JPH04210408A - Manufacture of high strength and high rigidity structural member - Google Patents

Manufacture of high strength and high rigidity structural member

Info

Publication number
JPH04210408A
JPH04210408A JP40171090A JP40171090A JPH04210408A JP H04210408 A JPH04210408 A JP H04210408A JP 40171090 A JP40171090 A JP 40171090A JP 40171090 A JP40171090 A JP 40171090A JP H04210408 A JPH04210408 A JP H04210408A
Authority
JP
Japan
Prior art keywords
alloy powder
phase
powder
structural member
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40171090A
Other languages
Japanese (ja)
Inventor
Hiroyuki Horimura
弘幸 堀村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP40171090A priority Critical patent/JPH04210408A/en
Publication of JPH04210408A publication Critical patent/JPH04210408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high strength and high rigidity structural member by blending a first alloy powder of solid solution phase or amorphous phase and a second alloy powder containing the specific particle diameter of intermetallic compound in matrix with the specific ratio and executing hot forming treatment. CONSTITUTION:The first alloy powder at >=20vol.% and the second alloy powder at <=80% are blended and mixed. The above first alloy powder is made to have single phase structure of the solid solution phase or the amorphous phase, or mixed phase structure thereof. On the other hand, the second alloy powder is made to have structure dispersing the intermetallic compound having <=2mum particle diameter in the matrix and if necessary, composite structure further dispersing the intermetallic compound having >2mum particle diameter. The above raw material powder obtd. by mixing is compacted to make a green compact. Further, heat treatment and hot plastic working are applied to this green compact. By this method, the structural member, which precipitates fine intermetallic compounds in the first alloy powder and maintains heat resistance and high hardness in the second alloy powder and has excellent toughness, strength and rigidity, is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は高強度、高剛性構造部材
の製造方法に関する。 [0002] 【従来の技術】従来、この種部材の製造方法としては、
急冷凝固法を適用して原料粉末を製造し、次いでその原
料粉末を用いて熱間塑性加工を行う、といった方法が公
知である(特開昭60−248860号公報参照)。 [0003]
[Industrial Field of Application] The present invention relates to a method of manufacturing a high-strength, high-rigidity structural member. [0002] [0002] Conventionally, as a method for manufacturing this type of member,
A method is known in which a raw material powder is produced by applying a rapid solidification method, and then hot plastic working is performed using the raw material powder (see Japanese Patent Laid-Open No. 60-248860). [0003]

【発明が解決しようとする課題1前記急冷凝固法によれ
ば、ミクロ共晶組織を有する原料粉末が得られるが、こ
の原料粉末は、熱間塑性加工における熱履歴により部分
的な組織変化および組織の粗大化を発生するため、構造
部材の強度および靭性が低い、という問題がある。 [00041本発明は前記に鑑み、強度および靭性を向
上させると共に高剛性をも具備させた構造部材を得るこ
とのできる前記製造方法を提供することを目的とする。 [0005] 【課題を解決するための手段】本発明に係る高強度、高
剛性構造部材の製造方法は、固溶体相よりなる単相組織
、非晶質相よりなる単相組織ならびに固溶体相および非
晶質相よりなる混相組織から選択される一種の金属組織
を有し、且つ配合量が20体積%以上である第1合金粉
末と、マトリックスに粒径2μm以下の金属間化合物を
分散させた複合組織を有し、且つ配合量が80体積%以
下である第2合金粉末とを混合して原料粉末を調製し、
次いで前記原料粉末の集合体に熱間にて成形処理を施す
ことを特徴とする。
Problem to be Solved by the Invention 1 According to the rapid solidification method, a raw material powder having a micro-eutectic structure can be obtained. There is a problem in that the strength and toughness of structural members are low because of coarsening of the structure. [00041] In view of the above, an object of the present invention is to provide the above-mentioned manufacturing method that can obtain a structural member having improved strength and toughness as well as high rigidity. [0005] [Means for Solving the Problems] The method for manufacturing a high-strength, high-rigidity structural member according to the present invention includes a single-phase structure consisting of a solid solution phase, a single-phase structure consisting of an amorphous phase, and a solid solution phase and a non-crystalline phase structure. A composite comprising a first alloy powder having a type of metal structure selected from a mixed phase structure consisting of a crystalline phase and having a blending amount of 20% by volume or more, and an intermetallic compound having a particle size of 2 μm or less dispersed in a matrix. A raw material powder is prepared by mixing with a second alloy powder having a structure and a blending amount of 80% by volume or less,
The method is characterized in that the aggregate of the raw material powder is then subjected to a hot molding treatment.

