JPH05319975A - Production of oxide single crystal - Google Patents

Production of oxide single crystal

Info

Publication number
JPH05319975A
JPH05319975A JP4125189A JP12518992A JPH05319975A JP H05319975 A JPH05319975 A JP H05319975A JP 4125189 A JP4125189 A JP 4125189A JP 12518992 A JP12518992 A JP 12518992A JP H05319975 A JPH05319975 A JP H05319975A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crucible
oxide single
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4125189A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Innami
義之 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4125189A priority Critical patent/JPH05319975A/en
Publication of JPH05319975A publication Critical patent/JPH05319975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide an oxide single crystal production method so designed that during annealing after oxide single crystal growth by pull method, a raised part developed at the melt-solidified interface is suppressed to a minimum to avoid crystal defects due to contact of this raised part with a grown single crystal. CONSTITUTION:A seed crystal 3 is immersed in a melt 2 obtained by heating to elevated temperatures a crucible 1 having an oxide single crystal material and gradually pulled up under rotation or while revolving the crucible 1 at a constant rate to grow a single crystal 4 having the same azimuth as that of the seed crystal, and the resulting single crystal 4 is separated from the melt 2 left in the crucible and annealed, thus obtaining the objective oxide single crystal. In this case, the value A/T is set at <=0.60 (where, A is the height of the melt left in the crucible after solidification; T is the diameter of the crucible), and the rate of cooling the remaining melt during annealing is set at 50-80 deg.C/hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は引上げ法による酸化物単
結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide single crystal by a pulling method.

【0002】[0002]

【従来の技術】単結晶の成長方法の一つである引上げ法
は、別名チョクラルスキー(Czochralski)法もしくは
回転引上げ法とも呼称され、一般に図1に示したように
高温に加熱したルツボ1内に多結晶の融液2を入れ、上
方から種子結晶3をひたして、この種子結晶3又はルツ
ボ1を一定速度で回転させながら徐々に引上げることに
より、種子結晶3と同じ方位の単結晶4を育成する方法
である。5は石英管,6は高周波誘導加熱器のワークコ
イル,7はアフターヒータであり、石英管5の上下両端
部は密閉されていて、図外のガス流入口から所定の不活
性ガスが流入されている。アフタヒータ7は育成された
単結晶4の周囲を覆う位置に配設されている。
2. Description of the Related Art The pulling method, which is one of the methods for growing a single crystal, is also known as the Czochralski method or the rotary pulling method, and is generally used in a crucible 1 heated to a high temperature as shown in FIG. A polycrystal melt 2 is put in the flask, a seed crystal 3 is put in from above, and the seed crystal 3 or the crucible 1 is gradually pulled up while rotating at a constant speed. Is a method of raising. Reference numeral 5 is a quartz tube, 6 is a work coil of a high frequency induction heater, and 7 is an after-heater. The upper and lower ends of the quartz tube 5 are sealed, and a predetermined inert gas is introduced from a gas inlet port (not shown). ing. The after-heater 7 is arranged at a position covering the periphery of the grown single crystal 4.

【0003】一定寸法の単結晶4が育成すると、この単
結晶4と残留する融液2とを切り離し、この単結晶4に
割れとかクラックが生じないように徐冷する。この徐冷
法としては、高周波誘導加熱器のワークコイル6の出力
を徐々に下げる方法が通常用いられている。この徐冷方
法により高熱に加熱されていたPt製のアフターヒータ
7の温度がゆっくりと低下して育成した単結晶4への輻
射熱が徐々に小さくなり、前記の割れとかクラック、更
には気泡とか転移の発生が防止される。
When the single crystal 4 having a constant size grows, the single crystal 4 and the remaining melt 2 are separated and gradually cooled so that the single crystal 4 is not cracked. As the slow cooling method, a method of gradually decreasing the output of the work coil 6 of the high frequency induction heater is usually used. By this slow cooling method, the temperature of the after heater 7 made of Pt, which was heated to a high temperature, is slowly decreased, and the radiant heat to the grown single crystal 4 is gradually reduced, and the cracks or cracks, and further bubbles or transitions. Is prevented from occurring.

