JPS61243143A - Superplastic co alloy and its manufacture - Google Patents
Superplastic co alloy and its manufactureInfo
- Publication number
- JPS61243143A JPS61243143A JP59232492A JP23249284A JPS61243143A JP S61243143 A JPS61243143 A JP S61243143A JP 59232492 A JP59232492 A JP 59232492A JP 23249284 A JP23249284 A JP 23249284A JP S61243143 A JPS61243143 A JP S61243143A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- cobalt
- carbides
- grain size
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、新規なCo基超塑性合金びその製造法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a novel Co-based superplastic alloy and a method for producing the same.
炭化物析出強化型Co基超超合金、ジェットエンジン、
ガスタービン等のデスク又はノズルに用いられ、強度が
高いため鍛造することができず、精密鋳造法によって製
品形状に作製されている。Carbide precipitation strengthened Co-based superalloy, jet engine,
It is used for desks or nozzles in gas turbines, etc., and cannot be forged due to its high strength, so it is manufactured into a product shape by precision casting.
しかし加工の難しい超合金であっても、結晶粒径を小さ
くすれば超塑性変形を生じて延性が向上することか知ら
れている。特に r/析出強化型超合金では超塑性を示
すのが明らかとなっている。However, it is known that even in superalloys that are difficult to process, if the grain size is reduced, superplastic deformation occurs and ductility improves. In particular, it is clear that r/precipitation-strengthened superalloys exhibit superplasticity.
鋳造超合金は、通常の溶解方法では結晶粒を微細化する
ことができないため、粉末冶金法にょシ製造されている
。超塑性変形に対しては結晶粒径が小さい程優れた性質
を発揮するが、従来の粉末冶金法では、溶湯を急冷する
ことが難しいため、粉末を微細化することができず結果
として、粉末の粒径を10μm以下にすることは困難で
ある。Cast superalloys are manufactured using powder metallurgy, as grains cannot be refined using conventional melting methods. The smaller the grain size, the better the properties against superplastic deformation, but in conventional powder metallurgy methods, it is difficult to rapidly cool the molten metal, making it impossible to refine the powder. It is difficult to reduce the particle size to 10 μm or less.
また、結晶粒径を単に微細化しただけでは、低い温度領
域において十分な超塑性が得られないことは知られてい
る。Furthermore, it is known that sufficient superplasticity cannot be obtained in a low temperature range simply by reducing the grain size.
Crを多量に含有し、炭化物によって強化したコバルト
基合金では、耐食性が優れ、高温強度にも優れているた
め、高温構造材料として用いられている。このようなコ
バルト基合金に含有するクロームは、耐食性を改善する
元素であって、一方Cはクロームと結合してOrシカ−
イトを生成し、強度に寄与する元素であるが、同時にク
ロームとカーボンは共晶状炭化物を凝固時に生成する。Cobalt-based alloys containing a large amount of Cr and reinforced with carbides have excellent corrosion resistance and high-temperature strength, and are therefore used as high-temperature structural materials. Chromium contained in such a cobalt-based alloy is an element that improves corrosion resistance, and on the other hand, C combines with chromium to form an element that improves corrosion resistance.
At the same time, chromium and carbon form eutectic carbides during solidification.
との共晶状炭化物は、応力集中の拠点となシフ2ツクの
発生の原因となる。更に、この共晶状炭化物は、鋭角的
放射状に分布するため、延性、靭性及び熱疲労等の性質
を極めて低下させる主因となる。従って対超塑性特性に
対して極めて有害な炭化物である。The eutectic carbide with the ferrite is the cause of the occurrence of shift, which is a base of stress concentration. Furthermore, since these eutectic carbides are distributed in an acute radial pattern, they are the main cause of extremely deteriorating properties such as ductility, toughness, and thermal fatigue. Therefore, it is a carbide that is extremely harmful to superplastic properties.
従来の粉末冶金法でコバルト基超合金の粉末を製造する
際には、その粉末粒径は通常100μm程度でかつ粉末
粒内の結晶粒径は数μmである。When producing cobalt-based superalloy powder by conventional powder metallurgy, the powder particle size is usually about 100 μm, and the crystal grain size within the powder grain is several μm.
このように製造されたコバルト基超合金の粉末を熱間静
水圧プレス等で固化し所定形状の製品に成形するが、そ
の温度は通常1100C前後であるため、粉末内の結晶
粒径は加工時の再結晶現象によシ結晶成長して結晶粒径
は20μm以上となり、従来のコバルト基合金では、超
塑性現象が生じないという問題を有していた。The cobalt-based superalloy powder produced in this way is solidified using hot isostatic pressing and formed into a product of a predetermined shape, but the temperature is usually around 1100C, so the crystal grain size in the powder is changed during processing. Due to the recrystallization phenomenon, crystal grains grow to a crystal grain size of 20 μm or more, and conventional cobalt-based alloys have a problem in that superplasticity does not occur.
本発明の目的は、低い温度領域においても塑性加工がで
きるコバルト基超塑性合金及びその製造方法を提供する
ことにある。An object of the present invention is to provide a cobalt-based superplastic alloy that can be plastically worked even in a low temperature range and a method for producing the same.
第1の本発明は、結晶粒径が10μm以下であルコバル
ト基合金の基地に、粒径が0.5〜10μm以下である
塊状及び粒状の炭化物を析出させていることを特徴とし
ている。The first aspect of the present invention is characterized in that massive and granular carbides having a grain size of 0.5 to 10 μm or less are precipitated on a base of a cobalt-based alloy having a crystal grain size of 10 μm or less.
第2の本発明は、時効に処理によって炭化物を形成する
コバルト基合金の溶湯を10”K/秒以上の冷却速度で
凝固させて第2次デンドライトアーム間隔を10μm以
下とし、該コバルト基合金を所定温度で時効処理して、
粒径0.5〜10μmの炭化物を析出させることを特徴
とするコバルト基超塑性合金の製造方法である。A second aspect of the present invention is to solidify a molten cobalt-based alloy that forms carbides by aging treatment at a cooling rate of 10"K/sec or more so that the secondary dendrite arm spacing is 10 μm or less, and the cobalt-based alloy is After aging treatment at a specified temperature,
This is a method for producing a cobalt-based superplastic alloy, characterized by precipitating carbides with a grain size of 0.5 to 10 μm.
