JPH05319889A - Hydraulic cement composition - Google Patents

Hydraulic cement composition

Info

Publication number
JPH05319889A
JPH05319889A JP12600892A JP12600892A JPH05319889A JP H05319889 A JPH05319889 A JP H05319889A JP 12600892 A JP12600892 A JP 12600892A JP 12600892 A JP12600892 A JP 12600892A JP H05319889 A JPH05319889 A JP H05319889A
Authority
JP
Japan
Prior art keywords
hydraulic
cement
water
weight
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12600892A
Other languages
Japanese (ja)
Inventor
Teppei Noda
鉄平 野田
Tsutomu Kuribayashi
勉 栗林
Shoji Yoshimoto
昌次 吉本
Shozo Yamaguchi
昇三 山口
Mitsuo Kinoshita
光男 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI ONODA REMIKON KK
Takemoto Oil and Fat Co Ltd
Nippon Steel Corp
Original Assignee
TOKAI ONODA REMIKON KK
Takemoto Oil and Fat Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI ONODA REMIKON KK, Takemoto Oil and Fat Co Ltd, Nippon Steel Corp filed Critical TOKAI ONODA REMIKON KK
Priority to JP12600892A priority Critical patent/JPH05319889A/en
Publication of JPH05319889A publication Critical patent/JPH05319889A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide a hydraulic cement composition without the separation of materials and excellent in slump flow value. CONSTITUTION:This hydraulic cement composition consists of a hydraulic component consisting of the blast-furnace slag fine powder having 5700-6300cm<2>/g Blaine value and Portland cement, aggregate, water and the following cement dispersant. The content of the fine powder is controlled to 50-80wt.%, the unit quantity of the hydraulic component is controlled to 300-400kg/m<3> and that of water to 140-170kg/m<3>, the content of the fine lime powder in the aggregate having <=0.15mm grain diameter is adjusted to 2.5-7.5wt.%, and 0.3-3.0 pts.wt. of the cement dispersant as the water-soluble vinyl copolymer obtained by polymerizing or copolymerizing a monomer contg. >=50mol% of the alpha,beta-ethylenic unsaturated monocarboxylic acid or its salt is used per 100 pts.wt. of the hydraulic component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料分離がなくスラン
プフロー値の優れた水硬性セメント組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic cement composition which has no material separation and has an excellent slump flow value.

【0002】[0002]

【従来の技術】近年、コンクリート施工時の締め固めを
不要とする水硬性セメント組成物として高い流動性と作
業性や充填性が良好で、且つ材料分離のない均質なコン
クリートが要求されている。
2. Description of the Related Art Recently, as a hydraulic cement composition which does not require compaction at the time of concrete construction, homogeneous concrete having high fluidity, good workability and filling property, and no material separation is required.

【0003】従来、高度に減水されたコンクリートに高
い流動性を付与し、且つ材料分離を軽減させる方法とし
て、例えば、(1)微粉末水硬性成分の単位量を400
kg/m3 以上とし、セメント分散剤と水溶性高分子材
料(糊料)を用いる方法が特開平3−237049号で
開示されており、また他の方法として、(2)骨材の一
部として石灰を含む岩石微粒とセメント分散剤を用いる
方法が「土木学会流動化コンクリート施工指針(案)」
で知られている。
Conventionally, as a method for imparting high fluidity to highly water-reduced concrete and reducing material separation, for example, (1) a unit amount of a fine powder hydraulic component is 400
A method of using a cement dispersant and a water-soluble polymer material (paste) at a rate of not less than kg / m 3 is disclosed in JP-A-3-237049, and as another method, (2) Part of aggregate As a method of using rock granules containing lime and cement dispersant as a material, "Practical guidelines for fluidized concrete of Japan Society of Civil Engineers (draft)"
Is known for.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来法
には、相応の強度や流動性を得ることのできる反面、次
のような欠点がある。
However, while the above conventional method can obtain appropriate strength and fluidity, it has the following drawbacks.

【0005】上記(1)の場合には、水硬性成分の単位
量が高いことに起因して経済的でない。
In the case of the above (1), it is not economical due to the high unit amount of the hydraulic component.

【0006】上記(2)の場合には、スランプフロー値
が40.0cm以下の範囲にある流動化コンクリートに
おいては材料分離を生じさせないが、スランプフロー値
が50.0〜70.0cmという高流動コンクリートに
すると材料分離を防ぐことができない。
In the case of the above (2), material separation does not occur in fluidized concrete having a slump flow value in the range of 40.0 cm or less, but a high slump flow value of 50.0 to 70.0 cm Concrete cannot prevent material separation.

