress,
In the figure, the line b 1 corresponds to the tensile strength of each Al alloy (11) to (15), while the line b 2 corresponds to the 0.2% proof stress of each Al alloy (11) to (15). Also, the line c 1 is each Al
The tensile strengths of the alloys (16) to (20) correspond to the tensile strength of the alloys (16) to (20), and the line c 2 corresponds to the 0.2% proof stress of the Al alloys (16) to (20). Reference numerals (11) to (20) in the figure correspond to Al alloys (11) to (20), respectively.

【0029】表3および図3から明らかなように、d≦
1.2IMC結晶の体積分率Vf1がVf1 ≧5%であ
り、且つ連鎖状IMC結晶の比率AがA≧30%である
Al合金(16)〜(18)は高強度である。前記体積
分率Vf1 がVf1 <5%であるAl合金(14),
(15),(19),(20)は低強度である。また前
記体積分率Vf1 がVf1 ≧5%であっても前記比率A
がA<30%であるAl合金(11)〜(13)もまた
同様である。
As is apparent from Table 3 and FIG. 3, d≤
1.2 Al alloys (16) to (18) in which the volume fraction Vf 1 of the IMC crystal is Vf 1 ≧ 5% and the proportion A of the chain IMC crystal is A ≧ 30% have high strength. An Al alloy (14) having a volume fraction Vf 1 of Vf 1 <5%,
(15), (19) and (20) have low strength. Even if the volume fraction Vf 1 is Vf 1 ≧ 5%, the ratio A
The same applies to Al alloys (11) to (13) in which A <30%.

【0030】さらに比較のため、各種組成を有する溶湯
を調製し、次いで実施例1と同様の方法で各種粉末状A
l合金素材を製造し、その後それらAl合金素材に実施
例1と同様の分級処理を施した。また各Al合金素材に
ついて、実施例1と同様の方法で金属組織を調べた。
Further, for comparison, melts having various compositions were prepared, and then various powders A were prepared in the same manner as in Example 1.
l alloy materials were manufactured, and then the Al alloy materials were subjected to the same classification treatment as in Example 1. The metal structure of each Al alloy material was examined by the same method as in Example 1.

【0031】表4は、各Al合金素材(21)〜(3
8)の組成、金属組織および非晶質相の結晶化温度Tx
を示す。
Table 4 shows each of the Al alloy materials (21) to (3).
8) Composition, metallic structure and crystallization temperature Tx of amorphous phase
Indicates.

【0032】[0032]

【表4】 次いで各Al合金素材(21)〜(38)を用い、実施
例1と同様の方法で各種Al合金(21)〜(38)
〔Al合金(21)〜(38)はAl合金素材(21)
〜(38)にそれぞれ対応する〕を製造した。ただし、
1次熱処理の温度は593Kに、また時間は30分間ま
たは90分間に、さらに2次熱処理の温度は653〜6
93Kにそれぞれ設定された。
[Table 4] Next, using each of the Al alloy materials (21) to (38), in the same manner as in Example 1, various Al alloys (21) to (38).
[Al alloys (21) to (38) are Al alloy materials (21)
To (38) respectively. However,
The temperature of the primary heat treatment is 593K, the time is 30 minutes or 90 minutes, and the temperature of the secondary heat treatment is 653-6.
Each was set to 93K.

【0033】表5および表6は、各種Al合金(21)
〜(38)における1次熱処理の時間、2次熱処理の温
度、全IMC結晶の体積分率Vf3 、粒径dがd≦1.
2μmであるIMC結晶の体積分率Vf1 、連鎖状IM
C結晶の比率Aおよび引張り試験結果を示す。
Tables 5 and 6 show various Al alloys (21).
To (38), the time of the primary heat treatment, the temperature of the secondary heat treatment, the volume fraction Vf 3 of all IMC crystals, and the grain size d of d ≦ 1.
Volume fraction Vf 1 of IMC crystal of 2 μm, chained IM
The ratio A of C crystal and the tensile test result are shown.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 図4は各Al合金(21)〜(38)におけるd≦1.
2IMC結晶の体積分率Vf1 と引張強さとの関係を示
し、また図5は各Al合金(21)〜(38)における
d≦1.2IMC結晶の体積分率Vf1 と0.2%耐力
との関係を示す。各線と各Al合金との関係は表7の通
りであり、図4,図5における各符号(21)〜(3
8)は各Al合金(21)〜(38)にそれぞれ該当す
る。
[Table 6] FIG. 4 shows d.ltoreq.1 for each of the Al alloys (21) to (38).
2 shows the relationship between the volume fraction Vf 1 of 2IMC crystal and the tensile strength, and FIG. 5 shows the volume fraction Vf 1 of d ≦ 1.2 IMC crystal and 0.2% proof stress of each Al alloy (21) to (38). Shows the relationship with. The relationship between each line and each Al alloy is as shown in Table 7, and each reference numeral (21) to (3) in FIGS.
8) corresponds to each of the Al alloys (21) to (38).

