JPH05320837A - Manufacture of structural member made of al alloy - Google Patents

Manufacture of structural member made of al alloy

Info

Publication number
JPH05320837A
JPH05320837A JP4133957A JP13395792A JPH05320837A JP H05320837 A JPH05320837 A JP H05320837A JP 4133957 A JP4133957 A JP 4133957A JP 13395792 A JP13395792 A JP 13395792A JP H05320837 A JPH05320837 A JP H05320837A
Authority
JP
Japan
Prior art keywords
heat treatment
alloy
temperature
structural member
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4133957A
Other languages
Japanese (ja)
Inventor
Hiroyuki Horimura
弘幸 堀村
Kenji Okamoto
憲治 岡本
Noriaki Matsumoto
規明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4133957A priority Critical patent/JPH05320837A/en
Priority to EP93108091A priority patent/EP0570910A1/en
Publication of JPH05320837A publication Critical patent/JPH05320837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a structural member showing excellent fatigue strength at a high temp. CONSTITUTION:At the time of manufacturing a structural member, an Al alloy in which the recrystallization temp. of an amorphous phase is defined as Tx is subjected to primary heat treatment under the condition in which the heat treating temp. T1 satisfies Tx-100K<=T1<=Tx+100K to crystallize the amorphous phase. and to execute phase decomposition. Next, this Al allay is subjected to secondary heat treatment under the condition in which the heat treating temp. T2, satisfies T2>Tx+100K and is thereafter subjected to hot extrusion under the condition in which the extruding temp. T3 satisfies T3<=T2. In this way, the objective structural member having excellent elongation and toughness at a high temp. can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl合金製構造部材、特
に、非晶質相の結晶化温度がTxである金属組織を備え
たAl合金を用いて構造部材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al alloy structural member, and more particularly to a method for manufacturing a structural member using an Al alloy having a metal structure in which the crystallization temperature of the amorphous phase is Tx.

【0002】[0002]

【従来の技術】従来、この種製造方法としては、前記A
l合金の加工温度TをTx−100K≦T≦Tx+10
0Kに設定して成形固化加工、例えば熱間押出し加工を
行う、といった方法が知られている。
2. Description of the Related Art Conventionally, as this type of manufacturing method, the above-mentioned A
The processing temperature T of the alloy is Tx−100K ≦ T ≦ Tx + 10
A method is known in which the temperature is set to 0K, and a molding and solidification process, for example, a hot extrusion process is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来法
により得られた構造部材は、Al合金の内部応力が高い
ことと、Al結晶粒および金属間化合物結晶粒(以下、
IMC結晶粒)間の粒径差が小さくすべり変形に対する
抵抗が高いことに起因して、423〜473K(150
〜200℃)といった高温下における伸び、疲労強度お
よび靱性が低く、したがってエンジン部品等の構造部材
としては不適当である、といった問題があった。 本発
明は前記に鑑み、前記Al合金に特定の熱処理を施すこ
とによって、その内部応力を除去すると共にAl結晶粒
およびIMC結晶粒間の粒径差を大きくし、これにより
高温下における伸び、疲労強度および靱性を向上させた
構造部材を得ることのできる前記製造方法を提供するこ
とを目的とする。
However, the structural member obtained by the conventional method has a high internal stress of the Al alloy, and the Al crystal grains and the intermetallic compound crystal grains (hereinafter,
Due to the small difference in grain size between IMC crystal grains) and the high resistance to slip deformation, 423 to 473 K (150
There is a problem in that elongation, fatigue strength and toughness at high temperatures such as (~ 200 ° C.) are low, and thus they are unsuitable as structural members such as engine parts. In view of the above, the present invention removes the internal stress of the Al alloy by subjecting it to a specific heat treatment and increases the grain size difference between the Al crystal grains and the IMC crystal grains. It is an object of the present invention to provide the above-mentioned manufacturing method capable of obtaining a structural member having improved strength and toughness.

【0004】[0004]

【課題を解決するための手段】本発明に係るAl合金製
構造部材の製造方法は、非晶質相の結晶化温度がTxで
ある金属組織を備えたAl合金に、熱処理温度T1 がT
x−100K≦T1 ≦Tx+100Kの条件下で1次熱
処理を施して前記非晶質相を結晶化すると共に相分解を
行い、次いで前記Al合金に、熱処理温度T2 がT2
Tx+100Kの条件下で2次熱処理を施し、その後前
記Al合金を用いて、加工温度T3 がT 3 ≦T2 の条件
下で成形固化加工を行うことを特徴とする。
Made of Al alloy according to the present invention
The manufacturing method of the structural member is such that the crystallization temperature of the amorphous phase is Tx.
A heat treatment temperature T is applied to an Al alloy having a certain metallographic structure.1Is T
x-100K≤T1Primary heat under the condition of ≦ Tx + 100K
It is treated to crystallize the amorphous phase and to decompose the phase.
Then, the Al alloy is subjected to a heat treatment temperature T2Is T2>
Second heat treatment is performed under the condition of Tx + 100K, before
Using Al alloy, processing temperature T3Is T 3≤T2Conditions
It is characterized in that it is formed and solidified below.