上記の本発明の対象となるコバルト基合金の組成として
は、重量比でC+0.15〜1%、Cr:15〜40t
s及び残部Coからなるものであって、更に成分限定す
れば重量比にてC+0.15〜1チ。The composition of the cobalt-based alloy that is the object of the present invention is as follows: C+0.15 to 1%, Cr: 15 to 40t in weight ratio
s and the remainder Co, and if the components are further limited, the weight ratio is C+0.15 to 1.
Cr r 15〜40%、W及び又はMO:3〜15L
B+ 1%以下、 Ni + 0〜20%、 Nb
: 0〜1.0 %、 Z r + 0〜1.0 ’1
6. T i r O〜1.0チ。Cr r 15-40%, W and or MO: 3-15L
B+ 1% or less, Ni+ 0-20%, Nb
: 0~1.0%, Zr+0~1.0'1
6. Ti r O ~ 1.0 chi.
Ti+o〜3%、Az+0〜3%及び残部Coからなる
ものである。特に、コバルト基合金の基地に析出する炭
化物はCrを主として含むCr!、C6からなるもので
あって、基地中のクローム量を15〜40%、カーボン
を0.15〜1%を含有することが望ましい。It consists of Ti+O~3%, Az+0~3%, and the balance Co. In particular, carbides precipitated in the matrix of cobalt-based alloys mainly contain Cr! , C6, and preferably contains 15 to 40% of chromium and 0.15 to 1% of carbon in the base.
以下、本発明の対象となるコバルト基超合金を上記の組
成範囲に限定した理由を述べる。The reason why the cobalt-based superalloy, which is the subject of the present invention, is limited to the above composition range will be described below.
Cはコバルト基合金の基地を強化する元素であって0.
151以下では高強度が得られず、一方l−を超えると
溶接性及び脆化の点から好ましくない、特に、Cは0.
2〜0.4%の範囲が好ましい。C is an element that strengthens the base of the cobalt-based alloy, and has a content of 0.
If C is less than 151, high strength cannot be obtained, while if it exceeds l-, it is unfavorable from the viewpoint of weldability and embrittlement.In particular, C is 0.
A range of 2 to 0.4% is preferred.
Crはコバルト基合金の基地の耐食性を向上させる元素
であって15−以下ではその効果が少なく、一方40−
を超えると靭性が劣化するので、クロームの含有量は1
5〜40%の範囲が好ましい。Cr is an element that improves the corrosion resistance of the matrix of cobalt-based alloys, and its effect is small at 15- or less, while at 40-
If the chromium content exceeds 1, the toughness will deteriorate.
A range of 5 to 40% is preferred.
W及びMoは炭化物の粗大化を防止し、かつ高温クリー
プの強度を向上させるために必要な元素であって、3%
以下ではその効果は少なく、また15%を超えると、W
、Moを特徴とする特許相を生成するので、W、Moは
3〜15%の範囲に限定した。W and Mo are elements necessary to prevent coarsening of carbides and improve high-temperature creep strength, and 3%
Below that, the effect is small, and when it exceeds 15%, W
, Mo is produced, so W and Mo are limited to a range of 3 to 15%.
Bは微量添加することによシ結晶粒界構造を延性構造に
かえ材料の靭性向上に役立つ元素であって、1%以下が
好ましい。特に0.001〜0.1チが望ましい。B is an element that, when added in a small amount, changes the crystal grain boundary structure into a ductile structure and is useful for improving the toughness of the material, and is preferably 1% or less. Particularly desirable is 0.001 to 0.1 inch.
Niは材料強度を向上させるのに有効な元素であって高
靭性の観点から20チ以下が好ましい。Ni is an effective element for improving material strength, and from the viewpoint of high toughness, it is preferably 20 or less.
Nb、Zr、Tiはカーボンと微細な二次炭化物を形成
し材料強度を向上させる元素であって、1チ以下が好ま
しい。特に0,1〜O,S*がよい。Nb, Zr, and Ti are elements that form fine secondary carbides with carbon and improve material strength, and are preferably 1 Ti or less. In particular, 0,1 to O, S* is good.
これ等を単独よシも2種又は3種以上の組み合せたとえ
ばTi+Nb、T i+Nb+Zr、Ti+’ra、T
i+Ta+Zr等の組み合せがある。These can be used alone or in combination of two or more, such as Ti+Nb, Ti+Nb+Zr, Ti+'ra, T
There are combinations such as i+Ta+Zr.
Ttは脱酸剤2として必要であシかつニッケルと化合し
て析出強化によ多材料強度を向上させる元素であって、
3チ以下が好ましい。Tt is an element that is necessary as a deoxidizing agent 2 and improves the strength of many materials by combining with nickel and precipitation strengthening,
3 inches or less is preferable.
T1は微細な炭化物を形成するとともにアルミと同様に
Niと結合して材料強度を向上させる元素であって、0
.1〜0.81が好ましい。T1 is an element that forms fine carbides and improves material strength by combining with Ni like aluminum, and is
.. 1 to 0.81 is preferred.
Coは本発明のコバルト基超塑性合金の基本成分であっ
て固溶強化のために40−以上が好ましく、特に60チ
以上が好ましい。Co is a basic component of the cobalt-based superplastic alloy of the present invention, and is preferably 40 or more, particularly preferably 60 or more, for solid solution strengthening.
第1表は代表的なコバルト基合金の例を示しているもの
で、本発明合金に該当する組成を有するものである。Table 1 shows examples of typical cobalt-based alloys, which have compositions that correspond to the alloys of the present invention.