【0036】[0036]

【表7】 表5,表6、図4および図5から明らかなように、同一
組成のAl合金(21)〜(23)および(30)〜
(32)、Al合金(24)〜(26)および(33)
〜(35)ならびにAl合金(27)〜(29)および
(36)〜(38)において、d≦1.2IMC結晶の
Vf1 がVf1 ≦40%であり、また連鎖状IMC結晶
の比率AがA≧30%であるAl合金(32),(3
5),(37),(38)は他のAl合金に比べて高強
度であることが判る。
[Table 7] As is clear from Table 5, Table 6, FIG. 4 and FIG. 5, Al alloys (21) to (23) and (30) to have the same composition.
(32), Al alloys (24) to (26) and (33)
-(35) and Al alloys (27) to (29) and (36) to (38), Vf 1 of d ≦ 1.2 IMC crystal is Vf 1 ≦ 40%, and the ratio A of chain-shaped IMC crystal is Alloys (32), (3) in which A ≧ 30%
It can be seen that 5), (37) and (38) have higher strength than other Al alloys.

【0037】〔実施例2〕各種組成を有する溶湯を調製
し、次いで実施例1と同様の方法で各種粉末状Al合金
素材を製造し、その後それらAl合金素材に実施例1と
同様の分級処理を施した。また各Al合金素材につい
て、実施例1と同様の方法で金属組織を調べた。
Example 2 A molten metal having various compositions was prepared, various powdery Al alloy materials were manufactured by the same method as in Example 1, and then the Al alloy materials were classified as in Example 1. Was applied. The metal structure of each Al alloy material was examined by the same method as in Example 1.

【0038】表8は、各Al合金素材(39)〜(5
8)の組成、金属組織および非晶質相の結晶化温度Tx
を示す。Mmはミッシュメタルである。Al合金素材
(47)〜(50)には、IMC結晶(Al3 Zr)が
含まれており、その体積分率は10%以下であった。
Table 8 shows each Al alloy material (39) to (5).
8) Composition, metallic structure and crystallization temperature Tx of amorphous phase
Indicates. Mm is misch metal. The Al alloy materials (47) to (50) contained IMC crystals (Al 3 Zr), and the volume fraction thereof was 10% or less.

【0039】[0039]

【表8】 次いで各Al合金素材(39)〜(58)を用い、実施
例1と同様の方法で各種Al合金(39)〜(58)
〔Al合金(39)〜(58)はAl合金素材(39)
〜(58)にそれぞれ対応する〕を製造した。ただし、
1次熱処理の温度は593〜653Kに、また時間は3
0〜75分間にそれぞれ設定され、2次熱処理の温度は
773Kに設定された。
[Table 8] Next, using each Al alloy material (39) to (58), in the same manner as in Example 1, various Al alloys (39) to (58).
[Al alloys (39) to (58) are Al alloy materials (39)
To (58) respectively] were produced. However,
The temperature of the first heat treatment is 593 to 653K, and the time is 3
The temperature was set to 0 to 75 minutes, and the temperature of the secondary heat treatment was set to 773K.

【0040】表9および表10は、各種Al合金(3
9)〜(58)における1次熱処理の温度および時間、
粒径dがd≦1.2μmであるIMC結晶の体積分率V
1 、連鎖状IMC結晶の体積分率Vf2 、連鎖状IM
C結晶の比率Aおよび引張り試験結果を示す。なお、各
Al合金(39)〜(58)において、略全部のIMC
結晶の粒径dがd≦1.2μmであった。
Tables 9 and 10 show various Al alloys (3
9) to (58) the temperature and time of the primary heat treatment,
Volume fraction V of IMC crystal with grain size d ≦ 1.2 μm
f 1 , volume fraction of chained IMC crystal Vf 2 , chained IM
The ratio A of C crystal and the tensile test result are shown. In each Al alloy (39) to (58), almost all IMC
The crystal grain size d was d ≦ 1.2 μm.