【0004】又、ワークコイル6の出力を徐々に下げる
ことにより、ルツボ1の温度も次第に下降して該ルツボ
1中に残存している融液2の温度が徐々に下がり、最後
に固化する。
Further, by gradually decreasing the output of the work coil 6, the temperature of the crucible 1 also gradually decreases, the temperature of the melt 2 remaining in the crucible 1 gradually decreases, and finally solidifies.

【0005】[0005]

【発明が解決しようとする課題】上記したように引上げ
法による単結晶育成法は、育成した単結晶4を融液2か
ら切り離した後、ワークコイル6の出力を徐々に下げる
ことにより、割れとかクラックが生じないように配慮し
ているが、数種の光学結晶の中で酸化物単結晶であるB
12GeO20(以下BGOと略称)とBi12SiO
20(以下BSOと略称)の育成時に以下の問題点がある
ことが認識されている。
As described above, in the method of growing a single crystal by the pulling method, the grown single crystal 4 is separated from the melt 2 and then the output of the work coil 6 is gradually reduced to cause cracking. Although attention is paid so that cracks do not occur, oxide B is an oxide single crystal among several types of optical crystals.
i 12 GeO 20 (hereinafter abbreviated as BGO) and Bi 12 SiO
It has been recognized that there are the following problems when training 20 (hereinafter abbreviated as BSO).

【0006】即ち、残留する融液2中に結晶化の核とな
る物質が多々存在すること、及び前記BGO,BSOに
はα相(monoclinic),β相(tetragonal)及びγ(cu
bic)が存在することにより、徐冷中に融液2が軽石状
に複雑に結晶化して、図2に示したように融液2の固化
界面に高さtの盛り上り部2aが形成され、この盛り上
り部2aが切り離した育成結晶の尾部に接触してしまう
ことがある。
That is, many substances serving as crystallization nuclei are present in the remaining melt 2, and the BGO and BSO have α phase (monoclinic), β phase (tetragonal) and γ (cu).
bic), the melt 2 is crystallized in a pumice-like complex manner during slow cooling, and a ridge 2a of height t is formed at the solidification interface of the melt 2 as shown in FIG. The rising portion 2a may come into contact with the tail portion of the grown crystal separated.

【0007】実験によれば、単結晶4の育成後、50c
c(φ45×t50)のルツボ1中に40ccの残留融
液2が存在すると、固化界面の中心部に前記高さtが8
mm程度の盛り上り部2aが形成されていることが観察
された。
According to the experiment, after growing the single crystal 4, 50c
If 40 cc of residual melt 2 is present in the crucible 1 of c (φ45 × t50), the height t is 8 at the center of the solidification interface.
It was observed that the raised portion 2a of about mm was formed.

【0008】通常育成後の単結晶4は、融液2と切り離
した後、冷却過程で温度ショックによる欠陥が生じるこ
とがないように、融液2との距離が最高5mm以上にな
らない位置に保持されている。従って前記徐冷によって
融液2の固化界面が5mm以上に盛り上がると、盛り上
り部2aが育成後の単結晶4に接触して、該単結晶4に
部分的な変形が生じてしまい、ひいては結晶欠陥を発生
してしまうことになり易い。このような欠陥が発生した
酸化物単結晶4は光学結晶として使用することができな
いという問題点がある。
After being normally grown, the single crystal 4 is kept at a position where the distance from the melt 2 is not more than 5 mm at the maximum so that defects due to temperature shock do not occur in the cooling process after being separated from the melt 2. Has been done. Therefore, when the solidified interface of the melt 2 rises to 5 mm or more due to the slow cooling, the raised portion 2a comes into contact with the single crystal 4 after the growth, and the single crystal 4 is partially deformed. Defects are likely to occur. There is a problem that the oxide single crystal 4 having such defects cannot be used as an optical crystal.