【0006】なお、第1合金粉末ノ4合量が80体h1
9/を超えると、構造部材の強度が低下する。また金属
間化合物の粒径が2μn1を超えると、第2合金粉末の
耐熱性および硬さが低下して構造部材の剛性を向上させ
ることができない。 [0007]
[0006] It should be noted that the total amount of the first alloy powder is 80 bodies h1
If it exceeds 9/, the strength of the structural member will decrease. Furthermore, if the particle size of the intermetallic compound exceeds 2 μn1, the heat resistance and hardness of the second alloy powder will decrease, making it impossible to improve the rigidity of the structural member. [0007]

【実施例】高強度、高剛性構造部材の製造に当っては、
固溶体相よりなる単相組織、非晶質相よりなる単相組織
ならびに固溶体相および非晶質相よりなる混和組織から
選択される一種の金属組織を有し、且つ配合量が20体
積%以上である第1合金粉末と、マトリックスに粒径2
μm以下の金属間化合物を分散させた複合組織を有し、
且つ配合量が80体積%以下である第2合金粉末とを混
合して原料粉末を調製し、次いで前記原料粉末の集合体
に熱間にて成形処理を施す、といった方法が実施される
。 [0008]第1および第2合金粉末の構成材料として
は、次のようなアルミニウム合金が用いられる。a。 化学式A 1. =  Tb  X=で表わされ、Tは
Y、 La、 Ce、Md (ミツシュメタル)、Ca
を含む第1群から選択される少なくとも一種であり、X
はFe、Co、Niを含む第2群から選択される少なく
とも一種であり、a、 b、 cはそれぞれ原子%で、
85≦a≦97.1≦b≦10.2≦C≦15である組
成を有するアルミニウム合金す、 化学式A 1. T
b X=  Zdで表わされ、TはY、La、Ce、M
d (ミツシュメタル)、Caを含む第1群から選択さ
れる少なくとも一種であり、XはFe、Co、Niを含
む第2群から選択される少なくとも一種であり、ZはT
i、 V、 Cr、 Mn、 Zr、 Nb、MOlS
i、Bを含む第3群から選択される少なくとも一種であ
り、a、b、c、dはそれぞれ原子%で、85≦a≦9
7、■≦b≦10.2≦C≦1−5、d≦3である組成
を有するアルミニウム合金前記アルミニウム合金におい
て、各化学成分の配合割合が、前記範囲を逸脱すると、
アルミニウム合金が高硬度で、且つ脆弱になるか、強度
が低下するか、あるいは高靭性ではあるが低硬度になる
。 [00091合金粉末の製造には、ガスアトマイズ法が
適用され、その後の分級処理によって第1および第2合
金粉末が得られる。 [0010]第1合金粉末としては、固溶体相、例えば
fcc構造(面心立方構造)を持つ粒径30nm未満の
結晶粒よりなる単相組織の体積分率Vfが90%以上で
ある1次組織を備えたもの、fcc構造を持つ粒径30
nm未満の結晶粒および非晶質相よりなる混相組織の体
積分率Vfが90%以上であり、且つ混和組織における
非晶質相の体積分率Vfが80%以下である1次組織を
備えたもの等が該当する。 [00111原料粉末の集合体とじては圧粉体が用いら
れ、その圧粉体の成形に当っては冷間プレス加工、CI
P処理等が適用される。 [0012]熱間での成形処理には、圧粉体に熱処理を
施す工程および熱間塑性加工工程が含まれる。 [0013]熱処理は、第1合金粉末において、結晶粒
よりなるマトリックスに金属間化合物が均一に分散析出
している複合組織を備えた2次組織を得るために行われ
、この熱処理により第1合金粉末の熱的安定性を向りさ
せることができる。第2合金粉末はその金属間化合物の
粒径を前記のように特定されていることから、前記熱処
理後においても耐熱性と高硬度を維持している。 [0014]熱熱処理度は、単相および混和組織の分解
温度±100℃に設定される。熱処理温度が単相および
混和組織の分解温度−100℃未満では、それら組織の
分解に長時間を要するため生産性が悪く、一方、前記分
解温度+100℃を上回ると、前記複合組織における結
晶粒および金属間化合物が粗大化して合金の脆化を招く
。 [0015]熱処理後における第1合金粉末の金属組織
は、粒径400nm以下の結晶粒よりなるマトリックス
に金属間化合物が均一に分散する複合組織を備えた2次
組織であることが望ましい。 [0016]なお、1次組織における単相および混相組
織の体積分率Vfが90%未満になると、その単相およ
び混和組織以外の組織部に粗大な金属間化合物が出現し
、その金属間化合物は2次組織中に残るため、合金の脆
化を招く。 [0017]また前記単相および混相組織における結晶
粒の粒径が30 nm以上になると、2次組織の複合組
織における結晶粒の粒径が400 n、mを上回るため
合金の強度が低下する。 [0018]さらに前記混和組織における非晶質相の体
積分率Vfが80%を上回ると、均一な2次組織を得る
ことができない。 [0019]熱間塑性加工には、熱間押出し加工、HI
P処理、温間鍛造加工、熱間鍛造加工等が適用される。 [00201熱処理後の圧粉体に熱間塑性加工を施すと
、その熱履歴下で第1および第2合金粉末が組織変化や
組織の粗大化を起すことがなく、これにより構造部材の
強度および靭性を向上させることが可能である。 [00211また比較的大きな金属間化合物を有する第
2合金粉末の配合に伴い、構造部材のヤング率、したが
って剛性を向上させることが可能である。 [00221次に具体例について説明する。 [00231第1および第2合金粉末を構成するアルミ
ニウム合金としてA 192 F e4Y3 Mnt 
 (数値は原子%)の組成を有するものを選定した。 [0024]前記合金粉末の製造に当ってはHeガスア
トマイズ法が適用された。即ち、前記組成の合金粉末を
構成すべく、高周波溶解にてAI−Fe−Y−Mn系母
合金を溶製し、Heガスの噴射圧を100 kg f 
/cm2に設定したガスアトマイズ法の適用下、合金粉
末を製造した。 [0025]前記合金粉末を分級して各粒径を持つ合金
粉末の金属組織を調べたところ、表1の結果を得た。 [0026]
[Example] In manufacturing high-strength, high-rigidity structural members,
It has a type of metal structure selected from a single phase structure consisting of a solid solution phase, a single phase structure consisting of an amorphous phase, and a mixed structure consisting of a solid solution phase and an amorphous phase, and the blending amount is 20% by volume or more. A certain first alloy powder and a particle size of 2 in the matrix.
It has a composite structure in which intermetallic compounds of μm or less are dispersed,
A method is carried out in which a raw material powder is prepared by mixing a second alloy powder with a blending amount of 80% by volume or less, and then a hot molding treatment is performed on an aggregate of the raw material powder. [0008] The following aluminum alloys are used as constituent materials of the first and second alloy powders. a. Chemical formula A 1. = Tb
at least one type selected from the first group including
is at least one member selected from the second group including Fe, Co, and Ni, and a, b, and c are each atomic %,
An aluminum alloy having a composition of 85≦a≦97.1≦b≦10.2≦C≦15, chemical formula A 1. T
b X = Zd, T is Y, La, Ce, M
d (Mitsushmetal), at least one kind selected from the first group containing Ca, X is at least one kind selected from the second group containing Fe, Co, and Ni, and Z is T
i, V, Cr, Mn, Zr, Nb, MOIS
at least one member selected from the third group including i and B, a, b, c, and d are each atomic %, and 85≦a≦9
7. Aluminum alloy having a composition where ■≦b≦10.2≦C≦1-5, d≦3 In the aluminum alloy, if the blending ratio of each chemical component deviates from the above range,