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【表10】 表9および表10から明らかなように、Al合金(4
0)〜(42),(45),(46),(50),(5
3),(54),(57),(58)は、d≦1.2μ
mIMC結晶の体積分率Vf1 が5%≦Vf1 ≦40%
であり、且つ連鎖状IMC結晶の比率AがA≧30%で
あって高強度である。
[Table 10] As is clear from Table 9 and Table 10, Al alloy (4
0) to (42), (45), (46), (50), (5
3), (54), (57), and (58) are d ≦ 1.2 μ
The volume fraction Vf 1 of the mIMC crystal is 5% ≦ Vf 1 ≦ 40%
And the ratio A of the chain-shaped IMC crystals is A ≧ 30%, which is high strength.

【0043】[0043]

【発明の効果】本発明によれば、前記のようにAl結晶
マトリックスの結晶粒界に特定量の連鎖状IMC結晶を
分散させることにより、マトリックスおよび連鎖状IM
C結晶間の結晶粒界のすべり抵抗を高めて、高強度化を
達成されたAl合金を提供することができる。
According to the present invention, as described above, a certain amount of chain-shaped IMC crystals are dispersed in the grain boundaries of the Al crystal matrix, whereby the matrix and the chain-shaped IM are dispersed.
It is possible to provide an Al alloy that achieves high strength by increasing the slip resistance of the crystal grain boundary between C crystals.

【図面の簡単な説明】[Brief description of drawings]

【図1】連鎖状IMC結晶の比率Aと応力との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the ratio A of chained IMC crystals and stress.

【図2】(a)はAl合金の金属組織を示す顕微鏡写真
であり、(b)は(a)の写図である。
FIG. 2 (a) is a micrograph showing the metal structure of an Al alloy, and FIG. 2 (b) is a drawing of (a).

【図3】d≦1.2IMC結晶の体積分率Vf1 と応力
との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the volume fraction Vf 1 of d ≦ 1.2 IMC crystal and stress.

【図4】d≦1.2IMC結晶の体積分率Vf1 と引張
強さとの関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the volume fraction Vf 1 of d ≦ 1.2 IMC crystal and the tensile strength.

【図5】d≦1.2IMC結晶の体積分率Vf1 と0.
2%耐力との関係を示すグラフである。
FIG. 5: d ≦ 1.2 IMC crystal volume fractions Vf 1 and 0.
It is a graph which shows the relationship with 2% yield strength.

【符号の説明】[Explanation of symbols]

c IMC結晶 C1 〜C4 連鎖状IMC結晶 M マトリックスc IMC crystal C 1 -C 4 chained IMC crystals M matrix

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質相を有する金属組織を備えたAl
合金素材を結晶化して得られたAl合金であって、Al
結晶よりなるマトリックスと、そのマトリックスの結晶
粒界に分散する粒径dがd≦1.2μmである金属間化
合物結晶(以下、IMC結晶)とを有し、それらIMC
結晶のうち、少なくとも一部のものは、3個以上のIM
C結晶が線状に結合した複数の連鎖状IMC結晶を構成
し、IMC結晶の体積分率Vf1 に対する連鎖状IMC
結晶の体積分率Vf2 の比率AをA≧30%に設定した
ことを特徴とする高強度Al合金。
1. Al having a metallic structure having an amorphous phase
An Al alloy obtained by crystallizing an alloy material,
IMC having a matrix of crystals and intermetallic compound crystals (hereinafter referred to as IMC crystals) having a grain size d of d ≦ 1.2 μm dispersed in the crystal grain boundaries of the matrix.
At least some of the crystals are three or more IM
A plurality of chain-shaped IMC crystals in which C crystals are linearly bonded to each other are formed, and the chain-shaped IMC with respect to the volume fraction Vf 1 of the IMC crystals.
A high-strength Al alloy characterized in that the ratio A of the crystal volume fraction Vf 2 is set to A ≧ 30%.
【請求項2】 粒径dがd≦1.2μmであるIMC結
晶の体積分率Vf1が5%≦Vf1 ≦40%である、請
求項1記載の高強度Al合金。
2. The high-strength Al alloy according to claim 1, wherein the volume fraction Vf 1 of the IMC crystal having a grain size d of d ≦ 1.2 μm is 5% ≦ Vf 1 ≦ 40%.
JP16028992A 1992-05-27 1992-05-27 High strength al alloy Pending JPH05331585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16028992A JPH05331585A (en) 1992-05-27 1992-05-27 High strength al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16028992A JPH05331585A (en) 1992-05-27 1992-05-27 High strength al alloy