本発明のコバルト基超塑性合金は、以上のような組成か
らなるもので結晶微粒径が10μm以下であって、かつ
炭化物の粒径が0.5〜10μm以下の塊状及び球状の
炭化物析出物であることが必須の条件である。そして超
塑性現象は溶湯凝固のままでは生ぜず、熱処理等によっ
て炭化物を0.5〜10μmの大きさに調整することが
必要である。The cobalt-based superplastic alloy of the present invention has the above-mentioned composition, has a crystal fine grain size of 10 μm or less, and contains massive and spherical carbide precipitates with a carbide grain size of 0.5 to 10 μm or less. This is an essential condition. The superplastic phenomenon does not occur when the molten metal solidifies, and it is necessary to adjust the size of the carbide to 0.5 to 10 μm by heat treatment or the like.
一般に超塑性は結晶粒が10μm以上と大きくなると示
さないが、一方結晶粒の大きさが小さくとも炭化物が0
.5μm以下の小さな場合は超塑性を示さない。一方、
炭化物の大きさは10μm以上に大きくなると超塑性を
示さなくなる。これは炭化物が10μm以上に粗大化す
ると合金内に炭化物の偏析が生じて、ある部分では無炭
化物状態が生ずる。一般に炭化物は合金中に均一に分散
するのがよい。これは合金内に均一に分散することによ
って合金の基地結晶粒の粗大化を防止しているからであ
シ、炭化物が10μm以上になると炭化物が存在しない
部分が生じ、そこでは結晶粒が粗大化して結晶粒は10
μm以上となって超塑性を示さなくなる。以上のことか
ら、コバルト基合金の基地中に析出させる炭化物の粒径
が0.5μm〜10βm以下であることが好ましい。こ
のように超塑性現象は炭化物の大きさと結晶粒径との相
互関係によって生ずるものである。In general, superplasticity is not exhibited when the crystal grain size is larger than 10 μm, but on the other hand, even if the crystal grain size is small, carbide
.. In the case of a small diameter of 5 μm or less, superplasticity is not exhibited. on the other hand,
When the size of carbides becomes larger than 10 μm, superplasticity is no longer exhibited. This is because when carbides become coarser than 10 μm, segregation of carbides occurs within the alloy, resulting in a non-carbide state in some parts. Generally, carbides are preferably uniformly dispersed in the alloy. This is because the base crystal grains of the alloy are prevented from becoming coarse by uniformly dispersing them within the alloy.If the carbides exceed 10 μm, there will be areas where no carbides exist, and the crystal grains will become coarser there. The grain size is 10
When the thickness exceeds μm, superplasticity is no longer exhibited. From the above, it is preferable that the grain size of the carbide precipitated in the base of the cobalt-based alloy is 0.5 μm to 10 μm or less. In this way, the superplastic phenomenon is caused by the interaction between the size of carbides and the grain size.
本発明のコバルト基超塑性合金値コバルト基合金基地の
結晶粒径を10μm以下にし、かつ炭化物の大きさt−
o、 s〜10μmにするところにある。Cobalt-based superplastic alloy value of the present invention The crystal grain size of the cobalt-based alloy base is 10 μm or less, and the carbide size is t-
o, s ~ 10 μm.
次に、コバルト基超塑性合金を製造する方法について述
べる。Next, a method for manufacturing a cobalt-based superplastic alloy will be described.
このコバルト基超塑性合金を製造する方法は、コバルト
基合金の溶湯を急冷凝固させることによシ、有害な共晶
炭化物の生成を本質的に防止し、かつ結晶粒径t−10
μm以下にするとともに、熱処理によシ炭化物を粒形で
0.5〜10μm以下に調整することを特徴としている
。この溶湯から急冷凝固する際の冷却速度は10” K
/Bee以上であって凝固の際の第2デ/ド2イトアー
ム間隔が10μm以内に相当し、これにより超塑性の高
いものが得られる。特に第2プント2イトアーム間隔が
1μm以下であることが好ましい。このコバルト基合金
の溶湯を10 ” K/ sec以上の冷却速度で冷却
凝固させる具体的な方法としては、高速で回転するロー
ル表面に、溶湯を注湯し該ロール表面にl O’ K/
Sec 以上の速度で急冷凝固させる方法がある。This method of producing a cobalt-based superplastic alloy essentially prevents the formation of harmful eutectic carbides by rapidly cooling and solidifying a molten cobalt-based alloy, and the crystal grain size is t-10.
It is characterized by adjusting the particle size of the carbide to 0.5 to 10 μm or less by heat treatment. The cooling rate during rapid solidification from this molten metal is 10”K.
/Bee or more, and the distance between the second and second arm during solidification corresponds to 10 μm or less, thereby obtaining a product with high superplasticity. In particular, it is preferable that the interval between the second punto arms is 1 μm or less. A specific method for cooling and solidifying the molten cobalt-based alloy at a cooling rate of 10" K/sec or more involves pouring the molten metal onto the surface of a roll rotating at high speed and applying l O' K/sec to the surface of the roll.
There is a method of rapidly solidifying at a speed of Sec or more.
このように冷却速度をIO’に/see以上で溶湯を凝
固させれば、10μm以下の結晶粒径を得ることができ
る。更に本発明は、急冷凝固によって得られたコバルト
基合金を所定温度で時効し結晶粒径1071m以下の状
態で、0.5〜10μmの炭化物を析出させることにあ
る。なおロールは表面研磨された表面を有し、その表面
に溶湯を注入するものである。更にロールは熱伝導性の
高い金属から形成することが好ましい。炭化物の粒径t
−偶整するための時効温度は600〜1000Cの範囲
が好ましい。これらの温度範囲と時間とによって炭化物
の粒径を0.5〜10μmに調整することができる。こ
の時効処理の際の雰囲気としては不活性雰囲気が好まし
い。このように本発明の方法によって得られたコバルト
基合金は、結晶粒径が10μm以下である合金の基地に
1粒径0.5〜10μm以下の塊状及び粒状の炭化物を
析出させてなることを特徴とするものである。If the molten metal is solidified at a cooling rate of IO'/see or higher in this manner, a crystal grain size of 10 μm or less can be obtained. Furthermore, the present invention is to age a cobalt-based alloy obtained by rapid solidification at a predetermined temperature to precipitate carbides of 0.5 to 10 μm in a state where the crystal grain size is 1071 m or less. Note that the roll has a polished surface, and the molten metal is poured into the surface. Furthermore, the roll is preferably formed from a metal with high thermal conductivity. Carbide particle size t
- The aging temperature for even adjustment is preferably in the range of 600 to 1000C. The grain size of the carbide can be adjusted to 0.5 to 10 μm by adjusting these temperature ranges and times. The atmosphere during this aging treatment is preferably an inert atmosphere. In this way, the cobalt-based alloy obtained by the method of the present invention is made by precipitating massive and granular carbides with a grain size of 0.5 to 10 μm or less on an alloy matrix with a crystal grain size of 10 μm or less. This is a characteristic feature.