【0005】[0005]

【作用】前記金属組織には、非晶質相中に微細Al結晶
を均一に分散させた混相組織、または非晶質単相組織を
備えた金属組織であって、例えば、示差熱量分析法(D
SC)において、昇温速度を20K/min に設定したと
き、結晶化温度Txから結晶化温度Tx+150Kの温
度域で20J/g以上の発熱量を示す金属組織が該当す
る。このような金属組織を有するAl合金に前記のよう
な1次熱処理を施すと、Al合金の金属組織は微細で、
且つ均一な結晶質相となる。この場合、Al合金には結
晶化、相分解等に伴う高い内部応力が存在するが、その
Al合金に前記のような2次熱処理を施すと、Al合金
の内部応力を除去してその金属組織を安定化させること
ができる。同時に、Al結晶粒を優先的に成長させてI
MC結晶粒との粒径差を大きくすることで、すべり変形
に対する抵抗が低められ、Al合金は優れた変形能を有
する。
The metal structure is a metal structure having a mixed phase structure in which fine Al crystals are uniformly dispersed in an amorphous phase, or a metal structure having an amorphous single phase structure. For example, a differential calorimetric method ( D
In SC), when the temperature rising rate is set to 20 K / min, the metallographic structure exhibits a calorific value of 20 J / g or more in the temperature range from crystallization temperature Tx to crystallization temperature Tx + 150K. When the above-described primary heat treatment is applied to an Al alloy having such a metal structure, the metal structure of the Al alloy is fine,
In addition, it becomes a uniform crystalline phase. In this case, the Al alloy has a high internal stress due to crystallization, phase decomposition, etc. However, when the Al alloy is subjected to the secondary heat treatment as described above, the internal stress of the Al alloy is removed and the metal structure thereof is reduced. Can be stabilized. At the same time, Al crystal grains are preferentially grown to
By increasing the grain size difference from the MC crystal grains, the resistance to slip deformation is reduced, and the Al alloy has excellent deformability.

【0006】このようなAl合金を用いて、前記加工温
度T3 にて成形固化加工を行うと、金属組織の安定化状
態および両結晶粒間に生じた大きな粒径差を損うことな
く、構造部材を得ることができ、これにより構造部材は
高温下において優れた伸び、疲労強度および靱性を発揮
する。
When such an Al alloy is used for forming and solidifying at the processing temperature T 3 , it does not impair the stable state of the metal structure and the large grain size difference between both crystal grains. A structural member can be obtained, whereby the structural member exhibits excellent elongation, fatigue strength and toughness at high temperatures.

【0007】ただし、1次熱処理において、熱処理温度
1 がT1 <Tx−100Kでは、非晶質相の結晶化お
よび相分解が不十分となるため、2次熱処理過程で急激
な相変化が起って、Al合金の金属組織が不均一となる
上、その内部応力の除去およびAl結晶粒の優先的成長
が困難となる。一方、T1 >Tx+100KではAl合
金の金属組織が不均一化すると共に粗大化する。また2
次熱処理において、熱処理温度T2 がT2 ≦Tx+10
0KではAl合金の内部応力の除去およびAl結晶粒の
優先的成長を十分に行うことができない。さらに成形固
化加工において、加工温度T3 がT3 >T2 では、2次
熱処理後のAl合金における金属組織の安定化状態およ
び両結晶粒間に生じた大きな粒径差が損われ、目標とす
る構造部材を得ることができない。
However, in the first heat treatment, when the heat treatment temperature T 1 is T 1 <Tx-100K, crystallization and phase decomposition of the amorphous phase become insufficient, so that a rapid phase change occurs in the second heat treatment. Then, the metal structure of the Al alloy becomes non-uniform, and it becomes difficult to remove the internal stress and preferentially grow the Al crystal grains. On the other hand, when T 1 > Tx + 100K, the metal structure of the Al alloy becomes nonuniform and coarsens. Again 2
In the subsequent heat treatment, the heat treatment temperature T 2 is T 2 ≦ Tx + 10
At 0K, the internal stress of the Al alloy cannot be removed and the preferential growth of Al crystal grains cannot be sufficiently performed. Further, in the forming and solidifying process, when the processing temperature T 3 is T 3 > T 2 , the stable state of the metal structure in the Al alloy after the secondary heat treatment and the large grain size difference between both crystal grains are lost, and It is not possible to obtain a structural member that does.

【0008】[0008]

【実施例】【Example】

〔実施例1〕Al91Fe6 3 (数値は原子%)の組成
を有する溶湯を高周波溶解法により調製し、次いでその
溶湯を用いて高圧N2 ガスアトマイズ法(圧力80kgf
/cm 2 )の適用下粉末状Al合金を製造し、その後分級
処理を行って粉末状Al合金の粒径を22μm以下に調
整した。
 [Example 1] Al91Fe6Y3Composition of (numerical value is atomic%)
Prepared by a high-frequency melting method, and then
High pressure N using molten metal2Gas atomization method (pressure 80kgf
/cm 2) Is applied to produce a powdered Al alloy and then classified.
Adjust the particle size of powdered Al alloy to 22μm or less
Arranged

【0009】粉末状Al合金についてX線回折および示
差熱量分析(DSC)を行ったところ、図1および図2
の結果が得られた。両図より、粉末状Al合金は非晶質
相および結晶質相よりなる混相組織を有し、その非晶質
相の結晶化温度Txは658Kであることが判明した。
X-ray diffraction and differential calorimetric analysis (DSC) of the powdered Al alloy were carried out, and FIGS.
The result was obtained. From both figures, it was found that the powdered Al alloy had a mixed phase structure composed of an amorphous phase and a crystalline phase, and the crystallization temperature Tx of the amorphous phase was 658K.