Publications (1)

Publication Number Publication Date
JPH05331585A true JPH05331585A (en) 1993-12-14

Family

ID=15711769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16028992A Pending JPH05331585A (en) 1992-05-27 1992-05-27 High strength al alloy

Country Status (1)

Country Link
JP (1) JPH05331585A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012482A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
WO2018012481A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
WO2018181505A1 (en) 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
CN110193597A (en) * 2018-02-26 2019-09-03 通用汽车环球科技运作有限责任公司 Manufacture crystalline aluminium-iron-silicon alloy method
WO2019188452A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2019188451A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2020158683A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same
WO2020158682A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component, structural component and cabtyre cable each using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012481A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
KR20190028373A (en) 2016-07-13 2019-03-18 후루카와 덴끼고교 가부시키가이샤 Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same
KR20190028649A (en) 2016-07-13 2019-03-19 후루카와 덴끼고교 가부시키가이샤 Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same
WO2018012482A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
KR20190121292A (en) 2017-02-23 2019-10-25 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and fastening parts, structural parts, spring parts, conductive members and battery members using the same
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
US11268172B2 (en) 2017-02-23 2022-03-08 Furukawa Electric Co., Ltd. Aluminum alloy material, and fastening component, structural component, spring component, conductive member and battery member including the aluminum alloy material
KR20190133151A (en) 2017-03-29 2019-12-02 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and conductive member, battery member, fastening part, spring part and structural part using it
US10808299B2 (en) 2017-03-29 2020-10-20 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component including the aluminum alloy material
WO2018181505A1 (en) 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
CN110193597A (en) * 2018-02-26 2019-09-03 通用汽车环球科技运作有限责任公司 Manufacture crystalline aluminium-iron-silicon alloy method
US11085109B2 (en) 2018-02-26 2021-08-10 GM Global Technology Operations LLC Method of manufacturing a crystalline aluminum-iron-silicon alloy
WO2019188451A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2019188452A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
KR20200130237A (en) 2018-03-27 2020-11-18 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy materials and conductive members using the same, battery members, fastening parts, spring parts and structural parts
KR20200130236A (en) 2018-03-27 2020-11-18 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy materials and conductive members using the same, battery members, fastening parts, spring parts and structural parts
US11236410B2 (en) 2018-03-27 2022-02-01 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
US11306373B2 (en) 2018-03-27 2022-04-19 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2020158683A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same
WO2020158682A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component, structural component and cabtyre cable each using same

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
EP0281141B1 (en) Sputtering target
JP2629152B2 (en) Manufacturing method of compressed metal articles
US4518442A (en) Method of producing columnar crystal superalloy material with controlled orientation and product
CN109804096A (en) High-strength aluminum alloy backboard and preparation method
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
JPH07179974A (en) Aluminum alloy and its production
JPH03500789A (en) Manufacturing method for bulky amorphous metal products
JPH05331585A (en) High strength al alloy
JPWO2003046250A1 (en) Sputtering target and manufacturing method thereof
JP3302031B2 (en) Manufacturing method of high toughness and high strength amorphous alloy material
JPS61243143A (en) Superplastic co alloy and its manufacture
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPS60251260A (en) Manufacture of super plastic aluminum alloy
JPH08134614A (en) Production of superplastic magnesium alloy material
JP3203564B2 (en) Aluminum-based alloy integrated solidified material and method for producing the same
JPH08269698A (en) Ti target for sputtering
JPH02270929A (en) Aluminum alloy extruded material having less spring back and its manufacture
JPH10195610A (en) Fcc metal in which crystal orientation is regulated and its production
JPS6033329A (en) Ni based superplastic alloy and manufacture thereof
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPH05320834A (en) High-strength high-ductility al alloy
JPH05320801A (en) High-strength al alloy
JPH05320804A (en) High-strength high-toughness al alloy