【0007】本発明は材料分離のない高度に減水された
高流動コンクリートを経済的に得ることのできる水硬性
コンクリート組成物を提供することを課題とするもので
ある。
[0007] It is an object of the present invention to provide a hydraulic concrete composition which can economically obtain highly fluidized highly fluid concrete without material separation.

【0008】[0008]

【課題を解決するための手段】本発明者等は上記課題を
解決するべく鋭意検討した結果、特定の水硬性成分、特
定の粒子径を有する石灰微粉末を所定量含有する骨材、
水及び特定の水溶性ビニル共重合体であるセメント分散
剤とがそれぞれ所定単位量及び所定割合とすることによ
り水硬性セメント組成物が適性な特性を発現することを
見出した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a specific hydraulic component, an aggregate containing a predetermined amount of lime fine powder having a specific particle diameter,
It has been found that the hydraulic cement composition exhibits suitable properties when water and a cement dispersant which is a specific water-soluble vinyl copolymer are used in a predetermined unit amount and a predetermined ratio, respectively.

【0009】本発明は、(1)ブレーン値が5700〜
6300cm2 /gの高炉スラグ微粉末とポルトランド
セメントとからなる水硬性成分、骨材、水及び下記セメ
ント分散剤からなる水硬性セメント組成物であって、水
硬性成分中の高炉スラグ微粉末の配合割合が50〜80
重量%、水硬性成分の単位量が300kg/m3 以上、
400kg/m3 未満、単位水量が140〜170kg
/m3 、骨材中の平均粒子径0.15mm以下の石灰微
粉末の配合割合が2.5〜7.5重量%、α,β−エチ
レン性不飽和モノカルボン酸又はその塩を50モル%以
上含有する単量体を重合又は共重合して得られる水溶性
ビニル共重合体であるセメント分散剤の含有量が水硬性
成分100重量部当たり0.3〜3.0重量部であるこ
とを特徴とする水硬性セメント組成物。また本発明は、
(2)練り混ぜ直後において土木学会基準「コンクリー
トのスランプフロー試験方法(案)」によるスランプフ
ローの値が50.0〜70.0cmを有することを特徴
とする前記(1)記載の水硬性セメント組成物。であ
る。
According to the present invention, (1) the Blaine value is from 5700 to
A hydraulic cement composition comprising a hydraulic component comprising 6300 cm 2 / g blast furnace slag fine powder and Portland cement, an aggregate, water and a cement dispersant described below, wherein the blast furnace slag fine powder is mixed in the hydraulic component. Ratio is 50-80
% By weight, the unit amount of hydraulic component is 300 kg / m 3 or more,
Less than 400 kg / m 3 , unit water volume 140-170 kg
/ M 3 , the mixing ratio of lime fine powder having an average particle diameter of 0.15 mm or less in the aggregate is 2.5 to 7.5% by weight, and α, β-ethylenically unsaturated monocarboxylic acid or a salt thereof is 50 mol. % Or more, the content of the cement dispersant, which is a water-soluble vinyl copolymer obtained by polymerizing or copolymerizing, is 0.3 to 3.0 parts by weight per 100 parts by weight of the hydraulic component. A hydraulic cement composition characterized by: Further, the present invention is
(2) The hydraulic cement according to (1) above, which has a slump flow value of 50.0 to 70.0 cm according to the Japan Society of Civil Engineers standard “Slump flow test method for concrete (draft)” immediately after kneading. Composition. Is.

【0010】[0010]

【発明の作用】本発明の水硬性セメント組成物に用いる
水硬性成分は、5700〜6300cm2 /gのブレー
ン値を有する高炉スラグ微粉末50〜80重量%とポル
トランドセメント20〜50重量%とからなる混合物で
ある。
The hydraulic component used in the hydraulic cement composition of the present invention comprises 50 to 80% by weight of blast furnace slag fine powder having a Blaine value of 5700 to 6300 cm 2 / g and 20 to 50% by weight of Portland cement. Is a mixture.

【0011】ポルトランドセメントとしてはその種類を
特に限定するものではないが、ブレーン値が3000〜
3500cm2 /gの範囲のものを用いることができ
る。
The type of Portland cement is not particularly limited, but it has a Blaine value of 3,000 to 3,000.
Those having a range of 3500 cm 2 / g can be used.

【0012】高炉スラグ微粉末のブレーン値が5700
cm2 /g未満の場合、材料分離が生じ易くなり好まし
くなく、また6300cm2 /gを越えると単位水量の
増加と製造コストの上昇を招くので好ましくない。
Blaine value of blast furnace slag fine powder is 5700
If it is less than cm 2 / g, material separation is likely to occur, and if it exceeds 6300 cm 2 / g, the unit water amount increases and the manufacturing cost increases, which is not preferable.

【0013】高炉スラグ微粉末とポルトランドセメント
の配合割合は前記した範囲とするものであるが、ポルト
ランドセメントの割合を50重量%を越える量より多く
しても相応の効果が得られないばかりか経済的にも有利
でない。またポルトランドセメントの割合が20重量%
未満の場合、所望の強度を有する硬化物が得られない。
The blending ratio of the ground granulated blast furnace slag and Portland cement is within the above-mentioned range. However, even if the ratio of Portland cement is more than 50% by weight, no corresponding effect is obtained and the economy is low. Is not advantageous. The proportion of Portland cement is 20% by weight
When it is less than the above, a cured product having a desired strength cannot be obtained.

【0014】上記水硬性成分の単位量は300kg/m
3 以上、400kg/m3 未満とする。水硬性成分の単
位量として300kg/m3 未満の場合、材料分離を生
じ易くなる。またその単位量が400kg/m3 を越え
ると経済的に不利となる。この水硬性成分の単位量の最
適範囲は330〜370kg/m3 である。
The unit amount of the hydraulic component is 300 kg / m.
3 or more and less than 400 kg / m 3 . When the unit amount of the hydraulic component is less than 300 kg / m 3 , material separation is likely to occur. Further, if the unit amount exceeds 400 kg / m 3 , it is economically disadvantageous. The optimum range of the unit amount of this hydraulic component is 330 to 370 kg / m 3 .

【0015】単位水量は目的とする流動性が得られる限
り少ない方が良質なコンクリートが得られることは本発
明においても同様である。
It is the same in the present invention that a good quality concrete can be obtained when the unit water amount is as small as possible so that the desired fluidity can be obtained.

【0016】本発明の水硬性成分の単位量(300kg
/m3 以上、400kg/m3 未満)と所要のスランプ
フロー値を得るための単位水量は140〜170kg/
3であり、140kg/m3 未満では流動性が不足
し、目的とする流動性を得ようとするとセメント分散剤
の使用量が増加し経済的でない。また170kg/m3
を越えると材料分離を生ずる恐れがあり適当でない。
The unit amount of the hydraulic component of the present invention (300 kg
/ M 3 or more and less than 400 kg / m 3 ) and the unit water amount for obtaining the required slump flow value is 140 to 170 kg /
m is 3, insufficient fluidity is less than 140 kg / m 3, not an attempt to obtain a fluidity of interest increases the amount of the cement dispersant economical. 170 kg / m 3
If it exceeds the range, material separation may occur, which is not suitable.

【0017】本発明では、骨材であるところの平均粒子
径0.15mm以下の石灰微粉末を用いるとポルトラン
ドセメントとブレーン値5700〜6300cm2 /g
の高炉スラグ微粉末との所定割合から成る水硬性成分の
単位量が400kg/m3 未満であっても、材料の分離
がなく均一なコンクリートを得ることができることを知
見した。
In the present invention, when lime fine powder having an average particle diameter of 0.15 mm or less, which is an aggregate, is used, it is combined with Portland cement and a Blaine value of 5700 to 6300 cm 2 / g.
It was found that even if the unit amount of the hydraulic component consisting of a predetermined ratio with the blast furnace slag fine powder of No. 4 is less than 400 kg / m 3 , uniform concrete can be obtained without separation of the material.

【0018】石灰微粉末の使用量は細骨材、粗骨材を含
む全骨材中2.5〜7.5%が適しており、2.5%未
満ではコンクリートの材料分離を防ぐのに充分でなく、
7.5%以上では良好な充填性を発揮する流動性に欠け
る。この石灰微粉末の使用量の最適範囲は4.0〜6.
5である。
The amount of fine lime powder used is preferably 2.5 to 7.5% of the total aggregate including fine aggregate and coarse aggregate, and if it is less than 2.5%, the material separation of concrete is prevented. Not enough,
If it is 7.5% or more, the fluidity that exhibits good filling properties is insufficient. The optimum range of the amount of this fine lime powder used is 4.0 to 6.
It is 5.

【0019】本発明では、セメント分散剤はα,β−エ
チレン性不飽和モノカルボン酸又はその塩を50モル%
以上含有するビニル単量体を重合又は共重合して得られ
る水溶性ビニル共重合体を使用する場合に特に効果的で
ある。
In the present invention, the cement dispersant comprises 50 mol% of α, β-ethylenically unsaturated monocarboxylic acid or salt thereof.
It is particularly effective when a water-soluble vinyl copolymer obtained by polymerizing or copolymerizing the vinyl monomers contained above is used.