以下本発明の詳細な説明する。 The present invention will be explained in detail below.
第2表は本発明合金の供試材の化学組成(重量qk)を
示すものである。Table 2 shows the chemical composition (weight qk) of test materials of the alloy of the present invention.
第2表
表に示す合金は1500t:’の溶湯を回転するロール
間に直接注湯し、凝固させ薄帯を製造した。For the alloys shown in Table 2, 1500 tons of molten metal was poured directly between rotating rolls and solidified to produce a ribbon.
得られた薄体の形状は長さ2000 ws−、@8〜1
0 Wms厚さ70〜xoo#mである。この場合の溶
湯の冷却速度として溶湯から凝固するまでの速度は5X
10’〜5X10’に7秒であった。The shape of the obtained thin body has a length of 2000 ws-, @8~1
0 Wms thickness 70~xoo#m. In this case, the cooling rate of the molten metal from molten metal to solidification is 5X
It took 7 seconds for 10' to 5X10'.
第1図は注湯凝固させた11のコバルト基合金の金属組
織を示す透過電子顕微鏡写真図である。FIG. 1 is a transmission electron micrograph showing the metal structure of No. 11 cobalt-based alloy that was poured and solidified.
図に示すように、本発明のコバルト基合金の結晶性は約
1μmで6シ10μm以下になっている。As shown in the figure, the crystallinity of the cobalt-based alloy of the present invention is approximately 1 μm and 10 μm or less.
第2図は第1図の高倍の透過電子顕微鏡写真図である。FIG. 2 is a high-magnification transmission electron micrograph of FIG. 1.
図から、共晶炭化物は生成しないばか〕でなく炭化物の
生成自体が抑制されている。これは、本発明の実施例が
5X10’〜5XIO’に7秒の冷却速度で凝固された
ためであ夛、このことは同時に後の熱処理によシ炭化物
の粒径を所定の範囲に制御するものとして重要な意味を
もつ部分である。As can be seen from the figure, not only does eutectic carbide not form, but the formation of carbide itself is suppressed. This is because the examples of the present invention were solidified to 5X10' to 5XIO' at a cooling rate of 7 seconds, which simultaneously controls the grain size of the carbides within a predetermined range during subsequent heat treatment. This is an important part.
第3@は従来の冷却速度が遅い状態で溶解、鋳造された
コバルト基合金の顕微鏡組織の写真囚である0図に示す
如く、ゆつ〈)冷却合金した合金には粒界に共晶炭化物
の生成が認められる。この炭化物の生成は、超塑性特性
は本質的に有害なものであシ、また、その大きさは、1
0μmよルはるかに大きく、従来方法では超塑性能を示
す炭化物形状を本質的に満足しないことは明らかである
。No. 3 is a photograph of the microscopic structure of a cobalt-based alloy melted and cast at a conventional slow cooling rate. The formation of is observed. The formation of this carbide has a superplastic property that is inherently harmful, and its size is 1
It is much larger than 0 μm, and it is clear that the conventional method does not essentially satisfy the carbide shape exhibiting superplastic performance.
第4図(A)は、本発明のコバルト基合金をaooc1
h時効した合金の金属組織、(B)は同合金を1000
C1h時効した合金の金属組織顕微鏡写真図である。(
A)では、粒界3重点あたシに黒色の小さなCr1IC
6の析出が見らtLX(B)では1000t:’と高い
m度で時効されたためCr1IC6が大きく成長してい
る。ここで重要なことは、本発明のCo基超塑性合金第
2図で示したように、凝固され+11の状態で炭化物の
生成を抑制し九ため、それ以後の熱処理で炭化物の大き
さを自由に制御できることである。そして、さらK10
0OCでlh時効した第4図(B)においても炭化物径
は約0.2μmとあまシ急激に大きくならずその大きさ
の制御は自由である。それに対して、第3図で示したよ
うな従来技術によるコバルト合金では本発明に示すよう
な炭化物の大きざに対する制御は本質的に無理である。FIG. 4(A) shows the cobalt-based alloy of the present invention aooc1
h Metal structure of the aged alloy, (B) shows the same alloy at 1000
FIG. 2 is a metallographic micrograph of a C1h aged alloy. (
In A), there is a small black Cr1IC at the grain boundary triple point.
In tLX (B), precipitation of Cr1IC6 was observed, and since aging was performed at a high m degree of 1000t:', Cr1IC6 has grown significantly. What is important here is that, as shown in Figure 2, the Co-based superplastic alloy of the present invention suppresses the formation of carbides in the solidified +11 state, and the size of the carbides can be freely controlled by subsequent heat treatment. It is something that can be controlled. And Sara K10
Even in FIG. 4(B), which was aged for 1 hour at 0OC, the carbide diameter was approximately 0.2 μm, which did not increase rapidly and the size could be freely controlled. On the other hand, in the conventional cobalt alloy as shown in FIG. 3, it is essentially impossible to control the size of carbides as shown in the present invention.
以上で、本発明の製造法によるコバルト基合金が炭化物
大きさの制御に対して優れると七を明らかにしてきたが
、これは本発明の製造方法における、冷却速度を102
K/81IC以上としたからである。本発明によるコバ
ルト基超塑性合金の第2次デンドライトアーム間隔は約
0.5〜1μmである。その8EM観察像の一例を第5
図に示す。なお、この第2次デンドライトアーム間隔t
−測定することによって一溶湯から凝固するまでの冷却
速度が予測できるが1本発明の場合は、5 X l G
’ 〜5 X I O”K/8eCであった。冷却速度
が早くなると、その結晶粒は細かくなる傾向があるが、
本発明合金も結晶粒が約1μm前後と細かくなっている
。In the above, it has been clarified that the cobalt-based alloy produced by the production method of the present invention is excellent in controlling the carbide size, and this indicates that the cooling rate in the production method of the present invention is 102%.