【0010】次に、粉末状Al合金を用い、次のような
1次熱処理、2次熱処理および成形固化加工としての熱
間押出し加工を連続的に行って各種構造部材を製造し
た。先ず、粉末状Al合金を用いて、4000kgf/cm
2 の条件下で冷間静水圧プレス(CIP)を行うことに
より直径約50mm、長さ50mmの複数のビレットを製造
した。各ビレットをAl合金(A5056)製缶体に装
入して缶体開口部に蓋体を溶接し、直径約54mm、長さ
70mmの押出し素材を製作し、次いで蓋体に設けられた
接続管を通じて缶体内部の気圧を2×10-3Torr以下に
保持した。
Next, using a powdered Al alloy, various structural members were manufactured by continuously performing the following primary heat treatment, secondary heat treatment and hot extrusion as a forming and solidifying process. First, using a powdered Al alloy, 4000 kgf / cm
A plurality of billets having a diameter of about 50 mm and a length of 50 mm were manufactured by performing cold isostatic pressing (CIP) under the conditions of 2 . Each billet is loaded into an aluminum alloy (A5056) can body, the lid body is welded to the opening of the can body, an extruded material having a diameter of about 54 mm and a length of 70 mm is manufactured, and then a connecting pipe provided on the lid body. The atmospheric pressure inside the can was maintained below 2 × 10 −3 Torr.

【0011】各押出し素材、したがって各ビレットに、
熱処理温度T1 をT1 =623K(Tx−35K)に、
また熱処理時間を1時間にそれぞれ設定して1次熱処理
を施した。
For each extruded material, and thus each billet,
The heat treatment temperature T 1 is set to T 1 = 623K (Tx-35K),
Further, the heat treatment time was set to 1 hour, and the primary heat treatment was performed.

【0012】次いで、各ビレットに、熱処理温度T2
673K(Tx+15K)、698K(Tx+40
K)、723K(Tx+65K)、743K(Tx+8
5K)、753K(Tx+95K)、763K(Tx+
105K)、773K(Tx+115K)に、また熱処
理時間を1時間にそれぞれ設定して2次熱処理を施し
た。
Next, the heat treatment temperature T 2 is set to 673K (Tx + 15K) and 698K (Tx + 40) for each billet.
K), 723K (Tx + 65K), 743K (Tx + 8)
5K), 753K (Tx + 95K), 763K (Tx +
105K), 773K (Tx + 115K), and the heat treatment time was set to 1 hour, and the second heat treatment was performed.

【0013】その後、各ビレットを温度673Kのコン
テナに装入して、ダイスの直径15mm、加工温度、した
がって押出し温度T3 がT3 =673K(T3 ≦T2
の条件下で成形固化加工としての熱間押出し加工を行
い、各種構造部材を製造した。
Then, each billet is charged into a container having a temperature of 673K, the die diameter is 15 mm, the processing temperature, and therefore the extrusion temperature T 3 is T 3 = 673K (T 3 ≤T 2 ).
Various structural members were manufactured by performing hot extrusion processing as molding and solidifying processing under the conditions of.

【0014】各種構造部材について試験温度423Kの
条件下で引張り試験を行い、それらの引張強さおよび破
断するまでの伸びを測定したところ、図3の結果が得ら
れた。図3において、線aは引張強さを、また線bは伸
びをそれぞれ示す。図3から明らかなように、2次熱処
理の熱処理温度T2 をT2 >Tx+100Kに設定され
た構造部材は、5%以上の伸びを有する。エンジン部品
等の構造部材として適当であるか否かは、その部材が前
記試験温度にて5%程度の伸びを示すか否かを目安とし
ているので、本発明によればエンジン部品等として適当
な構造部材を得ることができる。
A tensile test was conducted on various structural members under a test temperature of 423 K, and the tensile strength and the elongation until breaking were measured, and the results shown in FIG. 3 were obtained. In FIG. 3, line a indicates tensile strength and line b indicates elongation. As is clear from FIG. 3, the structural member in which the heat treatment temperature T 2 of the secondary heat treatment is set to T 2 > Tx + 100K has an elongation of 5% or more. Whether or not it is suitable as a structural member such as an engine part is based on whether or not the member exhibits elongation of about 5% at the test temperature, and therefore, it is suitable as an engine part or the like according to the present invention. A structural member can be obtained.

【0015】次に、各種構造部材について試験温度42
3Kにて引張圧縮式疲れ試験を行い、繰返し回数107
回の疲労強度を測定したところ、図4の結果が得られ
た。各種構造部材において、引張強さσB (図3、線
a)は熱処理温度T2 の上昇に伴い緩徐に低下したが、
図4から明らかなように疲労強度σf は熱処理温度T2
がT2 ≦Tx+100Kでは殆ど変化がなく、一方、T
2 >Tx+100Kで著しく向上し、T2 =773Kの
構造部材はσf /σB =0.51という高い値を示し
た。エンジン部品等の構造部材については、温度423
〜473Kにおける引張強さよりも疲労強度の方が重要
視されており、本発明によれば、このような要求に十分
に対応することが可能な構造部材を得ることができる。
Next, the test temperature 42 for various structural members
Tensile-compression type fatigue test was performed at 3K and the number of repetitions was 10 7
When the fatigue strength was measured once, the results shown in FIG. 4 were obtained. In various structural members, the tensile strength σ B (FIG. 3, line a) gradually decreased with increasing heat treatment temperature T 2 , but
As is clear from FIG. 4, the fatigue strength σ f is the heat treatment temperature T 2
Is almost unchanged when T 2 ≤Tx + 100K, while T
2 > Tx + 100K, and the structural member with T 2 = 773K showed a high value of σ f / σ B = 0.51. For structural members such as engine parts, temperature 423
Fatigue strength is more important than tensile strength at ˜473 K, and according to the present invention, it is possible to obtain a structural member that can sufficiently meet such requirements.

【0016】さらに、各種構造部材について試験温度4
23Kの条件下でシャルピー衝撃試験を行ったところ図
5の結果が得られた。図5から明らかなように、シャル
ピー衝撃値も疲労強度同様の傾向を示し、熱処理温度T
2 をT2 >Tx+100Kに設定された構造部材は高靱
性である。
Further, the test temperature of various structural members is 4
When the Charpy impact test was performed under the condition of 23K, the result of FIG. 5 was obtained. As is clear from FIG. 5, the Charpy impact value shows the same tendency as the fatigue strength, and the heat treatment temperature T
The structural member in which 2 is set to T 2 > Tx + 100K has high toughness.

【0017】比較のため次のような方法によって各種構
造部材を製造した。
For comparison, various structural members were manufactured by the following method.

【0018】前記粉末状Al合金を用い、前記同様の各
工程を経て複数の押出し素材を製作し、各押出し素材に
おける缶体内部の気圧を前記同様に2×10-3Torr以下
に保持した。各押出し素材、したがって各ビレットに、
熱処理温度T1 を変化させると共に熱処理時間を1時間
に設定した1次熱処理を施した。次いで、各ビレット
に、熱処理温度T2 を773K(Tx+115K)に、
また熱処理時間を1時間にそれぞれ設定した2次熱処理
を施した。その後、各ビレットを用い、前記と同一条件
(押出し温度T3 =673K、T3 ≦T2 )下で熱間押
出し加工を行って各種構造部材を製造した。
Using the powdered Al alloy, a plurality of extruded materials were manufactured through the same steps as described above, and the atmospheric pressure inside the can body of each extruded material was maintained at 2 × 10 −3 Torr or less as described above. For each extruded material, and thus each billet,
Primary heat treatment was performed while changing the heat treatment temperature T 1 and setting the heat treatment time to 1 hour. Then, for each billet, the heat treatment temperature T 2 was set to 773K (Tx + 115K),
Further, the secondary heat treatment in which the heat treatment time was set to 1 hour was performed. Thereafter, each of the billets was subjected to hot extrusion under the same conditions (extrusion temperature T 3 = 673K, T 3 ≦ T 2 ) as described above to produce various structural members.

【0019】各種構造部材について試験温度423Kに
て引張り試験を行い、それらの引張強さおよび破断する
までの伸びを測定したところ、図6の結果が得られた。
線aは引張強さを、また線bは伸びをそれぞれ示す。
A tensile test was conducted on various structural members at a test temperature of 423 K, and the tensile strength and the elongation until breaking were measured, and the results shown in FIG. 6 were obtained.
Line a represents tensile strength and line b represents elongation.

【0020】図6から明らかなように、1次熱処理にお
ける熱処理温度をTx−100K≦T1 ≦Tx+100
Kに設定すると、各種構造部材の引張強さおよび伸びを
向上させることができる。ただし、熱処理温度T1 がT
1 <Tx−100Kでは、2次熱処理において急激な相
変化が起こるためAl合金の金属組織が不均一となって
構造部材の伸びが大きく低下する。一方、T1 >Tx+
100Kでは1次熱処理においてAl合金の金属組織が
不均一となるだけでなく粗大化し、構造部材の引張強さ
および伸びが大きく低下する。
[0020] As apparent from FIG. 6, the primary heat treatment temperature in the heat treatment Tx-100K ≦ T 1 ≦ Tx + 100
When set to K, the tensile strength and elongation of various structural members can be improved. However, the heat treatment temperature T 1 is T
When 1 <Tx-100K, a rapid phase change occurs in the secondary heat treatment, so that the metal structure of the Al alloy becomes nonuniform, and the elongation of the structural member is greatly reduced. On the other hand, T 1 > Tx +
At 100K, not only the metal structure of the Al alloy becomes non-uniform but also coarsens in the primary heat treatment, and the tensile strength and elongation of the structural member are greatly reduced.

【0021】次に、各構造部材について透過型電子顕微
鏡による金属組織観察を行って2次熱処理の熱処理温度
2 とAl結晶粒およびIMC結晶粒の平均粒径との関
係を調べたところ、図7の結果が得られた。図中、線c
1 はAl結晶粒に、また線c 2 はIMC結晶粒にそれぞ
れ該当する。
Next, for each structural member, a transmission electron microscope is used.
Heat treatment temperature of secondary heat treatment by observing metallographic structure with a mirror
T2And the average grain size of Al and IMC grains
When the person in charge was examined, the results shown in FIG. 7 were obtained. Line c in the figure
1Is the Al crystal grain and the line c 2For IMC crystal grains
Applicable

【0022】図7から明らかなように、2次熱処理の熱
処理温度T2 をT2 >Tx+100Kに設定することに
よって、Al結晶粒(線c1 )の平均粒径をIMC結晶
粒(線c2 )の平均粒径に比べて急激に拡大させること
ができる。
As is apparent from FIG. 7, by setting the heat treatment temperature T 2 of the secondary heat treatment to T 2 > Tx + 100K, the average grain size of Al crystal grains (line c 1 ) is changed to IMC crystal grains (line c 2 The average particle size can be increased rapidly.

【0023】このように、熱処理温度T2 をT2 >Tx
+100Kに設定して、Al結晶粒およびIMC結晶粒
間の平均粒径差を大きくすると、すべり変形に対する抵
抗を低めて、Al結晶粒界面におけるIMC結晶粒の転
動を可能にし、これにより構造部材の変形能が向上する
ので、前記のような各特性を得ることができた、と考え
られる。IMCはAl8 YFe4 、Al3 Y等であり、
これらの形状および平均粒径は略同一であった。
Thus, the heat treatment temperature T 2 is set to T 2 > Tx
When set to + 100K and increasing the average grain size difference between the Al crystal grains and the IMC crystal grains, the resistance to slip deformation is reduced and the IMC crystal grains can be rolled at the Al crystal grain interface. It is considered that each of the above-mentioned characteristics could be obtained because the deformability of No. 1 was improved. IMC is Al 8 YFe 4 , Al 3 Y, etc.,
Their shape and average particle size were substantially the same.

【0024】なお、1次および2次熱処理における熱処
理時間は熱処理温度に依存するが、前記温度範囲におい
て、1次熱処理時間t1 は0.01時間≦t1 ≦3時
間、2次熱処理時間t2 は0.01時間≦t2 ≦2時間
が適当である。この時間上の条件は以後の各実施例にお
いて同じである。また10K/min 以下の連続昇温にて
1次熱処理を行うことも可能である。1次熱処理と2次
熱処理とを連続して行うことには必ずしも必要ではない
が、2次熱処理と成形固化加工とは連続して行う方が望
ましい。その理由は、2次熱処理と成形固化加工との間
に時間上の間隔をあけると、ビレットに降温、昇温時の
熱履歴が加わるため、金属組織の制御が複雑になるから
である。
Although the heat treatment times in the primary and secondary heat treatments depend on the heat treatment temperature, the primary heat treatment time t 1 is 0.01 hours ≦ t 1 ≦ 3 hours and the secondary heat treatment time t within the above temperature range. 2 is suitable for 0.01 hours ≦ t 2 ≦ 2 hours. This time condition is the same in each of the following examples. It is also possible to carry out the primary heat treatment at a continuous temperature rise of 10 K / min or less. It is not always necessary to carry out the primary heat treatment and the secondary heat treatment in succession, but it is desirable to carry out the secondary heat treatment and the forming and solidifying process in succession. The reason is that, if a time interval is provided between the secondary heat treatment and the forming and solidifying process, the billet is subjected to a thermal history at the time of temperature decrease and temperature increase, which makes control of the metal structure complicated.

【0025】〔実施例2〕実施例1の粉末状Al合金
(Al91Fe6 3 )に、N2 ガス雰囲気中にて実施例
1と同一条件下、即ち熱処理温度T1 をT1 =623K
(Tx−35K)に、また熱処理時間を1時間にそれぞ
れ設定して1次熱処理を施した。
Example 2 The powdery Al alloy (Al 91 Fe 6 Y 3 ) of Example 1 was subjected to the same conditions as in Example 1 in an N 2 gas atmosphere, that is, the heat treatment temperature T 1 was T 1 = 623K
(Tx-35K) and the heat treatment time was set to 1 hour, and the primary heat treatment was performed.

【0026】1次熱処理後の粉末状Al合金の硬さをマ
イクロビッカース硬度計を用いて測定したところ、その
硬さは240DPNであって、1次熱処理前の硬さ30
0DPNに比べて低下していることが判明した。そこ
で、冷間静水圧プレス(CIP)に代えて一軸の金型プ
レスを用い、30kgf/mm2 の条件下で、1次熱処理後
の粉末状Al合金より直径50mm、長さ50mmのビレッ
トを製造した。実施例1同様にビレットをAl合金製缶
体に装入して押出し素材を製作し、その缶体内部の気圧
を2×10-3Torr以下に保持した。
The hardness of the powdery Al alloy after the primary heat treatment was measured by using a micro Vickers hardness tester. The hardness was 240 DPN, and the hardness before the primary heat treatment was 30.
It turned out that it is lower than 0DPN. Therefore, a uniaxial die press was used instead of the cold isostatic press (CIP), and a billet with a diameter of 50 mm and a length of 50 mm was manufactured from the powdered Al alloy after the primary heat treatment under the condition of 30 kgf / mm 2. did. As in Example 1, the billet was charged into an aluminum alloy can body to produce an extruded material, and the pressure inside the can body was maintained at 2 × 10 −3 Torr or less.

【0027】次いで、ビレットに、熱処理温度T2 を7
63K(Tx+105K)に、また熱処理時間を1時間
にそれぞれ設定して2次熱処理を施し、前記熱処理時間
経過後、直ちにビレットを温度673Kのコンテナに装
入して、実施例1と同一条件下で熱間押出し加工を行い
構造部材を製造した。
Then, the heat treatment temperature T 2 of the billet is set to 7
63 K (Tx + 105 K) and the heat treatment time is set to 1 hour to carry out the secondary heat treatment. Immediately after the heat treatment time elapses, the billet is charged into a container at a temperature of 673 K, and under the same conditions as in Example 1. Hot extrusion was carried out to manufacture a structural member.

【0028】この構造部材について、温度423Kにて
各種試験を行ったところ、構造部材は引張強さσB
70MPa、伸び 6.5%、繰返し回数107 回の疲
労強度σf 220MPaを示し、実施例1における同
一条件下で製造された構造部材と同等若しくはそれ以上
の機械的特性を有することが判明した。
When various tests were conducted on this structural member at a temperature of 423 K, the structural member was found to have tensile strength σ B 4
The fatigue strength was 70 MPa, the elongation was 6.5%, and the fatigue strength was σ f 220 MPa after the number of repetitions was 10 7 and it was found that the structural member had the same or higher mechanical properties as the structural member manufactured under the same conditions in Example 1. ..

【0029】前記のように、1次熱処理を粉末状態のA
l合金に施すと、ビレットの製造を、冷間静水圧プレス
を行うことなく、一軸プレスにて容易に行うことができ
るので、構造部材の製造をライン化してその量産性を向
上させることが可能となる。
As described above, the primary heat treatment is performed in the powder state of A.
When applied to an L alloy, the billet can be easily manufactured by a uniaxial press without cold isostatic pressing, so that the structural member can be manufactured in a line and its mass productivity can be improved. Becomes

【0030】〔実施例3〕各種組成の溶湯を調製し、次
いで実施例1と同様の方法で粉末状Al合金を製造し、
その後分級処理を行って粉末状Al合金の粒径を22μ
m以下に調整した。各粉末状Al合金について、実施例
1と同様の方法で金属組織を調べたところ、前記同様に
混相組織を有することが判明した。
[Example 3] A molten metal having various compositions was prepared, and then a powdered Al alloy was produced in the same manner as in Example 1,
After that, classification treatment is performed to reduce the particle size of the powdered Al alloy to 22 μm.
It was adjusted to m or less. When the metal structure of each powdered Al alloy was examined by the same method as in Example 1, it was found to have a multiphase structure as described above.

【0031】表1は、粉末状Al合金(1)〜(20)
の組成および結晶化温度Txを示す。表中、Mmはミッ
シュメタルである。
Table 1 shows powdered Al alloys (1) to (20).
The composition and the crystallization temperature Tx of are shown. In the table, Mm is misch metal.

【0032】[0032]

【表1】 各種粉末状Al合金を用いて、実施例1と同様の各工程
を経て複数の押出し素材を製作し、各押出し素材におけ
る缶体内部の気圧を前記同様に2×10-3Torr以下に保
持した。各押出し素材、したがって各ビレットに1次熱
処理、2次熱処理および実施例1と同一条件下での熱間
押出し加工(押出し温度T3 =673K)を順次施し、
各種構造部材(1)〜(20)〔構造部材(1)〜(2
0)はAl合金(1)〜(20)にそれぞれ該当す
る。〕を製造した。
[Table 1] Using various powdered Al alloys, a plurality of extruded materials were manufactured through the same steps as in Example 1, and the atmospheric pressure inside the can body of each extruded material was maintained at 2 × 10 −3 Torr or less as described above. .. Each extruded material, and thus each billet, was sequentially subjected to a first heat treatment, a second heat treatment and a hot extrusion process under the same conditions as in Example 1 (extrusion temperature T 3 = 673K),
Various structural members (1) to (20) [Structural members (1) to (2
0) corresponds to Al alloys (1) to (20), respectively. ] Was manufactured.

【0033】表2および表3は、各種構造部材(1)〜
(20)の製造条件、Al結晶粒およびIMC結晶粒の
平均粒径ならびに423Kにおける機械的強度を示す。
なお、1次および2次熱処理における熱処理時間は1時
間に設定された。評価において「○」は機械的強度が優
れていることを示し、また「×」は機械的強度が劣るこ
とを示す。
Tables 2 and 3 show various structural members (1) to (3).
The production conditions of (20), the average grain sizes of Al crystal grains and IMC crystal grains, and the mechanical strength at 423K are shown.
The heat treatment time in the primary and secondary heat treatments was set to 1 hour. In the evaluation, “◯” indicates that the mechanical strength is excellent, and “X” indicates that the mechanical strength is inferior.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 表2および表3から明らかなように、1次および2次熱
処理における熱処理温度T1 ,T2 および押出し温度T
3 を前記範囲に設定することにより、Al合金の内部応
力を除去すると共にAl結晶粒およびIMC結晶粒間に
大きな平均粒径差を現出させて、優れた機械的強度を有
する構造部材(3),(4);(7),(8);(1
1),(12);(15),(16);(19),(2
0)を得ることができる。
[Table 3] As is apparent from Tables 2 and 3, the heat treatment temperatures T 1 and T 2 and the extrusion temperature T in the primary and secondary heat treatments
By setting 3 in the above range, the internal stress of the Al alloy is removed, and a large average grain size difference appears between the Al crystal grains and the IMC crystal grains, so that a structural member having excellent mechanical strength (3 ), (4); (7), (8); (1
1), (12); (15), (16); (19), (2
0) can be obtained.

【0036】なお、成形固化加工としては、粉末鍛造
法、ホットプレス、熱間静水圧プレス(HIP)等も適
用される。
As the forming and solidifying process, powder forging method, hot pressing, hot isostatic pressing (HIP) and the like are also applied.

【0037】[0037]

【発明の効果】本発明によれば、特定のAl合金に、特
定の熱処理および成形固化加工を順次施すことによっ
て、高温下において優れた伸び、疲労強度および靱性を
発揮する構造部材を得ることができる。
According to the present invention, a structural member that exhibits excellent elongation, fatigue strength and toughness at high temperature can be obtained by sequentially performing a specific heat treatment and a forming and solidifying process on a specific Al alloy. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al合金のX線回折図である。FIG. 1 is an X-ray diffraction diagram of an Al alloy.

【図2】Al合金の示差熱量分析図である。FIG. 2 is a differential calorimetric analysis diagram of an Al alloy.

【図3】2次熱処理の熱処理温度T2 と引張強さσB
よび伸びとの関係を示すグラフである。
3 is a graph showing the relationship between the heat treatment temperature T 2 and the tensile strength sigma B and elongation of the secondary heat treatment.

【図4】2次熱処理の熱処理温度T2 と疲労強度σf
の関係を示すグラフである。
It is a graph showing the relationship between FIG. 4 of the second heat treatment heat treatment temperature T 2 and the fatigue strength sigma f.

【図5】2次熱処理の熱処理温度T2 とシャルピー衝撃
値との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the heat treatment temperature T 2 of the second heat treatment and the Charpy impact value.

【図6】1次熱処理の熱処理温度T1 と引張強さσB
よび伸びとの関係を示すグラフである。
6 is a graph showing the relationship between the primary heat treatment heat treatment temperature T 1 of the and the tensile strength sigma B and elongation.

【図7】2次熱処理の熱処理温度T2 とAl結晶粒およ
びIMC結晶粒の平均粒径との関係を示すグラフであ
る。
7 is a graph showing the relationship between the average particle size of the second heat treatment heat treatment temperature T 2 and the Al crystal grains and IMC grain.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月15日[Submission date] July 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】なお、1次および2次熱処理における熱処
理時間は熱処理温度に依存するが、前記温度範囲におい
て、1次熱処理時間t1 は0.01時間≦t1 ≦3時
間、2次熱処理時間t2 は0.01時間≦t2 ≦2時間
が適当である。この時間上の条件は以後の各実施例にお
いて同じである。また10K/min 以下の連続昇温にて
1次熱処理を行うことも可能である。1次熱処理と2次
熱処理とを連続して行うことは必ずしも必要ではない
が、2次熱処理と成形固化加工とは連続して行う方が望
ましい。その理由は、2次熱処理と成形固化加工との間
に時間上の間隔をあけると、ビレットに降温、昇温時の
熱履歴が加わるため、金属組織の制御が複雑になるから
である。
Although the heat treatment times in the primary and secondary heat treatments depend on the heat treatment temperature, the primary heat treatment time t 1 is 0.01 hours ≦ t 1 ≦ 3 hours and the secondary heat treatment time t within the above temperature range. 2 is suitable for 0.01 hours ≦ t 2 ≦ 2 hours. This time condition is the same in each of the following examples. It is also possible to carry out the primary heat treatment at a continuous temperature rise of 10 K / min or less. Not necessarily to the this continuously performing a primary heat treatment and second heat treatment, but who performed continuously in a mold and solidified processing and second heat treatment is desirable. The reason is that, if a time interval is provided between the secondary heat treatment and the forming and solidifying process, the billet is subjected to a thermal history at the time of temperature decrease and temperature increase, which makes control of the metal structure complicated.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【表2】 [Table 2]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】[0035]

【表3】 表2および表3から明らかなように、1次および2次熱
処理における熱処理温度T1 ,T2 および押出し温度T
3 を前記範囲に設定することにより、Al合金の内部応
力を除去すると共にAl結晶粒およびIMC結晶粒間に
大きな平均粒径差を現出させて、優れた機械的強度を有
する構造部材(3),(4);(7),(8);(1
1),(12);(15),(16);(19),(2
0)を得ることができる。
[Table 3] As is apparent from Tables 2 and 3, the heat treatment temperatures T 1 and T 2 and the extrusion temperature T in the primary and secondary heat treatments
By setting 3 in the above range, the internal stress of the Al alloy is removed, and a large average grain size difference appears between the Al crystal grains and the IMC crystal grains, so that a structural member having excellent mechanical strength (3 ), (4); (7), (8); (1
1), (12); (15), (16); (19), (2
0) can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質相の結晶化温度がTxである金属
組織を備えたAl合金に、熱処理温度T1 がTx−10
0K≦T1 ≦Tx+100Kの条件下で1次熱処理を施
して前記非晶質相を結晶化すると共に相分解を行い、次
いで前記Al合金に、熱処理温度T2 がT2 >Tx+1
00Kの条件下で2次熱処理を施し、その後前記Al合
金を用いて、加工温度T3 がT3 ≦T2 の条件下で成形
固化加工を行うことを特徴とするAl合金製構造部材の
製造方法。
1. An Al alloy having a metallic structure in which the crystallization temperature of the amorphous phase is Tx, and the heat treatment temperature T 1 is Tx-10.
A primary heat treatment is performed under the conditions of 0K ≦ T 1 ≦ Tx + 100K to crystallize the amorphous phase and to perform phase decomposition, and then the heat treatment temperature T 2 of the Al alloy is T 2 > Tx + 1.
A second heat treatment is performed under the condition of 00K, and thereafter, the Al alloy is used for forming and solidifying under the condition that the working temperature T 3 is T 3 ≦ T 2. Method.
【請求項2】 前記1次熱処理を粉末状態の前記Al合
金に施す、請求項1記載のAl合金製構造部材の製造方
法。
2. The method for manufacturing an Al alloy structural member according to claim 1, wherein the primary heat treatment is applied to the Al alloy in a powder state.
JP4133957A 1992-05-19 1992-05-26 Manufacture of structural member made of al alloy Pending JPH05320837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4133957A JPH05320837A (en) 1992-05-26 1992-05-26 Manufacture of structural member made of al alloy
EP93108091A EP0570910A1 (en) 1992-05-19 1993-05-18 High strength and high toughness aluminum alloy structural member, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133957A JPH05320837A (en) 1992-05-26 1992-05-26 Manufacture of structural member made of al alloy

Publications (1)

Publication Number Publication Date
JPH05320837A true JPH05320837A (en) 1993-12-07

Family

ID=15117035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133957A Pending JPH05320837A (en) 1992-05-19 1992-05-26 Manufacture of structural member made of al alloy

Country Status (1)

Country Link
JP (1) JPH05320837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179975A (en) * 1993-12-24 1995-07-18 Takeshi Masumoto Aluminum alloy and its production
JPH07179974A (en) * 1993-12-24 1995-07-18 Takeshi Masumoto Aluminum alloy and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179975A (en) * 1993-12-24 1995-07-18 Takeshi Masumoto Aluminum alloy and its production
JPH07179974A (en) * 1993-12-24 1995-07-18 Takeshi Masumoto Aluminum alloy and its production

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
CA2105968C (en) Aluminum-based alloy cast product and process for producing the same
CA1284450C (en) Nickel base superalloy articles and method for making
US5532069A (en) Aluminum alloy and method of preparing the same
US2809891A (en) Method of making articles from aluminous metal powder
US3462248A (en) Metallurgy
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
US8926898B2 (en) Al base alloy excellent in heat resistance, workability and rigidity
JPH05320837A (en) Manufacture of structural member made of al alloy
JPH05331585A (en) High strength al alloy
JPH08134614A (en) Production of superplastic magnesium alloy material
JPH08269589A (en) Production of superplastic az91 magnesium alloy
US4481034A (en) Process for producing high hafnium carbide containing alloys
EP0137180B1 (en) Heat-resisting aluminium alloy
London et al. Grain size and oxide content affect beryllium's properties
JPH04218638A (en) Structural member made of aluminum alloy and its manufacture
JPH05320804A (en) High-strength high-toughness al alloy
JP3324784B2 (en) Method of manufacturing high strength structural member made of Al alloy by plastic working
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
EP0570910A1 (en) High strength and high toughness aluminum alloy structural member, and process for producing the same
JP2572832B2 (en) Al-based alloy powder for sintering
JPH05195130A (en) Aluminum alloy containing fine crystallized matter
US5709758A (en) Process for producing structural member of aluminum alloy
JPH0353049A (en) Heat treatment for intermetallic compound tial-base alloy
JPH05320785A (en) Method for degassing from al alloy powder