Either the aluminum alloy has high hardness and becomes brittle, or its strength decreases, or it has high toughness but low hardness. [A gas atomization method is applied to manufacture the 00091 alloy powder, and the first and second alloy powders are obtained by a subsequent classification process. [0010] The first alloy powder is a solid solution phase, for example, a primary structure in which the volume fraction Vf of a single phase structure consisting of crystal grains with a grain size of less than 30 nm having an FCC structure (face-centered cubic structure) is 90% or more. grain size 30 with fcc structure
A primary structure in which the volume fraction Vf of a mixed phase structure consisting of less than nm crystal grains and an amorphous phase is 90% or more, and the volume fraction Vf of the amorphous phase in the mixed structure is 80% or less. This applies to items such as [00111 A green compact is used as an aggregate of raw material powder, and the green compact is formed by cold pressing, CI
P processing etc. are applied. [0012] The hot forming process includes a process of heat treating the green compact and a hot plastic working process. [0013] The heat treatment is performed in the first alloy powder to obtain a secondary structure having a composite structure in which intermetallic compounds are uniformly dispersed and precipitated in a matrix made of crystal grains, and this heat treatment The thermal stability of the powder can be improved. Since the particle size of the intermetallic compound in the second alloy powder is specified as described above, it maintains heat resistance and high hardness even after the heat treatment. [0014] Heat The degree of heat treatment is set to the decomposition temperature of single phase and mixed structure ±100°C. If the heat treatment temperature is less than -100°C, the decomposition temperature of the single-phase and mixed structures, it will take a long time to decompose those structures, resulting in poor productivity. On the other hand, if it exceeds the decomposition temperature +100°C, the crystal grains and Intermetallic compounds become coarse and cause alloy embrittlement. [0015] The metal structure of the first alloy powder after heat treatment is preferably a secondary structure having a composite structure in which an intermetallic compound is uniformly dispersed in a matrix made of crystal grains with a grain size of 400 nm or less. [0016] Note that when the volume fraction Vf of the single-phase and mixed-phase structures in the primary structure becomes less than 90%, coarse intermetallic compounds appear in the structure other than the single-phase and mixed-phase structures, and the intermetallic compounds remains in the secondary structure, leading to embrittlement of the alloy. [0017] Furthermore, when the grain size of the crystal grains in the single-phase and mixed-phase structures exceeds 30 nm, the strength of the alloy decreases because the grain size of the crystal grains in the composite structure of the secondary structure exceeds 400 nm. [0018] Further, if the volume fraction Vf of the amorphous phase in the mixed structure exceeds 80%, a uniform secondary structure cannot be obtained. [0019] Hot plastic working includes hot extrusion, HI
P treatment, warm forging, hot forging, etc. are applied. [00201 When hot plastic working is applied to the green compact after heat treatment, the first and second alloy powders do not undergo structural changes or coarsening under the thermal history, which improves the strength and strength of the structural member. It is possible to improve toughness. [00211 Furthermore, with the blending of the second alloy powder having a relatively large intermetallic compound, it is possible to improve the Young's modulus of the structural member, and thus the rigidity. [00221 Next, a specific example will be explained. [00231 A 192 Fe4Y3 Mnt as the aluminum alloy constituting the first and second alloy powders
(values are atomic %) were selected. [0024] In producing the alloy powder, a He gas atomization method was applied. That is, in order to form an alloy powder having the above composition, an AI-Fe-Y-Mn-based master alloy was melted by high-frequency melting, and the injection pressure of He gas was 100 kg f.
The alloy powder was produced under the application of the gas atomization method set at /cm2. [0025] The alloy powder was classified and the metal structure of the alloy powder having each particle size was examined, and the results shown in Table 1 were obtained. [0026]