This is because it is K/81IC or higher. The secondary dendrite arm spacing of the cobalt-based superplastic alloy according to the present invention is about 0.5-1 μm. An example of the 8EM observation image is shown in the 5th section.
As shown in the figure. Note that this secondary dendrite arm interval t
-The cooling rate from molten metal to solidification can be predicted by measuring, but in the case of the present invention, 5 X l G
'~5 X I O"K/8eC. As the cooling rate increases, the crystal grains tend to become finer, but
The alloy of the present invention also has fine crystal grains of about 1 μm.
本発明のCo基超朧性合金に対して、超塑性現象を生じ
させる場合、この作製時の状態のままでは超塑性現象は
発生しない。発生させるためには、炭化物を合金内に析
出させて、その大きさt O,Sμm以上10μm以下
にすることが必要である。When a superplastic phenomenon is caused in the Co-based ultra-vague alloy of the present invention, the superplastic phenomenon does not occur in the state at the time of production. In order to generate carbides, it is necessary to precipitate carbides in the alloy and make the size of the carbide t O,S μm or more and 10 μm or less.
第6図は本発明のCo基合金の溶湯を急却凝固した合金
についての900C及び950Cでの引張試験結果を示
す線図である。試料は厚さ70μ八幅20wの薄帯を用
いて70−まで伸ばして調べた。超塑性は、変形応力O
と歪速度;との間において成立するα)式において、m
がα3以上のときく発生するといわれている。FIG. 6 is a diagram showing the results of a tensile test at 900C and 950C for an alloy obtained by rapidly solidifying a molten Co-based alloy of the present invention. The sample was examined using a thin strip 70μ thick and 20W wide, stretched to 70mm. Superplasticity is the deformation stress O
In the equation α) that holds true between and strain rate, m
is said to occur frequently when α3 or more.
m=に# ・・・−・・・・・・・・・・・・
・・・・・・・・・・(1)なお、Kは材料定数であシ
、mは歪速度感受性指数である。m=に#・・・−・・・・・・・・・・・・
(1) Note that K is a material constant and m is a strain rate sensitivity index.
図において、傾がmに相当する。このmが0.3以上だ
と超塑性を示す。第6図で、ロールで作製したままのも
の(as rolled)の結果を点線で示すが900
Cで引張試験した場合、mは0.16と小さく、また、
950Cでもmは0.28であプ超塑性を示さない。一
方、その薄帯を100OcX6h(実線)時効処理した
ものは、引張試験をす−る前に予め炭化物を1μm以上
に成長させたものである。950Cでの試験結果はm=
0.37と0.3以上を示し、超塑性を示す。さらに9
00Cのものもm=0.24とナッテas rolle
d材よシ大きくなシ超塑性を示す状態に近づく。このよ
うな超塑性現象発生の違いは、炭化物の大きさに原因し
ていることを発明者は明らかにすることができた。In the figure, the slope corresponds to m. When this m is 0.3 or more, superplasticity is exhibited. In Figure 6, the dotted line shows the results of the as-rolled product.
When performing a tensile test with C, m is as small as 0.16, and
Even at 950C, m is 0.28 and does not exhibit superplasticity. On the other hand, in the case where the ribbon was aged at 100Oc x 6h (solid line), carbide was grown to a thickness of 1 μm or more before the tensile test. The test result at 950C is m=
0.37 and 0.3 or more, indicating superplasticity. 9 more
The one of 00C is also m=0.24 and natte as rolle
The material approaches a state where it exhibits greater superplasticity than the d material. The inventor was able to clarify that this difference in the occurrence of superplastic phenomena is caused by the size of the carbide.
第7図は、第6図において950Cでの試験後の組織で
ある。(A)は超塑性を示さなかったas rolle
d の組織であるが炭化物は0.1μmと小さい。(B
)は1000CX6hの熱処理を予めしたものであるが
、炭化物はCrtlollの矢印で示したように1μm
以上に大きくなっておシ、mも0.37となって超塑性
を示している。以上の説明で明らかとなったが、炭化物
の大きさが超塑性発生の重要な鍵を握っておシ、本発明
の最も重要な部分を握っている。一般に、超塑性は結晶
粒が10μm以下と小さくないと示さないが、結晶粒の
大きさが小さくても炭化物が0.5μm以下の小さい場
合は第7図で示したように超塑性を示ざない。このよう
な場合は、予め熱処理をして炭化物を0.5〜10μm
の大きさに調整しておくと超塑性を発現するようになる
。なお、結晶粒が小さい粉末等の場合は、ある条件で固
化した場合に炭化物が本発明で示した大きさに成長して
超塑性を示す場合がある。しかし゛ながら、この場合に
おいては固化時に炭化物調整の熱処理を同時にして、炭
化物の大きさを本発明で示した0、5〜10μmの大き
さにしたから超塑性を示すのであって、本質的に本発明
内容に該当する。一方、炭化物の太きさは10μm以上
に大きくすると超塑性を示さなくなる。これは炭化物が
10μm以上に粗大化すると合金内の炭化物の分布に偏
析が生じて、ある部分では無炭化物状態が生じる。一般
に炭化物は合金内に均一に分布するのが都合よい。これ
は合金内に均一に分布することによって合金基地結晶粒
の粗大化を防止しているからであシ、炭化物が10μm
以上になると炭化物不在部が生じ、そこでは結晶粒が粗
大化して結晶粒は10μm以上となってその結果超塑性
を示さなくなる。以上から、炭化物の大きさは0.5μ
m以上10μm以下が良く、合金基地の結晶粒径は10
μm以下が好都合である。さらに、これら炭化物大きさ
と合金基地結晶粒径は相互に関係しており、これらの因
子はさらに合金の製造方法に密接に影響していることが
上記の説明でわかる。以上、本発明の一実施例をロール
法で作製した供試材に基づいて説明してきたが、本発明
の本質は合金基地の結晶粒径を10/Jm以下にし、炭
化物の大きさを0.5〜10μmにする所にあシ、製造
法はこれを満足する限夛、いかなる製造法で作製しても
本発明の本質に該当することは自明である。FIG. 7 shows the structure of FIG. 6 after the test at 950C. (A) as roll which did not show superplasticity
d, but the carbides are as small as 0.1 μm. (B
) has been heat treated at 1000C x 6h in advance, but the carbide has a thickness of 1 μm as shown by the Crtroll arrow.