【0009】そこで本発明はこのような従来の酸化物単
結晶の育成時に生じる問題点を解消して、単結晶育成後
の徐冷中に融液の固化界面に形成される盛り上り部を最
小限に抑えて、この盛り上り部が育成した単結晶に接触
することに起因する結晶欠陥をなくすことができる酸化
物単結晶の製造方法を得ることを目的とするものであ
る。
Therefore, the present invention solves the problems that occur during the growth of such conventional oxide single crystals, and minimizes the bulge portion formed at the solidification interface of the melt during slow cooling after the growth of the single crystal. It is an object of the present invention to obtain a method for producing an oxide single crystal, which can suppress the crystal defects caused by the contact of the raised portion with the grown single crystal.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するために、酸化物単結晶の原料を入れたルツボを高
温に加熱して得た融液に種子結晶をひたし、この種子結
晶又はルツボを一定速度で回転させながら前記種子結晶
を徐々に引上げて、種子結晶と同じ方位の単結晶を育成
し、得られた単結晶を残留する融液から切り離して徐冷
するようにした酸化物単結晶の製造方法において、固化
後のルツボ内の残留融液の高さAとルツボの直径Tを用
いて表した残留融液量A/Tを0.60以下とし、且つ
徐冷時の残留融液の冷却速度が50〜80℃/Hrであ
るように設定してある。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention immerses a seed crucible in a melt obtained by heating a crucible containing a raw material of an oxide single crystal to a high temperature. Or gradually pulling up the seed crystal while rotating the crucible at a constant speed to grow a single crystal in the same orientation as the seed crystal, and to oxidize the obtained single crystal so that it is slowly cooled by separating it from the remaining melt. In the method for producing a material single crystal, the residual melt amount A / T expressed by using the height A of the residual melt in the crucible after solidification and the diameter T of the crucible is set to 0.60 or less, and at the time of slow cooling. The cooling rate of the residual melt is set to 50 to 80 ° C./Hr.

【0011】[0011]

【作用】かかる酸化物単結晶の製造方法によれば、引上
げ法による単結晶育成後の徐冷時に、融液の固化界面の
盛り上り部を最小限に抑えることで出来る上、少なくと
も該盛り上り部が切り離された単結晶に接触することを
防止して、このような接触に起因する単結晶の割れとか
クラック等の結晶欠陥をなくすことができる。
According to such a method for producing an oxide single crystal, it is possible to minimize the rising portion of the solidification interface of the melt during the slow cooling after growing the single crystal by the pulling method, and at least the rising portion. It is possible to prevent the parts from coming into contact with the separated single crystal, and to eliminate the crystal defects such as cracks and cracks of the single crystal due to such contact.

【0012】[0012]

【実施例】以下に本発明にかかる酸化物単結晶の製造方
法の具体的な実施例を説明する。上記の図1に示した引
上げ法による酸化物単結晶の製造装置を利用して、以下
に記す実験を行った。
EXAMPLES Specific examples of the method for producing an oxide single crystal according to the present invention will be described below. Using the apparatus for producing an oxide single crystal by the pulling method shown in FIG. 1, the following experiment was conducted.

【0013】先ず基本的な操作を説明すると、石英管5
内に配置されたPt製の50cc(φ45×t50)の
ルツボ1中にBGOの原料を入れ、該ルツボ1を高温に
加熱して融液2を作り、上方から種子結晶3をひたし、
この種子結晶3を一定速度で回転させながら徐々に引上
げる。すると種子結晶3と同じ方位の単結晶4が育成す
る。
First, the basic operation will be described. The quartz tube 5
A raw material of BGO is put into a 50 cc (φ45 × t50) crucible 1 made of Pt arranged inside, the crucible 1 is heated to a high temperature to form a melt 2, and a seed crystal 3 is poured from above,
The seed crystal 3 is gradually pulled up while rotating at a constant speed. Then, the single crystal 4 having the same orientation as the seed crystal 3 grows.

【0014】そして一定寸法の単結晶4が成長すると、
該単結晶4と残留する融液2とを切り離して徐冷する。
この徐冷法としては通常の手段、即ち高周波誘導加熱器
のワークコイル6の出力を徐々に下げる方法を用いた。
この徐冷方法により、高熱に加熱されていたアフターヒ
ータ7の温度がゆっくりと低下して育成した単結晶4へ
の輻射熱が徐々に小さくなり、且つルツボ1の温度も次
第に下降して、残存している融液2の温度が徐々に下が
り、最後に固化する。
When a single crystal 4 having a constant size grows,
The single crystal 4 and the remaining melt 2 are separated and gradually cooled.
As this gradual cooling method, a usual method, that is, a method of gradually decreasing the output of the work coil 6 of the high frequency induction heater is used.
By this gradual cooling method, the temperature of the after-heater 7 which was heated to a high temperature is slowly decreased, the radiant heat to the grown single crystal 4 is gradually decreased, and the temperature of the crucible 1 is gradually decreased and remains. The temperature of the melt 2 is gradually decreased and finally solidified.