【表1】 [00271表1において、混相組織はfcc構造を持
つ粒径17nmの結晶粒および非晶質相よりなり、混相
組織の体積分率Vfは95%、混和組織における非晶質
相の体積分率は60%である。この混和組織の分解温度
は384℃である。 [0028]合金粉末(1)は、本発明における第1合
金粉末に該当し、また合金粉末(2)〜(6)は本発明
における第2合金粉末に該当する。合金粉末(7)は比
較例である。 [0029]図1は各合金粉末(1)〜(7)の硬さを
示し、線C1は未熟処理の場合に、また線C2は400
℃、1時間の熱処理を行った場合にそれぞれ該当する。 両線C+ 、C2において、点(1)〜(7)は合金粉
末(1)〜(7)にそれぞれ対応する。 [00301図1から明らかなように、前記熱処理によ
る硬さ変化において、第1合金粉末である合金粉末(1
)に比べて第2合金粉末である合金粉末 (2)〜(6
)は硬さ変化が小さい。特に1合金粉末(4)。 (5)においては殆ど硬さ変化が無い。 [00311前記熱処理による硬さの低下を考慮すると
、第2合金粉末とじては、金属間化合物の平均粒径が2
.0μm以下、したがって合金粉末(2)〜(6)が適
当であり、これら合金粉末(2)〜(6)においては、
比較的大きな金属間化合物の晶出に伴いマトリックスが
耐熱性と高硬度といった両物性を備えている。 [0032]第1合金粉末に熱処理を施すことにより金
属間化合物を析出させて第2合金粉末を得る場合には、
その金属間化合物を粒径約1μmに成長させるために5
50℃、1時間の熱処理が必要であり、このような熱処
理を行うと、図1、点dで示すように第2合金粉末の硬
さが極端に低下する。 [0033]したがって、第2合金粉末としては、金属
間化合物を晶出させたものが有利である。 [00343次に、前記表1に示した第1合金粉末であ
る合金粉末(1)、第2合金粉末である各合金粉末(2
)〜(6)および比較例合金粉末である合金粉末(7)
を用いて各種構造部材を製造した。 [0035]原料粉末としては、合金粉末(1)に、合
金粉末(2)〜(6)を各別に混合した5種類のものと
、合金粉末(1)に比較例合金粉末(7)を混合したも
のを調製した。a、 原料粉末をゴム製透体に入れて、
それに圧力4000kgf/cm2の条件下でCIP処
理を施して直径58mm、長さ40mmm、密度87%
の短円柱状圧粉体を得た。b、 圧粉体を、アルミニウ
ム合金(AA規格 6061材)よりなる4体に装填し
て外径78m層、長さ80mmのビレットを得た。C1
ビレット内を0. 2 X 10”Torrに減圧した
後、マツフル炉内にて圧粉体に400℃、1時間の熱処
理を施した。次いでビレットを単動式熱間押出し加工機
のコンテナに装填した。 [0036]熱間押出し加工機において、最大加圧力は
500トン、コンテナの内径は80mm、コンテナの予
熱温度は400℃、ダイス孔の直径は22mmに設定さ
れた。 [00371その後、400℃にてビレッ1〜をダイス
から押出し、丸棒状構造部材を得た。図2は各種構造部
材の引張強さを、また図3は各種構造部材のヤング率を
それぞれ示す。図29図3において、各線e2〜c5は
、第2合金粉末として合金粉末(2)〜(6)を用いた
場合にそれぞれ対応し、線e7 は混合粉末として比較
側合や粉末(7)を用いた場合に対応する。点fは合金
粉末(1)を単独で用いた場合に、また点g2〜g7 
は合金粉末(2)〜(6)および比較例合金粉末(7)
を単独で用いた場合にそれぞね対応する。 [0038]図2、線C:・〜e6から明らかなように
、第2合金粉末の配合量を80体積%以下、好ましくは
60体積%以下に設定することによって構造部材の強度
を確保することができる。 [00391図2、線c7の場合は本発明による構造部
材に比べて強度が低い。また図3、線e2〜e6から明
らかなように、第2合金粉末の配合量の増加に伴い各構
造部材のヤング率、したがって剛性が向北することが判
る。ただし、第2合金粉末の配合量は前記強度との関係
より80体積%以下に設定される。 [00403図3、線e7においては、比較例合金粉末
(7)を配合してもヤング率向上効果が極めて少ない。 [0041,1図22図3より、20体積%以上の第1
合金粉末と80体積%以下の第2合金粉末とよりなる原
料粉末を用いると、高強度、高剛性な構造部材を得るこ
とのできることが明らかである。 [0042]第2合金粉末として合金粉末(2)を用い
た場合において、図4、線hr−hn は各構造部材の
引張強さを、また図5、線h1〜h4は各構造部材のヤ
ング率をそれぞれ示す。点kl〜に4 は合金粉末(1
)を単独で用いた場合に、点rrl −m4 は合金粉
末(2)を単独で用いた場合にそれぞれ対応する。 [0043]図42図5各線hi−h4で示す構造部材
は、表2に示すように製造条件および析出金属間化合物
の最大粒径を異にする。 [0044]
[Table 1] [00271 In Table 1, the mixed phase structure consists of crystal grains with a grain size of 17 nm having an fcc structure and an amorphous phase, and the volume fraction Vf of the mixed phase structure is 95%. The volume fraction is 60%. The decomposition temperature of this mixed structure is 384°C. [0028] Alloy powder (1) corresponds to the first alloy powder in the present invention, and alloy powders (2) to (6) correspond to the second alloy powder in the present invention. Alloy powder (7) is a comparative example. [0029] FIG. 1 shows the hardness of each alloy powder (1) to (7), where line C1 is the case of immature treatment and line C2 is the hardness of 400.
This applies to cases where heat treatment is performed at ℃ for 1 hour. In both lines C+ and C2, points (1) to (7) correspond to alloy powders (1) to (7), respectively. [00301 As is clear from FIG. 1, in the hardness change due to the heat treatment, the alloy powder (1
) is the second alloy powder compared to (2) to (6
) has a small change in hardness. Especially 1 alloy powder (4). In (5), there is almost no change in hardness. [00311 Considering the decrease in hardness due to the heat treatment, the average particle size of the intermetallic compound in the second alloy powder is 2.
.. 0 μm or less, therefore, alloy powders (2) to (6) are suitable, and in these alloy powders (2) to (6),
Due to the crystallization of relatively large intermetallic compounds, the matrix has both physical properties such as heat resistance and high hardness. [0032] When obtaining a second alloy powder by precipitating an intermetallic compound by subjecting the first alloy powder to heat treatment,
In order to grow the intermetallic compound to a particle size of approximately 1 μm,
Heat treatment at 50° C. for 1 hour is required, and when such heat treatment is performed, the hardness of the second alloy powder is extremely reduced as shown by point d in FIG. [0033] Therefore, it is advantageous to use a crystallized intermetallic compound as the second alloy powder. [00343 Next, alloy powder (1), which is the first alloy powder shown in Table 1, and each alloy powder (2), which is the second alloy powder, were prepared.
) to (6) and alloy powder (7) which is a comparative example alloy powder
Various structural members were manufactured using this method. [0035] As raw material powders, five types of alloy powders (1) and alloy powders (2) to (6) were mixed separately, and alloy powder (1) was mixed with comparative example alloy powder (7). was prepared. a. Put the raw material powder into a rubber transparent body,
It was then subjected to CIP treatment under a pressure of 4000 kgf/cm2, resulting in a diameter of 58 mm, a length of 40 mm, and a density of 87%.
A short cylindrical green compact was obtained. b. The green compacts were loaded into four bodies made of aluminum alloy (AA standard 6061 material) to obtain billets with an outer diameter of 78 m and a length of 80 mm. C1
Inside the billet 0. After reducing the pressure to 2 x 10" Torr, the green compact was heat treated at 400°C for 1 hour in a Matsufuru furnace. The billet was then loaded into the container of a single-acting hot extrusion processing machine. [0036] In the hot extrusion processing machine, the maximum pressing force was set to 500 tons, the inner diameter of the container was 80 mm, the preheating temperature of the container was set to 400 ° C, and the diameter of the die hole was set to 22 mm. was extruded from a die to obtain a round bar-shaped structural member. Figure 2 shows the tensile strength of various structural members, and Figure 3 shows the Young's modulus of each structural member. , corresponds to the case where alloy powders (2) to (6) are used as the second alloy powder, and line e7 corresponds to the case where the comparison side powder or powder (7) is used as the mixed powder. Point f is the case where alloy powder (7) is used as the mixed powder. When powder (1) is used alone, points g2 to g7
are alloy powders (2) to (6) and comparative example alloy powder (7)
This corresponds to each case when used alone. [0038] As is clear from Figure 2, line C: - e6, the strength of the structural member is ensured by setting the blending amount of the second alloy powder to 80 volume % or less, preferably 60 volume % or less. I can do it. [00391 In the case of line c7 in FIG. 2, the strength is lower than that of the structural member according to the present invention. Moreover, as is clear from the lines e2 to e6 in FIG. 3, it can be seen that the Young's modulus of each structural member, and thus the rigidity, increases as the blending amount of the second alloy powder increases. However, the blending amount of the second alloy powder is set to 80% by volume or less in view of the above-mentioned strength. [00403 In FIG. 3, line e7, even if Comparative Example Alloy Powder (7) is blended, the effect of improving Young's modulus is extremely small. [0041,1 From Figure 22 and Figure 3, 20% by volume or more of the first
It is clear that by using a raw material powder consisting of an alloy powder and 80% by volume or less of a second alloy powder, a structural member with high strength and high rigidity can be obtained. [0042] When alloy powder (2) is used as the second alloy powder, the line hr-hn in FIG. 4 represents the tensile strength of each structural member, and the lines h1 to h4 in FIG. 5 represent the Young's strength of each structural member. The percentage is shown for each. At point kl~, 4 is alloy powder (1
) is used alone, and the point rrl −m4 corresponds to the case where alloy powder (2) is used alone. [0043] As shown in Table 2, the structural members shown by the lines hi-h4 in FIG. 42 and FIG. 5 have different manufacturing conditions and the maximum grain size of the precipitated intermetallic compound. [0044]

【表2】 [00451図41図5および表2の線h1〜h3 か
ら明らかなように、析出金属間化合物の最大粒径を1.
071m以下に規定すると、高強度、高剛性な構造部材
が得られる。 [00461図5、線h4 で示すように、析出金属間
化合物の最大粒径が1.0μmを超えると、ヤング率の
向上は殆ど期待することはできない。 [0047]表3は、第1合金粉末として合金粉末(1
)を用い、また第2合金粉末として第1構成粉末である
合金粉末(2)と、第2構成粉末である比較例合金粉末
(7)とを用いた構造部材n+ 〜n3の引張り特性を
示す。比較のため表3には、合金粉末(]−)と比較例
合金粉末(7)とを用いた構造部材p1〜p3および合
金粉末(1)を単独で用いた構造部材p5についても示
されている。 [00483
[Table 2] [00451 Figure 41 As is clear from Figure 5 and lines h1 to h3 in Table 2, the maximum particle size of the precipitated intermetallic compound was 1.
When the thickness is defined as 071 m or less, a structural member with high strength and high rigidity can be obtained. [00461 As shown by line h4 in FIG. 5, when the maximum particle size of the precipitated intermetallic compound exceeds 1.0 μm, almost no improvement in Young's modulus can be expected. [0047] Table 3 shows alloy powder (1
), and using alloy powder (2), which is the first constituent powder, and comparative example alloy powder (7), which is the second constituent powder, as the second alloy powder. . For comparison, Table 3 also shows structural members p1 to p3 using alloy powder (]-) and comparative example alloy powder (7), and structural member p5 using alloy powder (1) alone. There is. [00483