It becomes larger than above, and m becomes 0.37, indicating superplasticity. As has become clear from the above explanation, the size of the carbide holds an important key to the generation of superplasticity, and is the most important part of the present invention. Generally, superplasticity is not exhibited unless the crystal grain size is small, 10 μm or less, but even if the crystal grain size is small, if the carbide is small, 0.5 μm or less, superplasticity is not exhibited as shown in Figure 7. do not have. In such cases, heat treatment should be performed in advance to reduce the carbide to a thickness of 0.5 to 10 μm.
If the size is adjusted to , superplasticity will be expressed. In addition, in the case of powder with small crystal grains, when solidified under certain conditions, carbides may grow to the size shown in the present invention and exhibit superplasticity. However, in this case, heat treatment for carbide adjustment was performed at the same time as solidification, and the size of the carbides was made to be 0.5 to 10 μm as shown in the present invention, so it exhibits superplasticity, and essentially corresponds to the content of the present invention. On the other hand, if the thickness of the carbide is increased to 10 μm or more, superplasticity will not be exhibited. This is because when carbides become coarser than 10 μm, segregation occurs in the distribution of carbides within the alloy, resulting in a non-carbide state in some parts. It is generally advantageous for the carbides to be uniformly distributed within the alloy. This is because the alloy base crystal grains are prevented from becoming coarser by uniformly distributing them within the alloy, and the carbides are 10 μm thick.
If it exceeds the range, carbide-absent areas occur, where the crystal grains become coarse and have a diameter of 10 μm or more, and as a result, superplasticity is no longer exhibited. From the above, the size of the carbide is 0.5μ
The crystal grain size of the alloy base is preferably 10 μm or more and 10 μm or less.
A value of less than μm is advantageous. Furthermore, it can be seen from the above description that the carbide size and the alloy matrix grain size are interrelated, and these factors also closely affect the method of manufacturing the alloy. An embodiment of the present invention has been described above based on a test material produced by a roll method, but the essence of the present invention is to reduce the grain size of the alloy base to 10/Jm or less and to reduce the size of carbides to 0. It is obvious that the essence of the present invention falls within the essence of the present invention, as long as the thickness is 5 to 10 .mu.m, and any manufacturing method that satisfies this requirement is acceptable.
以上のように、本発明によれば、低い温度領域でも超塑
性を示して701以上の伸び率を有し、かつ鍛造加工等
の塑性加工により複雑形状物を作製し得るCo基超塑性
合金提供することができる。As described above, the present invention provides a Co-based superplastic alloy that exhibits superplasticity even in a low temperature range, has an elongation rate of 701 or more, and is capable of producing complex-shaped objects by plastic working such as forging. can do.
M1図は本発明のコバルト基超塑性合金の蚊属組織を示
す透過電子顕微鏡写真図、第2図は第1図における高倍
の透過電子顕微鏡写真図、第3図は従来のコバルト基合
金の顕微鏡写真図、第4図(A)、(B)は本発明のコ
バルト基合金の600Cxlhおよび1000CXlh
時効ノ金属組織を示す顕微鏡写真図、第5図は本発明の
コバルト−基超塑性合金の8EM観察像の一例を示す走
査電子顕微鏡写真図、第6図はCo基合金の900Cお
よび950Cでの引張試験結果を示す線図、第7図は第
6図(A)、(B)における950Cでの試験後のCo
基合金の金属組織図である@特許出願人 工業技術院長
等々労連
1μm・
σ、3)、t、vL
)143 目
!ρμ威
し−一一一一」
(Aン (5ン
a・3P広
手続補正書彷式)
昭和61年年月lb日Fig. M1 is a transmission electron micrograph showing the microstructure of the cobalt-based superplastic alloy of the present invention, Fig. 2 is a high-magnification transmission electron micrograph of Fig. 1, and Fig. 3 is a micrograph of the conventional cobalt-based alloy. Photographs, Fig. 4 (A) and (B) are 600Cxlh and 1000CXlh of cobalt-based alloys of the present invention.
Fig. 5 is a scanning electron micrograph showing an example of an 8EM observation image of the cobalt-based superplastic alloy of the present invention, and Fig. 6 is a photomicrograph showing the aged metal structure of the cobalt-based superplastic alloy at 900C and 950C. A diagram showing the tensile test results, Figure 7 shows the Co after the test at 950C in Figures 6 (A) and (B).
A metallographic diagram of the base alloy @Patent applicant Director of the Agency of Industrial Science and Technology Todoro Labor Federation 1μm・σ, 3), t, vL) 143 eyes! ρμ Ishi-1111” (A (5-a/3P wide procedure amendment form) 1986, month, lb, day
Claims (1)
地に、粒径が0.5から10μm以下である塊状及び粒
状の炭化物を析出させてなることを特徴とするCo基超
塑性合金。 2、特許請求の範囲第1項において、前記コバルト基合
金は、重量比でCr:15〜40%、C:0.15〜1
%を含み、40%以上のCoからなることを特徴とする
Co基超塑性合金。 3、特許請求の範囲第1項において、前記コバルト基合
金は、重量比でC:0.15〜1%、Cr:15〜40
%、W及び又はモリブデン:3〜15%、B:1%以下
、Ni:0〜20%、Nb:0〜1.0%、Zr:0〜
1.0%、Ta:0〜1.0%、Ti:0〜3%、Al
:0〜3%、及び残部Coからなることを特徴とするC
o基超塑性合金。 4、特許請求の範囲第1項〜第3項において、前記コバ
ルト基合金は溶湯から凝固するまでの冷却速度を10^
2K/秒以上であることを特徴とするCo基超塑性合金
。 5、時効処理によって炭化物を形成するCo基合金の溶
湯を10^2K/秒以上の冷却速度で凝固させて第2次
デンドラントアーム間隙を10μm以下とし、該Co基
合金を所定の温度で時効して、粒径0.5〜10μmの
炭化物を析出させることを特徴とするCo基超塑性合金
の製造方法。[Claims] 1. Co characterized by being formed by precipitating massive and granular carbides with a grain size of 0.5 to 10 μm or less on a cobalt-based alloy base with a crystal grain size of 10 μm or less. Base superplastic alloy. 2. In claim 1, the cobalt-based alloy has a weight ratio of Cr: 15 to 40% and C: 0.15 to 1.