【0020】本発明で用いるセメント分散剤として、
α,β−エチレン性不飽和モノカルボン酸又はその塩を
50モル%以上含有する単量体を重合又は共重合して得
られる水溶性ビニル共重合体である。
As the cement dispersant used in the present invention,
It is a water-soluble vinyl copolymer obtained by polymerizing or copolymerizing a monomer containing 50 mol% or more of α, β-ethylenically unsaturated monocarboxylic acid or a salt thereof.

【0021】α,β−エチレン性不飽和モノカルボン酸
又はその塩としては、アクリル酸、メタクル酸、イタコ
ン酸及びそれらのアルカリ金属塩、アミン塩、アルカノ
ールアミン塩が挙げられる。
Examples of the α, β-ethylenically unsaturated monocarboxylic acid or salt thereof include acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, amine salts and alkanolamine salts.

【0022】α,β−エチレン性不飽和モノカルボン酸
又はその塩との共重合に用いるビニル単量体としては、
1)(メタ)アクリル酸メチル、(メタ)アクリル酸エ
チル、(メタ)アクリル酸プロピル等の(メタ)アクリ
ル酸アルキル類、2)メトキシポリエチレングリコール
(メタ)アクリレート、エトキシポリエチレングリコー
ル(メタ)アクリレート等のアルコキシポリエチレング
リコール(メタ)アクリレート類、3)2−ヒドロキシ
エチル(メタ)アクリレート、2−ヒドロキシプロピル
(メタ)アクリレート等のヒドロキシアルキル(メタ)
アクリレート類、4)アリルスルホン酸ナトリウム、メ
タアリルスルホン酸ナトリウム等の(メタ)アリルスル
ホン酸塩等が挙げられる。
The vinyl monomer used for copolymerization with α, β-ethylenically unsaturated monocarboxylic acid or its salt is
1) alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, etc. 2) methoxy polyethylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, etc. Alkoxy polyethylene glycol (meth) acrylates, 3) hydroxyalkyl (meth) s such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate
Acrylates, 4) (meth) allyl sulfonates such as sodium allyl sulfonate, sodium methallyl sulfonate, and the like.

【0023】α,β−エチレン性不飽和モノカルボン酸
又はその塩及びこれと共重合させるビニル単量体の割合
として、α,β−エチレン性不飽和モノカルボン酸又は
その塩/ビニル単量体=50/50〜90/10(モル
比)としたものが好ましい。
The proportion of α, β-ethylenically unsaturated monocarboxylic acid or salt thereof and vinyl monomer copolymerized therewith is α, β-ethylenically unsaturated monocarboxylic acid or salt thereof / vinyl monomer. = 50/50 to 90/10 (molar ratio) is preferable.

【0024】かかる共重合に供するビニル単量体とし
て、オキシエチレン量の縮合数が3〜50のメトキシポ
リエチレングリコール(メタ)アクリレート及び(メ
タ)アリルスルホン酸が挙げられる。
Examples of vinyl monomers used for such copolymerization include methoxypolyethylene glycol (meth) acrylate and (meth) allylsulfonic acid having a condensation number of oxyethylene of 3 to 50.

【0025】特に本発明において、セメント分散剤とし
てはα,β−エチレン性不飽和モノカルボン酸又はその
塩/(メタ)アリルスルホン酸塩/メトキシポリエチレ
ングリコール(メタ)アクリレート=50〜90/5〜
25/10〜40(モル比)の単量体構成比を有する水
溶性ビニル共重合体が有利に使用できる。
Particularly in the present invention, as the cement dispersant, α, β-ethylenically unsaturated monocarboxylic acid or its salt / (meth) allyl sulfonate / methoxy polyethylene glycol (meth) acrylate = 50 to 90/5
A water-soluble vinyl copolymer having a monomer constitution ratio of 25/10 to 40 (molar ratio) can be advantageously used.

【0026】セメント分散剤として用いる水溶性ビニル
(共)重合体として、GPCによって測定されたPEG
換算分子量が1,000〜50,000のものが通常使
用され、好ましくは2,000〜20,000である。
PEG as measured by GPC as a water-soluble vinyl (co) polymer used as a cement dispersant
Those having a reduced molecular weight of 1,000 to 50,000 are usually used, and preferably 2,000 to 20,000.

【0027】本発明の水硬性セメント組成物において、
セメント分散剤の含有量は、水硬性成分100重量部当
たり0.3〜3.0重量部であり、好ましくは0.4〜
1.5重量部である。
In the hydraulic cement composition of the present invention,
The content of the cement dispersant is 0.3 to 3.0 parts by weight, preferably 0.4 to 100 parts by weight, per 100 parts by weight of the hydraulic component.
It is 1.5 parts by weight.

【0028】以下、本発明の構成及び効果をより具体的
にするために実施例を挙げるが、本発明が該実施例に限
定されるというものではない。
Examples will be given below to make the constitution and effects of the present invention more specific, but the present invention is not limited to the examples.

【0029】[0029]

【実施例】本発明の実施例で使用するセメント分散剤
を、以下の条件で製造した結果を表1に示す。
Example The cement dispersant used in the examples of the present invention was produced under the following conditions, and the results are shown in Table 1.

【0030】メタクリル酸60重量部(以下、部と略
す)メトキシポリエチレングリコール(エチレングリコ
ール付加モル数n=9)モノメタアクリレート162
部、メタリルスルホン酸ナトリウム15部及びイオン交
換水260部を撹拌機、冷却コンデンサー、温度計及び
滴下ロートを備えた四つ口フラスコに仕込み、撹拌しな
がら溶解した。
Methacrylic acid 60 parts by weight (hereinafter abbreviated as part) Methoxypolyethylene glycol (ethylene glycol addition mole number n = 9) Monomethacrylate 162
Parts, 15 parts of sodium methallyl sulfonate and 260 parts of ion-exchanged water were charged into a four-necked flask equipped with a stirrer, a cooling condenser, a thermometer and a dropping funnel, and dissolved with stirring.

【0031】続いて30%の水酸化ナトリウム水溶液9
3部を投入してメタクリル酸を中和して、系のpHを
9.1に調整した。次に系の温度を温水浴にて60℃に
保ち、反応系内を窒素置換した後、重合開始剤として過
硫酸アンモニウムの10%水溶液70部を投入して重合
を開始し、6時間反応を継続して重合を完結した。
Then, 30% aqueous solution of sodium hydroxide 9
The pH of the system was adjusted to 9.1 by adding 3 parts to neutralize methacrylic acid. Next, the temperature of the system was maintained at 60 ° C. in a warm water bath, the inside of the reaction system was replaced with nitrogen, and 70 parts of a 10% aqueous solution of ammonium persulfate was added as a polymerization initiator to initiate polymerization, and the reaction was continued for 6 hours Then, the polymerization was completed.

【0032】その後、酸性分解物の中和のため、30%
水酸化ナトリウム水溶液3部を投入して完全中和をして
生成物を得た。得られた生成物の未反応モノマーを除く
ため、エバポレーターで濃縮し、イソプロパノール中に
沈澱して濾過した後、真空乾燥して精製された共重合体
(a−1)を得た。上記同様にして(a−2),(a−
3)を得た。
After that, 30% is added to neutralize the acid decomposition products.
3 parts of an aqueous solution of sodium hydroxide was added for complete neutralization to obtain a product. In order to remove the unreacted monomer of the obtained product, the product was concentrated with an evaporator, precipitated in isopropanol, filtered, and then vacuum dried to obtain a purified copolymer (a-1). Similarly to the above, (a-2), (a-
3) was obtained.

【0033】分析したところ、セメント分散剤としての
共重合体(a−1)の平均分子量5700(GPC法、
ポリエチレングリコール換算)、カルボキシル価19
6、元素分析によるイオウ含有量は1.1%であり、共
重合体の組成比率は、メタクリル酸ナトリウム/メトキ
シポリエチレングリコール(9モル)メタクリレート/
メタリルスルホン酸ナトリウム=63/29/8(モル
比)であった。
As a result of analysis, the average molecular weight of the copolymer (a-1) as a cement dispersant was 5700 (GPC method,
Polyethylene glycol equivalent), carboxyl value 19
6. The sulfur content by elemental analysis is 1.1%, and the composition ratio of the copolymer is sodium methacrylate / methoxy polyethylene glycol (9 mol) methacrylate /
Sodium methallyl sulfonate was 63/29/8 (molar ratio).

【0034】[0034]

【表1】 [Table 1]

【0035】コンクリート試験[1] 材料 セメント :普通ポルトランドセメント(比重=
3.16、ブレーン値=3400) 高炉スラグ微粉末:エスメント(新日鉄製) (比重=
2.89、ブレーン値=6000) 細骨材 :御衣野産山砂 (比重=
2.54) 細骨材 :藤原産石灰砕砂5mm以下(比重=
2.68) 粗骨材 :藤原産石灰砕石 2005(比重=
2.70) 石灰微粉末 :藤原産石灰微粉末0.15mm以下
(比重=2.68) 上記材料を用い、表2に示す配合のフレッシュコンクリ
ートを調整し、下記の方法で充填性、分離抵抗性を測定
した。その結果を表3に示す。石灰微粉末は全骨材中の
百分率で、表3に示した量となるように添加し、細骨材
の一部として用いた。尚、各試験、評価法は以下の通
りである。
Concrete Test [1] Material Cement: Ordinary Portland cement (specific gravity =
3.16, Blaine value = 3400) Blast furnace slag fine powder: ESMENT (made by Nippon Steel) (specific gravity =
2.89, Blaine value = 6000) Fine aggregates: Mountain sand from Okino (specific gravity =
2.54) Fine aggregate: Fujiwara lime crushed sand 5 mm or less (specific gravity =
2.68) Coarse aggregate: Fujiwara lime crushed stone 2005 (specific gravity =
2.70) Lime fine powder: Fujiwara lime fine powder 0.15 mm or less (specific gravity = 2.68) Using the above materials, fresh concrete having a composition shown in Table 2 was prepared, and the filling property and the separation resistance were measured by the following methods. The sex was measured. The results are shown in Table 3. Fine lime powder was added so as to be the amount shown in Table 3 as a percentage of the total aggregate and used as a part of the fine aggregate. The tests and evaluation methods are as follows.

【0036】充填性試験 充填性試験のコンクリートの流れを図1に示す。15φ
×30cmの円筒型枠の中央を平板で仕切り、底面から
5cmの高さを開けてある。鉄板で仕切られた上部の一
方からハンドスコップでコンクリートを投入し、締め固
めを行わずコンクリート投入側のコンクリート上面が円
筒型枠上端と同一高さとなるまで投入した。図1中の未
充填高さXを測定し充填性を評価した。評価基準は、X
の値が0cmの時=◎、3cm未満の時=○、3cm以
上=×、である。
Fillability Test The flow of concrete in the fillability test is shown in FIG. 15φ
The center of a cylinder frame of × 30 cm is partitioned by a flat plate, and a height of 5 cm is opened from the bottom surface. Concrete was poured with a hand scoop from one side of the upper part partitioned by the iron plate, and it was poured without compaction until the concrete top surface on the concrete input side was flush with the top of the cylindrical formwork. The unfilled height X in FIG. 1 was measured to evaluate the filling property. The evaluation standard is X
When the value of is 0 cm = ⊚, when it is less than 3 cm = ∘, 3 cm or more = ×.

【0037】分離抵抗性 分離抵抗性は、フレッシュコンクリートの分離抵抗性
を目視により判定した。評価は、コンクリートに一体感
があり、均一性を保っている=◎、粗骨材の分離が認め
られるもの、又は普通コンクリートに比べブリージング
量が著しく多いもの=×、とした。分離抵抗性は、充
填性試験を行った供試体を、硬化後縦に割り、断面に見
える粗骨材の分布を目視により判定した。評価は、硬化
断面に見える粗骨材が均一に分布しているもの=◎、硬
化断面の下方に粗骨材が多く分布しているもの=×、と
した。
Separation Resistance Separation resistance was determined by visually observing the separation resistance of fresh concrete. In the evaluation, the concrete has a sense of unity and maintains uniformity = ⊚, the separation of coarse aggregate is recognized, or the breathing amount is significantly larger than that of normal concrete = ×. The separation resistance was determined by visually observing the distribution of the coarse aggregate seen in the cross section of the test piece that had been subjected to the filling test, after being hardened. The evaluation was made as follows: Coarse aggregate seen in the cured cross section is evenly distributed = ⊚, and coarse aggregate is much distributed below the cured cross section = x.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】良好な充填性及び分離抵抗性が得られる石
灰微粉末の添加量は、2.5〜7.5%であり、望まし
くは4.0〜6.5%であることが、実施例1〜4、比
較例1〜2から判る。
The addition amount of the fine lime powder capable of obtaining good filling property and separation resistance is 2.5 to 7.5%, preferably 4.0 to 6.5%. 1 to 4 and Comparative Examples 1 to 2.

【0041】表1に示したセメント分散剤a−1,a−
2及びa−3は良好な充填性及び材料の分離抵抗性を付
与するが、NSF及びSMFのセメント分散剤はその効
果がないことが、実施例2,5〜6、比較例3〜4から
判る。
Cement dispersants a-1 and a- shown in Table 1
Nos. 2 and a-3 give good filling properties and material separation resistance, but NSF and SMF cement dispersants are not effective. I understand.

【0042】コンクリート試験[2] コンクリート試験[1]と同様の材料、試験方法により
試験した。表4に配合、及び結果を示す。
Concrete test [2] The same material and test method as in the concrete test [1] were used. Table 4 shows the composition and the results.

【0043】[0043]

【表4】 [Table 4]

【0044】良好な充填性及び分離抵抗性が得られる各
材料の使用範囲において、水硬性成分量は300〜40
0kg/m3 である(実施例7〜9、比較例5〜6、1
0〜11)。単位水量は140〜170kg/m3 であ
る(実施例9〜14、比較例8〜9)。フロー値は5
0.0〜70.0cmである(実施例9〜12、比較例
13〜14)。セメント分散剤は、0.3〜3.0%で
ある(実施例7〜15、比較例12〜13)。
In the range of use of each material which can obtain good filling property and separation resistance, the amount of hydraulic component is 300-40.
0 kg / m 3 (Examples 7-9, Comparative Examples 5-6, 1
0-11). The unit amount of water is 140 to 170 kg / m 3 (Examples 9 to 14 and Comparative Examples 8 to 9). Flow value is 5
It is 0.0-70.0 cm (Examples 9-12, Comparative Examples 13-14). The cement dispersant is 0.3 to 3.0% (Examples 7 to 15 and Comparative Examples 12 to 13).

【0045】[0045]

【発明の効果】以上のように、本発明は高い流動性と作
業性や充填性が良好で、且つ材料分離のないコンクリー
トを得るに適した水硬性セメント組成物が経済的に得ら
れ、その産業上の効果は大きい。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a hydraulic cement composition having high fluidity, good workability and filling property and suitable for obtaining concrete without material separation can be economically obtained. The industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンクリートの充填性試験装置の概要説明図。FIG. 1 is a schematic explanatory diagram of a concrete filling tester.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗林 勉 東海市東海町5−3 新日本製鐵株式会社 名古屋製鐵所内 (72)発明者 吉本 昌次 三重県四日市市あかつき台4−1−38 (72)発明者 山口 昇三 愛知県蒲郡市水竹町松前69番地5 (72)発明者 木之下 光男 愛知県豊川市為当町椎木308番地 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tsutomu Kuribayashi 5-3 Tokai-cho, Tokai-shi Nippon Steel Corporation Nagoya Steel Works (72) Inventor Shoji Yoshimoto 4-1-38, Akatsukidai, Yokkaichi-shi, Mie ( 72) Inventor Shozo Yamaguchi 69, Matsumae, Mizutake-cho, Gamagori-shi, Aichi 5 (72) Mitsuo Kinoshita 308, Shiiki, Tomato-cho, Toyokawa-shi, Aichi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ブレーン値が5700〜6300cm2
/gの高炉スラグ微粉末とポルトランドセメントとから
なる水硬性成分、骨材、水及び下記セメント分散剤から
なる水硬性セメント組成物であって、水硬性成分中の高
炉スラグ微粉末の配合割合が50〜80重量%、水硬性
成分の単位量が300kg/m3 以上、400kg/m
3 未満、単位水量が140〜170kg/m3 、骨材中
の平均粒子径0.15mm以下の石灰微粉末の配合割合
が2.5〜7.5重量%、α,β−エチレン性不飽和モ
ノカルボン酸又はその塩を50モル%以上含有する単量
体を重合又は共重合して得られる水溶性ビニル共重合体
であるセメント分散剤の含有量が水硬性成分100重量
部当たり0.3〜3.0重量部であることを特徴とする
水硬性セメント組成物。
1. A Blaine value of 5700 to 6300 cm 2
/ G of a blast furnace slag fine powder and Portland cement, a hydraulic cement composition comprising an aggregate, water and the following cement dispersant, wherein the blending ratio of the blast furnace slag fine powder in the hydraulic component is 50-80% by weight, unit amount of hydraulic component is 300 kg / m 3 or more, 400 kg / m
Less than 3 , unit water amount is 140 to 170 kg / m 3 , the mixing ratio of fine lime powder with an average particle diameter of 0.15 mm or less in the aggregate is 2.5 to 7.5% by weight, α, β-ethylenically unsaturated The content of the cement dispersant, which is a water-soluble vinyl copolymer obtained by polymerizing or copolymerizing a monomer containing 50 mol% or more of a monocarboxylic acid or a salt thereof, is 0.3 per 100 parts by weight of the hydraulic component. ~ 3.0 parts by weight, a hydraulic cement composition.
【請求項2】 練り混ぜ直後において土木学会基準「コ
ンクリートのスランプフロー試験方法(案)」によるス
ランプフローの値が50.0〜70.0cmを有するこ
とを特徴とする請求項1記載の水硬性セメント組成物。
2. The hydraulic property according to claim 1, which has a slump flow value of 50.0 to 70.0 cm according to the Japan Society of Civil Engineers standard “Slump flow test method for concrete (draft)” immediately after kneading. Cement composition.
JP12600892A 1992-05-19 1992-05-19 Hydraulic cement composition Withdrawn JPH05319889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12600892A JPH05319889A (en) 1992-05-19 1992-05-19 Hydraulic cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12600892A JPH05319889A (en) 1992-05-19 1992-05-19 Hydraulic cement composition

Publications (1)

Publication Number Publication Date
JPH05319889A true JPH05319889A (en) 1993-12-03

Family

ID=14924448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12600892A Withdrawn JPH05319889A (en) 1992-05-19 1992-05-19 Hydraulic cement composition

Country Status (1)

Country Link
JP (1) JPH05319889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087866A (en) * 2000-09-14 2002-03-27 Sumitomo Osaka Cement Co Ltd Method of improving strength of concrete
JP2006282442A (en) * 2005-03-31 2006-10-19 Taiheiyo Material Kk Quick-setting and high-fluidity mortar
JP2011006297A (en) * 2009-06-26 2011-01-13 Mitsubishi Materials Corp Concrete composition and hardened concrete
JP2011195364A (en) * 2010-03-18 2011-10-06 Mitsubishi Materials Corp Concrete composition and concrete hardened body
WO2018011268A1 (en) * 2016-07-12 2018-01-18 Holcim Technology Ltd Concretes for the construction of solid structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087866A (en) * 2000-09-14 2002-03-27 Sumitomo Osaka Cement Co Ltd Method of improving strength of concrete
JP4482211B2 (en) * 2000-09-14 2010-06-16 住友大阪セメント株式会社 Concrete strength improvement method
JP2006282442A (en) * 2005-03-31 2006-10-19 Taiheiyo Material Kk Quick-setting and high-fluidity mortar
JP2011006297A (en) * 2009-06-26 2011-01-13 Mitsubishi Materials Corp Concrete composition and hardened concrete
JP2011195364A (en) * 2010-03-18 2011-10-06 Mitsubishi Materials Corp Concrete composition and concrete hardened body
WO2018011268A1 (en) * 2016-07-12 2018-01-18 Holcim Technology Ltd Concretes for the construction of solid structures
FR3053966A1 (en) * 2016-07-12 2018-01-19 Holcim Technology Ltd CONCRETE FOR THE CONSTRUCTION OF MASSIVE STRUCTURES

Similar Documents

Publication Publication Date Title
RU2443649C2 (en) Application of rheological additive during vibration compaction treatment of water-based composition and hydraulic binder and produced composition
JP2002536289A (en) Powdered polymer composition based on polyether carboxylate
JP2000327386A (en) Cement dispersant and hydraulic composition including the same
US8536251B2 (en) Copolymer containing acid building blocks and various types of polyether building blocks
JP3578984B2 (en) Dispersant for hydraulic composition
JP6946101B2 (en) Resin emulsion for cement additives
JPH05319889A (en) Hydraulic cement composition
JP7103691B2 (en) Additives for hydraulic compositions and hydraulic compositions
JPS6131333A (en) Cement admixing agent
JP3730033B2 (en) Self-leveling cement composition
JP4212088B2 (en) Method of preventing caking of granulated blast furnace slag or its particle size adjusted product
JPH1053627A (en) Highly fluid concrete composition, and separation reducing agent and copolymer for the same composition
JP6837824B2 (en) Hydraulic composition
JP4212086B2 (en) Hydraulic cement composition
WO2020115790A1 (en) Additive for hydraulic composition, and hydraulic composition
JPH07144949A (en) Production of fresh concrete, fresh concrete and method for making placed concrete surface beautiful
JP4845714B2 (en) Method for preparing hydraulic cement composition
JP3209894B2 (en) High performance water reducing agent composition
JP6491569B2 (en) Hydraulic material composition
WO2021131567A1 (en) Powder dispersant for hydraulic composition and method for producing same
JP4152713B2 (en) Hydraulic composition
JP3914123B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition
JP2022119650A (en) Concrete composition and production method thereof
US20220371957A1 (en) Copolymer and hydraulic binder composition
US20210040000A1 (en) Dispersant for reducing the mixing times of mineral binder systems

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803