【0015】そしてφ23mmの単結晶4を表1に示す
条件に基づいて夫々育成し、育成後の各単結晶4と残留
する融液2とを切り離した後、徐冷中に融液2の固化界
面に形成された盛り上り部2aの高さt(mm)を測定
し、この盛り上り部2aの高さtに与える残留融液量
(A/T)と冷却速度(℃/Hr)の影響を調べた。
Then, single crystals 4 having a diameter of 23 mm were individually grown under the conditions shown in Table 1, and after the single crystals 4 after growth were separated from the remaining melt 2, the solidified interfaces of the melt 2 were gradually cooled during slow cooling. The height t (mm) of the formed raised portion 2a is measured, and the influence of the residual melt amount (A / T) and the cooling rate (° C / Hr) on the height t of the raised portion 2a is investigated. It was

【0016】[0016]

【表1】 [Table 1]

【0017】表1中の残留融液量(A/T)は、図2に
示したように固化後のルツボ1内の残留融液2の高さA
とルツボ1の直径T(内径)を用いて表した。又、冷却
速度(℃/Hr)は、単位時間当たりの降下温度を用い
て表した。
The residual melt amount (A / T) in Table 1 is the height A of the residual melt 2 in the crucible 1 after solidification as shown in FIG.
And the diameter T of the crucible 1 (inner diameter). The cooling rate (° C / Hr) was expressed by using the temperature drop per unit time.

【0018】先ず上記残留融液量の影響をみるために、
徐冷時における単結晶4の冷却速度を80(℃/Hr)
と定め、残留融液量(A/T)を変えて実験を行った。
その結果、試料NO1とNO2の残留融液量が0.90
及び0.75の場合には、固化後の界面高さtが夫々
8.5mm及び7.0mmであり、何れも高さ限度であ
る5mmを大きく超えていることが判明した。又、試料
NO3とNO4の残留融液量が0.60及び0.45の
場合には、固化後の界面高さtが夫々4.0mm及び
1.0mmであり、高さ限度である5mm以下であるこ
とが確認された。更に試料NO5の残留融液量が0.3
0の場合には、固化後の界面盛り上りが観察されなかっ
た。
First, in order to see the influence of the above-mentioned residual melt amount,
The cooling rate of the single crystal 4 during slow cooling is 80 (° C / Hr)
The experiment was conducted by changing the residual melt amount (A / T).
As a result, the residual melt amount of the samples NO1 and NO2 was 0.90.
And 0.75, the interfacial heights t after solidification were 8.5 mm and 7.0 mm, respectively, and it was found that the heights t greatly exceeded the height limit of 5 mm. When the residual melt amounts of the samples NO3 and NO4 are 0.60 and 0.45, the interface heights t after solidification are 4.0 mm and 1.0 mm, respectively, which is the height limit of 5 mm or less. Was confirmed. Furthermore, the residual melt amount of sample NO5 is 0.3
In the case of 0, swelling of the interface after solidification was not observed.

【0019】次に冷却速度(℃/Hr)の影響をみるた
めに、残留融液量(A/T)を0.50と定め、冷却速
度(℃/Hr)を120,50,30に変えて実験を行
った。その結果、冷却速度が120(℃/Hr)の場合
には、ルツボ1の近傍と融液2の界面が融液内部よりも
急激に温度が降下しながら固化するため、一部固化して
いない界面の中心部から内部の融液2が激しく吹き出し
て表面に盛り上りながら固化する現象が観察され、固化
後の界面高さtが8.0mmに達した。
Next, in order to examine the effect of the cooling rate (° C / Hr), the residual melt amount (A / T) was set to 0.50 and the cooling rate (° C / Hr) was changed to 120, 50, 30. I conducted an experiment. As a result, when the cooling rate is 120 (° C./Hr), the interface between the vicinity of the crucible 1 and the melt 2 solidifies while the temperature drops more rapidly than the inside of the melt, and is not partially solidified. A phenomenon was observed in which the melt 2 inside was violently blown from the center of the interface and solidified while rising on the surface, and the interface height t after solidification reached 8.0 mm.

【0020】又、冷却速度が50(℃/Hr),30
(℃/Hr)の場合には、固化後の界面高さtが夫々
2.0mm及び0mmであり、高さ限度である5mm以
下であることが確認された。尚、冷却速度を50(℃/
Hr)以下にしても良好な結果が得られるが、このよう
な条件では冷却に長時間を要することになって生産性と
採算性の面での難点が生じてしまうため、冷却速度の下
限は50(℃/Hr)とした。
The cooling rate is 50 (° C / Hr), 30
In the case of (° C./Hr), the interface height t after solidification was 2.0 mm and 0 mm, respectively, and it was confirmed that the height limit was 5 mm or less. The cooling rate is 50 (° C /
Even if it is set to Hr) or less, good results are obtained, but under such conditions, it takes a long time for cooling, which causes a difficulty in productivity and profitability. Therefore, the lower limit of the cooling rate is set. It was set to 50 (° C / Hr).

【0021】以上の結果から、残留融液量(A/T)は
0.60以下が適当であり、徐冷時の冷却速度(℃/H
r)は50〜80が適当であることが判明した。尚、上
記の実施例では酸化物単結晶としてBi12GeO20(B
GO)を用いたが、他の酸化物単結晶であるBi12Si
20(BSO)を用いても略同様な結果が得られること
が判明した。
From the above results, it is appropriate that the residual melt amount (A / T) is 0.60 or less, and the cooling rate during slow cooling (° C / H)
It was found that r) of 50 to 80 is suitable. In the above example, the oxide single crystal was Bi 12 GeO 20 (B
GO) was used, but Bi 12 Si which is another oxide single crystal
It was found that almost the same result was obtained even when O 20 (BSO) was used.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明にか
かる酸化物単結晶の製造方法によれば、引上げ法による
単結晶育成後の徐冷時に、融液の固化界面の盛り上り部
を最小限に抑え、且つ少なくとも該盛り上り部が切り離
された単結晶に接触することを防止して、接触に起因す
る単結晶の結晶欠陥をなくすことができる。
As described above in detail, according to the method for producing an oxide single crystal according to the present invention, the rising portion of the solidification interface of the melt is formed during the slow cooling after growing the single crystal by the pulling method. It is possible to minimize and at least prevent the raised portion from coming into contact with the separated single crystal, thereby eliminating crystal defects in the single crystal due to the contact.

【0023】そのため、残留する融液中に結晶化の核と
なる物質が多々存在するような酸化物単結晶,例えばB
12GeO20とかBi12SiO20等の酸化物単結晶を製
造する場合であっても、単結晶の育成後の残留融液の存
在による固化界面での前記盛り上り部が生じることが殆
どなくなり、その結果として得られた単結晶に、光学結
晶としての使用に適合する高品質を付与することができ
る。
Therefore, an oxide single crystal, for example, B, in which a large amount of a substance serving as a crystallization nucleus exists in the remaining melt.
Even when an oxide single crystal such as i 12 GeO 20 or Bi 12 SiO 20 is produced, the swelling portion at the solidification interface hardly occurs due to the presence of the residual melt after the growth of the single crystal. The resulting single crystal can be given a high quality suitable for use as an optical crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた引上げ法による単結晶製造装置
を示す該略断面図。
FIG. 1 is a schematic sectional view showing an apparatus for producing a single crystal by a pulling method used in the present invention.

【図2】上記単結晶製造装置における冷却時の状態を示
す要部拡大断面図。
FIG. 2 is an enlarged sectional view of an essential part showing a state during cooling in the single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1…ルツボ 2…融液 2a…盛り上り部 3…種子結晶 4…単結晶 5…石英管 6…ワークコイル 7…アフタヒータ DESCRIPTION OF SYMBOLS 1 ... Crucible 2 ... Melt 2a ... Rising part 3 ... Seed crystal 4 ... Single crystal 5 ... Quartz tube 6 ... Work coil 7 ... After heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ルツボ中に酸化物単結晶の原料を入れ、
該ルツボを高温に加熱して得た融液に種子結晶をひた
し、この種子結晶又はルツボを一定速度で回転させなが
ら前記種子結晶を徐々に引上げて、種子結晶と同じ方位
の単結晶を育成し、得られた単結晶を残留する融液から
切り離して徐冷するようにした酸化物単結晶の製造方法
において、 固化後のルツボ内の残留融液の高さAとルツボの直径T
を用いて表した残留融液量A/Tを0.60以下とし、
且つ徐冷時の残留融液の冷却速度が50〜80℃/Hr
であるように設定したことを特徴とする酸化物単結晶の
製造方法。
1. A raw material for an oxide single crystal is placed in a crucible,
A seed crystal is placed in a melt obtained by heating the crucible to a high temperature, and the seed crystal is gradually pulled up while rotating the seed crystal or the crucible at a constant speed to grow a single crystal having the same orientation as the seed crystal. In the method for producing an oxide single crystal in which the obtained single crystal is separated from the residual melt and gradually cooled, the height A of the residual melt in the crucible after solidification and the diameter T of the crucible
The residual melt amount A / T expressed by using
The cooling rate of the residual melt during slow cooling is 50 to 80 ° C / Hr.
The method for producing an oxide single crystal is characterized in that
【請求項2】 前記酸化物単結晶はBi12GeO20もし
くはBi12SiO20である請求項1記載の酸化物単結晶
の製造方法。
2. The method for producing an oxide single crystal according to claim 1, wherein the oxide single crystal is Bi 12 GeO 20 or Bi 12 SiO 20 .
JP4125189A 1992-05-19 1992-05-19 Production of oxide single crystal Pending JPH05319975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125189A JPH05319975A (en) 1992-05-19 1992-05-19 Production of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125189A JPH05319975A (en) 1992-05-19 1992-05-19 Production of oxide single crystal

Publications (1)

Publication Number Publication Date
JPH05319975A true JPH05319975A (en) 1993-12-03

Family

ID=14904121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125189A Pending JPH05319975A (en) 1992-05-19 1992-05-19 Production of oxide single crystal

Country Status (1)

Country Link
JP (1) JPH05319975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803516A (en) * 2015-01-20 2016-07-27 丰田自动车株式会社 Single crystal production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803516A (en) * 2015-01-20 2016-07-27 丰田自动车株式会社 Single crystal production apparatus
CN105803516B (en) * 2015-01-20 2018-06-22 丰田自动车株式会社 Single-crystal manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP4810346B2 (en) Method for producing sapphire single crystal
CN108531990A (en) Single-crystal manufacturing apparatus
JPH05319975A (en) Production of oxide single crystal
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP7102970B2 (en) Method for producing lithium niobate single crystal
JP2720274B2 (en) Single crystal pulling method
JP2005239442A (en) Manufacturing method of oxide single crystal
JP7184029B2 (en) Method for manufacturing single crystal silicon ingot
JPH08133886A (en) Production of single crystal
KR100581045B1 (en) Method for porducing silicon single crystal
JP4146829B2 (en) Crystal manufacturing equipment
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JP3208603B2 (en) How to make a single crystal
JPS60108396A (en) Growth of single crystal
CN116988153A (en) Method for simultaneous crystallization and purification of powdery magnesium fluoride
JPH09286695A (en) Production of oxide single crystal
JPH09208380A (en) Production of oxide single crystal
JPH03242399A (en) Method for rotating and pulling up lithium tetraborate single crystal
JPH08319195A (en) Production of lithium borate single crystal
CN115287756A (en) Method for preparing square silicon core by using crushed material
JPS6410478B2 (en)
JPH0383889A (en) Liquid surface temperature control type single crystal rearing method and apparatus therefor
JPH0725696A (en) Method of pulling up single crystal
JPH04300294A (en) Production of lithium niobate single crystal

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313131

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term