% and 40% or more of Co. 3. In claim 1, the cobalt-based alloy has a weight ratio of C: 0.15 to 1% and Cr: 15 to 40.
%, W and/or molybdenum: 3 to 15%, B: 1% or less, Ni: 0 to 20%, Nb: 0 to 1.0%, Zr: 0 to
1.0%, Ta: 0-1.0%, Ti: 0-3%, Al
:0 to 3%, and the balance is Co.
O-based superplastic alloy. 4. In claims 1 to 3, the cobalt-based alloy has a cooling rate of 10^ from molten metal to solidification.
A Co-based superplastic alloy characterized in that it has a velocity of 2K/sec or more. 5. The molten Co-based alloy that forms carbides through aging treatment is solidified at a cooling rate of 10^2 K/sec or more to make the secondary dendrant arm gap 10 μm or less, and the Co-based alloy is aged at a predetermined temperature. A method for producing a Co-based superplastic alloy, which comprises precipitating carbides having a grain size of 0.5 to 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59232492A JPS61243143A (en) | 1984-11-06 | 1984-11-06 | Superplastic co alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59232492A JPS61243143A (en) | 1984-11-06 | 1984-11-06 | Superplastic co alloy and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61243143A true JPS61243143A (en) | 1986-10-29 |
JPH0116292B2 JPH0116292B2 (en) | 1989-03-23 |
Family
ID=16940163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59232492A Granted JPS61243143A (en) | 1984-11-06 | 1984-11-06 | Superplastic co alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61243143A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011032530A (en) * | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Co-BASED CASTING ALLOY FOR BIOMEDICAL APPLICATION EXCELLENT IN CUTTING ABILITY AND METHOD FOR MANUFACTURING THE SAME |
JP2015190004A (en) * | 2014-03-28 | 2015-11-02 | 国立大学法人東北大学 | Machine component |
JP2019014921A (en) * | 2017-07-03 | 2019-01-31 | 国立大学法人東北大学 | Mechanical component |
EP3453775A1 (en) * | 2017-09-08 | 2019-03-13 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
JP2019173175A (en) * | 2019-04-02 | 2019-10-10 | 三菱日立パワーシステムズ株式会社 | Manufacturing method of cobalt-based alloy laminate molded body |
WO2020121367A1 (en) * | 2018-12-10 | 2020-06-18 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these |
WO2020179207A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for manufacturing cobalt-based alloy sintered body |
WO2020179084A1 (en) * | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product and cobalt-based alloy article |
JP2020143379A (en) * | 2019-04-02 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy material |
WO2020179085A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Heat exchanger |
WO2020179081A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product |
WO2020179083A1 (en) * | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product and method for producing same |
WO2020179080A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article |
KR20210084422A (en) | 2019-12-26 | 2021-07-07 | 미츠비시 파워 가부시키가이샤 | Cobalt-Based Alloy Products |
WO2021190704A1 (en) | 2020-03-26 | 2021-09-30 | Vdm Metals International Gmbh | Powder made of a cobalt-chromium alloy |
KR20220031990A (en) | 2020-09-04 | 2022-03-15 | 미츠비시 파워 가부시키가이샤 | Cobalt-Based Alloy Materials and Cobalt-Based Alloy Products |
-
1984
- 1984-11-06 JP JP59232492A patent/JPS61243143A/en active Granted
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011032530A (en) * | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Co-BASED CASTING ALLOY FOR BIOMEDICAL APPLICATION EXCELLENT IN CUTTING ABILITY AND METHOD FOR MANUFACTURING THE SAME |
JP2015190004A (en) * | 2014-03-28 | 2015-11-02 | 国立大学法人東北大学 | Machine component |
JP2019014921A (en) * | 2017-07-03 | 2019-01-31 | 国立大学法人東北大学 | Mechanical component |
US10857595B2 (en) | 2017-09-08 | 2020-12-08 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
EP3453775A1 (en) * | 2017-09-08 | 2019-03-13 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
JP2019049022A (en) * | 2017-09-08 | 2019-03-28 | 三菱日立パワーシステムズ株式会社 | Cobalt group alloy laminated shaped body, cobalt group alloy product, and method for manufacturing them |
US11325189B2 (en) | 2017-09-08 | 2022-05-10 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
EP3611281A1 (en) | 2017-09-08 | 2020-02-19 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
EP3611282A1 (en) | 2017-09-08 | 2020-02-19 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy product |
US10632535B2 (en) | 2017-09-08 | 2020-04-28 | Mitsubishi Hitachi Power Systems, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
WO2020121367A1 (en) * | 2018-12-10 | 2020-06-18 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these |
KR20210022682A (en) | 2019-03-07 | 2021-03-03 | 미츠비시 파워 가부시키가이샤 | Method for producing cobalt-based alloy powder, cobalt-based alloy sintered body, and cobalt-based alloy sintered body |
JPWO2020179084A1 (en) * | 2019-03-07 | 2021-03-11 | 三菱パワー株式会社 | Cobalt-based alloy products and cobalt-based alloy articles |
WO2020179085A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Heat exchanger |
WO2020179081A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product |
WO2020179083A1 (en) * | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product and method for producing same |
WO2020179080A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article |
CN111918975A (en) * | 2019-03-07 | 2020-11-10 | 三菱动力株式会社 | Heat exchanger |