【表3] [0049]表3から合金粉末(2)および比較例合金
粉末(7)を併用する場合には、構造部材n+ 、n2
のように比較例合金粉末(7)の配合量を5体積%以下
に設定すると、強度および剛性を共に向上させることが
できる。 [00501次に、第1および第2合金粉末の粒径につ
いて考察する。Heガスアトマイズ法の適用下でA19
2Fe4 Y3Mnt の組成を有する合金粉末を製造
して、粒径aが22μm≦a≦44μmとなるように分
級したところ、fcc構造を持つ結晶粒および非晶質相
よりなる混相組織を備えた合金粉末が得られた。この合
金粉末を第1合金粉末とする。 [00511また前記同様の方法で同一組成(A192
Fe< Y3 Mn+ )の合金粉末を製造して、粒径
aが11μm≦a≦22 lLmとなるように分級した
ところ、90%以上の合金粉末が平均粒径0. 1〜0
.4μmの晶出金属間化合物を含んでいた。この合金粉
末を第2合金粉末とする。 [0052]この場合は、前記実施例とは逆に第1合金
粉末の方が第2合金粉末よりも粒径が大きい。 [0053]表4は、前記のように粒径が逆関係にある
第1および第2合金粉末を用い、前記実施例と同様の方
法で製造された各種構造部材r1 示す。 〜r8 の引張り特性を [0054] 【表4】 [00551表5は第1合金粉末として前記合金粉末(
1)を、また第2合金粉末として前記合金粉末(2)、
  (3)の混合粉末を用い、前記実施例と同様の方法
で製造された各種構造部材SI〜s8の引張り特性を示
す。 [0056]
[Table 3] [0049] From Table 3, when alloy powder (2) and comparative example alloy powder (7) are used together, structural members n+, n2
When the amount of Comparative Example Alloy Powder (7) is set to 5% by volume or less, both strength and rigidity can be improved. [00501 Next, the particle sizes of the first and second alloy powders will be considered. A19 under application of He gas atomization method
When an alloy powder having a composition of 2Fe4Y3Mnt was produced and classified so that the particle size a was 22μm≦a≦44μm, an alloy powder with a mixed phase structure consisting of crystal grains with an FCC structure and an amorphous phase was obtained. was gotten. This alloy powder is referred to as a first alloy powder. [00511 Also, the same composition (A192
When an alloy powder with Fe<Y3Mn+) was produced and classified so that the particle size a was 11 μm≦a≦22 lLm, more than 90% of the alloy powder had an average particle size of 0. 1~0
.. It contained a crystallized intermetallic compound of 4 μm. This alloy powder is referred to as a second alloy powder. [0052] In this case, contrary to the above embodiment, the first alloy powder has a larger particle size than the second alloy powder. [0053] Table 4 shows various structural members r1 manufactured by the same method as in the above example using the first and second alloy powders whose particle sizes are inversely related as described above. ~ r8 [0054] [Table 4] [00551 Table 5 shows the above alloy powder (
1), and the alloy powder (2) as a second alloy powder,
The tensile properties of various structural members SI to s8 manufactured using the mixed powder of (3) in the same manner as in the above example are shown. [0056]

【表5】 [00571表49表5を比較すると明らかなように、
表4のごとく、第1合金粉末の粒径を第2合金粉末のそ
れよりも大きくすると、構造部材rl−r8の引張り特
性に比較的大きなばらつきを生じる。 [0058]これは、熱的に安定な第2合金粉末が、そ
の粒径が小さいことに起因して凝集し易く、その結果、
原料粉末調製時、第1および第2合金粉末を均一に分散
混合することができないからであると思われる。 [0059]
[Table 5] [00571 Table 49 As is clear from comparing Table 5,
As shown in Table 4, when the particle size of the first alloy powder is made larger than that of the second alloy powder, relatively large variations occur in the tensile properties of the structural member rl-r8. [0058] This is because the thermally stable second alloy powder tends to aggregate due to its small particle size, and as a result,
This seems to be because the first and second alloy powders cannot be uniformly dispersed and mixed when preparing the raw material powder. [0059]

【発明の効果】本発明によれば、前記特定構成の第1お
よび第2合金粉末を特定量宛混合した原料粉末を用いる
ことによって、高強度、高靭性であると共に高剛性な構
造部材を得ることができる。
According to the present invention, a structural member having high strength, high toughness, and high rigidity can be obtained by using a raw material powder in which a specific amount of the first and second alloy powders having the specific composition is mixed. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】晶出金属間化合物の粒径と合金粉末の硬さとの
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the particle size of a crystallized intermetallic compound and the hardness of an alloy powder.

【図2】第2合金粉末の配合量と構造部材の引張強さと
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the blending amount of the second alloy powder and the tensile strength of the structural member.

【図3】第2合金粉末の配合量と構造部材のヤング率と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the blending amount of the second alloy powder and the Young's modulus of the structural member.

【図4】合金粉末(2)の配合量と構造部材の引張強さ
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the blending amount of alloy powder (2) and the tensile strength of a structural member.

【図5】合金粉末(2)の配合量と構造部材のヤング率
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the blending amount of alloy powder (2) and the Young's modulus of a structural member.

【図5】[Figure 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固溶体相よりなる単相組織、非晶質相より
なる単相組織ならびに固溶体相および非晶質相よりなる
混相組織から選択される一種の金属組織を有し、且つ配
合量が20体積%以上である第1合金粉末と、マトリッ
クスに粒径2μm以下の金属間化合物を分散させた複合
組織を有し、且つ配合量が80体積%以下である第2合
金粉末とを混合して原料粉末を調製し、次いで前記原料
粉末の集合体に熱間にて成形処理を施すことを特徴とす
る高強度、高剛性構造部材の製造方法。
[Claim 1] A metal structure having a type of metal structure selected from a single phase structure consisting of a solid solution phase, a single phase structure consisting of an amorphous phase, and a mixed phase structure consisting of a solid solution phase and an amorphous phase, and in which the blending amount is A first alloy powder having a content of 20% by volume or more and a second alloy powder having a composite structure in which an intermetallic compound with a particle size of 2 μm or less is dispersed in a matrix and having a blending amount of 80% by volume or less are mixed. A method for producing a high-strength, high-rigidity structural member, which comprises preparing a raw material powder using a hot molding method, and then subjecting the aggregate of the raw material powder to a hot molding process.
【請求項2】固溶体相よりなる単相組織、非晶質相より
なる単相組織ならびに固溶体相および非晶質相よりなる
混相組織から選択される一種の金属組織を有し、且つ配
合量が20体積%以上である第1合金粉末と、マトリッ
クスに粒径2μm以下の金属間化合物を分散させた複合
組織を有する第1構成粉末およびマトリックスに粒径が
2μmを超える金属間化合物を分散させた複合組織を有
する第2構成粉末を含み、且つ配合量が80体積%以下
である第2合金粉末とを混合して原料粉末を調製し、次
いで前記原料粉末の集合体に熱間にて成形処理を施すこ
とを特徴とする高強度、高剛性構造部材の製造方法。
[Claim 2] It has a type of metal structure selected from a single phase structure consisting of a solid solution phase, a single phase structure consisting of an amorphous phase, and a mixed phase structure consisting of a solid solution phase and an amorphous phase, and the amount of the compound is A first alloy powder having a content of 20% by volume or more, a first constituent powder having a composite structure in which an intermetallic compound with a particle size of 2 μm or less is dispersed in a matrix, and an intermetallic compound with a particle size of more than 2 μm dispersed in the matrix. A raw material powder is prepared by mixing with a second alloy powder containing a second component powder having a composite structure and having a blending amount of 80% by volume or less, and then hot molding treatment is performed on the aggregate of the raw material powder. A method for manufacturing a high-strength, high-rigidity structural member, characterized by subjecting it to.
JP40171090A 1990-12-12 1990-12-12 Manufacture of high strength and high rigidity structural member Pending JPH04210408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40171090A JPH04210408A (en) 1990-12-12 1990-12-12 Manufacture of high strength and high rigidity structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40171090A JPH04210408A (en) 1990-12-12 1990-12-12 Manufacture of high strength and high rigidity structural member

Publications (1)

Publication Number Publication Date
JPH04210408A true JPH04210408A (en) 1992-07-31

Family

ID=18511547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40171090A Pending JPH04210408A (en) 1990-12-12 1990-12-12 Manufacture of high strength and high rigidity structural member

Country Status (1)

Country Link
JP (1) JPH04210408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580665A (en) * 1992-11-09 1996-12-03 Nhk Spring Co., Ltd. Article made of TI-AL intermetallic compound, and method for fabricating the same
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580665A (en) * 1992-11-09 1996-12-03 Nhk Spring Co., Ltd. Article made of TI-AL intermetallic compound, and method for fabricating the same
US5701575A (en) * 1992-11-09 1997-12-23 Nhk Spring Co., Ltd. Article made of a Ti-Al intermetallic compound, and method for fabrication of same
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
DE3011152C2 (en)
DE69512901T2 (en) METHOD FOR PRODUCING METAL COMPOSITE MATERIAL
US5532069A (en) Aluminum alloy and method of preparing the same
DE3587572T2 (en) Process for increasing the ductility of reinforced objects, made from a rapidly solidified alloy.
JPH04218637A (en) Manufacture of high strength and high toughness aluminum alloy
EP1095168A1 (en) Hard metal or ceramet body and method for producing the same
JPH04210408A (en) Manufacture of high strength and high rigidity structural member
DE69219508T2 (en) Wear-resistant aluminum alloy and process for its processing
DE19922057B4 (en) Carbide or cermet body and process for its preparation
DE10102706A1 (en) Sintered material based on cubic boron nitride and process for its production
DE102019104492B4 (en) METHOD FOR PRODUCING A CRYSTALLINE ALUMINUM-IRON-SILICON ALLOY
JPH05125473A (en) Composite solidified material of aluminum-based alloy and production thereof
JPS6299425A (en) Manufacture of malleable material of al-base intermetallic compound
JPH04218638A (en) Structural member made of aluminum alloy and its manufacture
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JP2794473B2 (en) Method for producing sintered member made of amorphous alloy
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JP3113893B2 (en) Manufacturing method of plastic working material and manufacturing method of plastic working material
US5306364A (en) High toughness tungsten based heavy alloy containing La and Ca. manufacturing thereof
DE69207308T2 (en) Compact and reinforced aluminum alloy material and manufacturing method
JPH1143729A (en) Manufacture of aluminum composite excellent in high temperature strength