CN111918976A (en) * | 2019-03-07 | 2020-11-10 | 三菱动力株式会社 | Cobalt-based alloy manufactured article |
CN112004950A (en) * | 2019-03-07 | 2020-11-27 | 三菱动力株式会社 | Cobalt-based alloy manufactured article and cobalt-based alloy article |
CN112004952A (en) * | 2019-03-07 | 2020-11-27 | 三菱动力株式会社 | Cobalt-based alloy manufactured article, method for manufacturing the same, and cobalt-based alloy article |
WO2020179084A1 (en) * | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy product and cobalt-based alloy article |
WO2020179207A1 (en) | 2019-03-07 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for manufacturing cobalt-based alloy sintered body |
KR20210024120A (en) | 2019-03-07 | 2021-03-04 | 미츠비시 파워 가부시키가이샤 | heat exchanger |
KR20210024121A (en) | 2019-03-07 | 2021-03-04 | 미츠비시 파워 가부시키가이샤 | Cobalt-based alloy product, method for producing the product, and cobalt-based alloy article |
KR20210024617A (en) | 2019-03-07 | 2021-03-05 | 미츠비시 파워 가부시키가이샤 | Cobalt-based alloy product and its manufacturing method |
KR20210027393A (en) | 2019-03-07 | 2021-03-10 | 미츠비시 파워 가부시키가이샤 | Cobalt alloy products |
KR20210027391A (en) | 2019-03-07 | 2021-03-10 | 미츠비시 파워 가부시키가이샤 | Cobalt-based alloy products and cobalt-based alloy articles |
US11613795B2 (en) | 2019-03-07 | 2023-03-28 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product and method for manufacturing same |
JPWO2020179083A1 (en) * | 2019-03-07 | 2021-03-11 | 三菱パワー株式会社 | Cobalt-based alloy product and its manufacturing method |
JPWO2020179080A1 (en) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | Cobalt-based alloy product, manufacturing method of the product, and cobalt-based alloy article |
JPWO2020179081A1 (en) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | Cobalt-based alloy product |
US11499208B2 (en) | 2019-03-07 | 2022-11-15 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product |
US11427893B2 (en) | 2019-03-07 | 2022-08-30 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger |
US11414728B2 (en) | 2019-03-07 | 2022-08-16 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article |
CN112004952B (en) * | 2019-03-07 | 2022-05-13 | 三菱重工业株式会社 | Method for producing cobalt-based alloy product |
US11306372B2 (en) | 2019-03-07 | 2022-04-19 | Mitsubishi Power, Ltd. | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body |
RU2771192C1 (en) * | 2019-03-07 | 2022-04-28 | Мицубиси Пауэр, Лтд. | Powder of a cobalt-based alloy, sintered body made of a cobalt-based alloy, and method for manufacturing a sintered body from a cobalt-based alloy |
JP2019173175A (en) * | 2019-04-02 | 2019-10-10 | 三菱日立パワーシステムズ株式会社 | Manufacturing method of cobalt-based alloy laminate molded body |
JP2020143379A (en) * | 2019-04-02 | 2020-09-10 | 三菱日立パワーシステムズ株式会社 | Cobalt-based alloy material |
KR20210084422A (en) | 2019-12-26 | 2021-07-07 | 미츠비시 파워 가부시키가이샤 | Cobalt-Based Alloy Products |
DE102021106606A1 (en) | 2020-03-26 | 2021-09-30 | Vdm Metals International Gmbh | Cobalt-chromium alloy powder |
WO2021190704A1 (en) | 2020-03-26 | 2021-09-30 | Vdm Metals International Gmbh | Powder made of a cobalt-chromium alloy |
KR20220031990A (en) | 2020-09-04 | 2022-03-15 | 미츠비시 파워 가부시키가이샤 | Cobalt-Based Alloy Materials and Cobalt-Based Alloy Products |
Also Published As
Publication number | Publication date |
---|---|
JPH0116292B2 (en) | 1989-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3027200B2 (en) | Oxidation resistant low expansion alloy | |
US5573608A (en) | Superplastic aluminum alloy and process for producing same | |
JP4467637B2 (en) | Alloy based on titanium aluminum | |
Suryanarayana et al. | Nanostructured materials and nanocomposites by mechanical alloying: an overview | |
EP0675209B1 (en) | High strength aluminum-based alloy | |
US4359352A (en) | Nickel base superalloys which contain boron and have been processed by a rapid solidification process | |
JPS61243143A (en) | Superplastic co alloy and its manufacture | |
JPS6032704B2 (en) | Alloy with ultra-fine homogeneously dispersed crystalline phase | |
JPH0637696B2 (en) | Method for manufacturing high-strength, heat-resistant aluminum-based alloy material | |
CN107557615A (en) | The method for preparing superalloy articles and correlated product | |
NO143166B (en) | PROCEDURE FOR MANUFACTURING DISPERSION-STRENGTHED ALUMINUM ALLOY PRODUCTS | |
JP3142659B2 (en) | High strength, heat resistant aluminum base alloy | |
JPH0293037A (en) | Alloy containing gamma prime phase and its production | |
US5256202A (en) | Ti-A1 intermetallic compound sheet and method of producing same | |
EP0093487B1 (en) | Nickel-based alloy | |
Chung et al. | Superplasticity in aluminium-silicon eutectic | |
JP3205362B2 (en) | High strength, high toughness aluminum-based alloy | |
US4497669A (en) | Process for making alloys having coarse, elongated grain structure | |
JPH06235040A (en) | High strength and heat resistant aluminum alloy, its integrated and solidified material and production thereof | |
US6231808B1 (en) | Tough and heat resisting aluminum alloy | |
JP2711296B2 (en) | Heat resistant aluminum alloy | |
JPS6033329A (en) | Ni based superplastic alloy and manufacture thereof | |
JPH07173557A (en) | Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength | |
JPH0488140A (en) | Titanium aluminide for precision casting | |
JP3493689B2 (en) | Heat treatment method for titanium aluminide cast parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |