JP4845714B2 - Method for preparing hydraulic cement composition - Google Patents

Method for preparing hydraulic cement composition Download PDF

Info

Publication number
JP4845714B2
JP4845714B2 JP2006345454A JP2006345454A JP4845714B2 JP 4845714 B2 JP4845714 B2 JP 4845714B2 JP 2006345454 A JP2006345454 A JP 2006345454A JP 2006345454 A JP2006345454 A JP 2006345454A JP 4845714 B2 JP4845714 B2 JP 4845714B2
Authority
JP
Japan
Prior art keywords
acrylic acid
fine aggregate
blast furnace
furnace slag
slag fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006345454A
Other languages
Japanese (ja)
Other versions
JP2007077021A (en
Inventor
浩之 光藤
篤 山口
千秋 吉澤
智雄 高橋
光男 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2006345454A priority Critical patent/JP4845714B2/en
Publication of JP2007077021A publication Critical patent/JP2007077021A/en
Application granted granted Critical
Publication of JP4845714B2 publication Critical patent/JP4845714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は水硬性セメント組成物の調製方法に関する。近年、天然砂が枯渇しつつあるなかで資源保護の観点から、水硬性セメント組成物の調製に用いる天然砂の代替として、高炉水砕スラグを粒度調整した高炉スラグ細骨材を使用する機会が増えてきている。かかる高炉スラグ細骨材は、天然砂に比べて粒が角張り、粒度分布が比較的均一なため、吸水率が低く、天然砂を用いた場合に比べて、調製した水硬性セメント組成物のブリーディングが多いという問題がある。ブリーディングは、水硬性セメント組成物を調製するときに用いた練り混ぜ水の一部がセメント粒子や骨材から分離する現象である。調製した水硬性セメント組成物のブリーディングが多いと、得られる硬化体の表面仕上げに支障をきたすだけでなく、型枠内における硬化体の沈降が大きくなったり、また硬化体に水みちが形成されたり、更には分離した水により硬化体と鉄筋との付着強度が低下する等の問題を生じる。本発明は、骨材のうちで細骨材の少なくとも一部として高炉スラグ細骨材を用いて水硬性セメント組成物を調製するときに、ブリーディングの発生を抑制し、前記のような問題を改善した水硬性セメント組成物を調製することができる方法に関する。   The present invention relates to a method for preparing a hydraulic cement composition. In recent years, there is an opportunity to use blast furnace slag fine aggregate adjusted in particle size of granulated blast furnace slag as an alternative to natural sand used for the preparation of hydraulic cement compositions from the viewpoint of resource conservation in the midst of depletion of natural sand. It is increasing. Such a blast furnace slag fine aggregate has a squared grain and a relatively uniform particle size distribution compared to natural sand, and therefore has a low water absorption rate. Compared to the case where natural sand is used, the hydraulic cement composition prepared is There is a problem that there are many bleedings. Bleeding is a phenomenon in which a part of the kneading water used when preparing the hydraulic cement composition is separated from cement particles and aggregates. If the prepared hydraulic cement composition has a lot of bleeding, it will not only hinder the surface finish of the resulting cured body, but also the sedimentation of the cured body in the mold will increase, and water will form in the cured body. In addition, the separated water causes problems such as a decrease in adhesion strength between the cured body and the reinforcing bars. The present invention suppresses the occurrence of bleeding and improves the above problems when preparing a hydraulic cement composition using a blast furnace slag fine aggregate as at least a part of the fine aggregate among the aggregates. The present invention relates to a method capable of preparing a hydraulic cement composition.

従来、水硬性セメント組成物のブリーディングを抑制する方法として、1)水溶性セルロース系増粘剤を用いる例(例えば特許文献1参照)、2)減水剤、AE剤、AE減水剤或は高性能減水剤と共に非イオン系の水溶性セルロース系増粘剤やポリアクリルアミド系増粘剤を用いる例(例えば特許文献2〜4参照)、3)アルケニルエーテル及び無水マレイン酸の共重合体と共にバイオガムであるヘテロ多糖類のラムザンガムを用いる例(例えば特許文献5参照)、4)β−ナフタレンスルホン酸塩やポリカルボン酸塩等の高性能減水剤と共にバイオガムであるウエランガムを用いる例(例えば特許文献6及び7参照)等が提案されている。ところが、これらの従来提案には、水溶性セルロース系増粘剤、ポリアクリルアミド系増粘剤、バイオガム等がいずれも粉体として供され、これらの水に対する溶解性が低いため、これらを用いて水硬性組成物を調製するのが誠に厄介であり、とりわけ、細骨材として天然砂を用いた場合にはブリーディングを抑制する効果が相応に得られるものの、細骨材の全部又は一部として高炉スラグ細骨材を用いた場合にはブリーディングを抑制する効果が不充分という問題がある。
特開昭63−156052号公報 特開平3−45544号公報 特開平5−147995号公報 特開平5−194003号公報 特開平7−242454号公報 特開平7−311298号公報 特開平8−21091号公報
Conventionally, as a method for suppressing bleeding of a hydraulic cement composition, 1) an example using a water-soluble cellulose thickener (see, for example, Patent Document 1), 2) a water reducing agent, an AE agent, an AE water reducing agent, or a high performance Examples using nonionic water-soluble cellulose thickeners and polyacrylamide thickeners together with water reducing agents (see, for example, Patent Documents 2 to 4), 3) Biogum together with a copolymer of alkenyl ether and maleic anhydride Examples using heteropolysaccharide ramzan gum (for example, see Patent Document 5), 4) Examples using welan gum which is a biogum together with a high-performance water reducing agent such as β-naphthalene sulfonate and polycarboxylate (for example, Patent Documents 6 and 7) Etc.) have been proposed. However, in these conventional proposals, water-soluble cellulose thickeners, polyacrylamide thickeners, biogum, etc. are all provided as powders, and their water solubility is low. It is very troublesome to prepare a hard composition, and especially when natural sand is used as a fine aggregate, the effect of suppressing bleeding is obtained appropriately, but as a whole or a part of the fine aggregate, blast furnace slag When fine aggregate is used, there is a problem that the effect of suppressing bleeding is insufficient.
JP 63-156052 A JP-A-3-45544 Japanese Patent Laid-Open No. 5-147995 Japanese Patent Laid-Open No. 5-194003 Japanese Patent Laid-Open No. 7-242454 JP 7-311298 A JP-A-8-21091

本発明が解決しようとする課題は、骨材のうちで細骨材の少なくとも一部として高炉スラグ細骨材を用いて水硬性セメント組成物を調製するときに、特別な設備を必要とせず、手間もかからず、しかもブリーディングの発生を抑制した水硬性セメント組成物を調製することができる方法を提供する処にある。   The problem to be solved by the present invention is that when preparing a hydraulic cement composition using a blast furnace slag fine aggregate as at least a part of the fine aggregate among aggregates, no special equipment is required, The object of the present invention is to provide a method capable of preparing a hydraulic cement composition that does not require labor and that suppresses the occurrence of bleeding.

しかして本発明者らは、前記の課題を解決するべく研究した結果、セメント、骨材、水及びセメント混和剤を用いて水硬性セメント組成物を調製する方法において、先にセメント及び骨材を空練りし、この際に骨材のうちで細骨材の少なくとも一部として、特定の処理済高炉スラグ細骨材を所定割合で用いることが正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, in the method of preparing a hydraulic cement composition using cement, aggregate, water, and a cement admixture, the cement and aggregate are previously used. It was found that it was correctly and suitably used at this time to use a specific treated blast furnace slag fine aggregate at a predetermined ratio as at least a part of the fine aggregate among the aggregates.

すなわち本発明は、セメント、骨材、水及びセメント混和剤を用いて水硬性セメント組成物を調製する方法において、セメント及び骨材を空練りした後、セメント混和剤を練り混ぜ水と共に加えて練り混ぜ、前記骨材のうちで細骨材の少なくとも一部として下記の処理済高炉スラグ細骨材を用いることを特徴とする水硬性セメント組成物の調製方法に係る。   That is, the present invention relates to a method for preparing a hydraulic cement composition using cement, aggregate, water, and a cement admixture, and after kneading the cement and aggregate, the cement admixture is added to the mixture with water and kneaded. The following processed blast furnace slag fine aggregate is used as at least a part of the fine aggregate among the aggregates, and relates to a method for preparing a hydraulic cement composition.

処理済高炉スラグ細骨材:高炉スラグ細骨材に平均分子量50000〜6000000のアクリル酸重合体、全構成単位中にアクリル酸から形成された構成単位を80〜95モル%有する平均分子量50000〜6000000のアクリル酸共重合体及びこれらの塩から選ばれる一つ又は二つ以上のアクリル酸系重合体を水で希釈した水性液を散布及び混合して付着したものであって且つ高炉スラグ細骨材100重量部当たりアクリル酸系重合体を0.002〜0.3重量部の割合となるよう付着したもの。   Treated blast furnace slag fine aggregate: Acrylic acid polymer having an average molecular weight of 50,000 to 6000000 on the blast furnace slag fine aggregate, and an average molecular weight of 50,000 to 6000000 having 80 to 95 mol% of structural units formed from acrylic acid in all the structural units. A blast furnace slag fine aggregate which is obtained by spraying and mixing an aqueous solution obtained by diluting one or two or more acrylic polymers selected from these acrylic acid copolymers and salts thereof with water. What attached acrylic acid polymer so that it might become a ratio of 0.002-0.3 weight part per 100 weight part.

本発明の水硬性セメント組成物の調製方法は、セメント、骨材、水及びセメント混和剤を用いて水硬性セメント組成物を調製する方法である。本発明では、かかる骨材のうちで細骨材の少なくとも一部として、高炉スラグ細骨材に、アクリル酸重合体、アクリル酸共重合体及びこれらの塩から選ばれる一つ又は二つ以上のアクリル酸系重合体を水で希釈した水性液を散布及び混合して付着した処理済高炉スラグ細骨材を用いる。   The method for preparing a hydraulic cement composition of the present invention is a method for preparing a hydraulic cement composition using cement, aggregate, water and a cement admixture. In the present invention, at least a part of the fine aggregate among such aggregates, the blast furnace slag fine aggregate, one or two or more selected from acrylic acid polymer, acrylic acid copolymer and salts thereof A treated blast furnace slag fine aggregate adhered by spraying and mixing an aqueous solution obtained by diluting an acrylic acid polymer with water is used.

本発明において、高炉スラグ細骨材に付着するアクリル酸重合体は、平均分子量50000〜6000000のものである。   In the present invention, the acrylic acid polymer attached to the blast furnace slag fine aggregate has an average molecular weight of 50,000 to 6000000.

また高炉スラグ細骨材に付着するアクリル酸共重合体は、その全構成単位中にアクリル酸から形成された構成単位を80〜95モル%有する平均分子量50000〜6000000のものである。   The acrylic acid copolymer adhering to the blast furnace slag fine aggregate has an average molecular weight of 50,000 to 6000000 having 80 to 95 mol% of structural units formed from acrylic acid in all the structural units.

高炉スラグ細骨材に付着するアクリル酸共重合体において、アクリル酸から形成された構成単位以外の他の構成単位としては、メタクリル酸、メタクリル酸の塩、クロトン酸、クロトン酸の塩、マレイン酸、マレイン酸の塩、無水マレイン酸、フマル酸、フマル酸の塩、アクリル酸アルキル、メタクリル酸アルキル、アクリル酸ヒドロキシアルキル、メタクリル酸ヒドロキシアルキル、アクリルアミド、アリルスルホン酸、アリルスルホン酸の塩、メタリルスルホン酸、メタリルスルホン酸の塩、スチレンスルホン酸、スチレンスルホン酸の塩、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸の塩、スチレン、酢酸ビニル、エチレン、イソプレン及びイソアミレン等から選ばれる一つ又は二つ以上の単量体から形成された構成単位が挙げられるが、なかでもメタクリル酸、メタクリル酸の塩、アクリル酸アルキル、メタクリル酸アルキル、アクリル酸ヒドロキシアルキル、メタクリル酸ヒドロキシアルキル、アクリルアミド、アリルスルホン酸、アリルスルホン酸の塩、メタリルスルホン酸、メタリルスルホン酸の塩、スチレンスルホン酸、スチレンスルホン酸の塩、2−アクリルアミド−2−メチルプロパンスルホン酸及び2−アクリルアミド−2−メチルプロパンスルホン酸の塩から選ばれる一つ又は二つ以上の単量体から形成された構成単位が好ましく、スチレンスルホン酸、スチレンスルホン酸の塩、2−アクリルアミド−2−メチルプロパンスルホン酸及び2−アクリルアミド−2−メチルプロパンスルホン酸の塩から選ばれる一つ又は二つ以上の単量体から形成された構成単位がより好ましい。   In the acrylic acid copolymer adhering to the blast furnace slag fine aggregate, as structural units other than the structural unit formed from acrylic acid, methacrylic acid, methacrylic acid salt, crotonic acid, crotonic acid salt, maleic acid , Maleic acid salt, maleic anhydride, fumaric acid, fumaric acid salt, alkyl acrylate, alkyl methacrylate, hydroxyalkyl acrylate, hydroxyalkyl methacrylate, acrylamide, allylsulfonic acid, allylsulfonic acid salt, methallyl Sulfonic acid, methallylsulfonic acid salt, styrenesulfonic acid, styrenesulfonic acid salt, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid salt, styrene, vinyl acetate, ethylene , Isoprene and isoamylene Examples include structural units formed from one or more monomers, among which methacrylic acid, salts of methacrylic acid, alkyl acrylate, alkyl methacrylate, hydroxyalkyl acrylate, hydroxyalkyl methacrylate, acrylamide, Allyl sulfonic acid, allyl sulfonic acid salt, methallyl sulfonic acid, methallyl sulfonic acid salt, styrene sulfonic acid, styrene sulfonic acid salt, 2-acrylamido-2-methylpropane sulfonic acid and 2-acrylamido-2-methyl A structural unit formed from one or two or more monomers selected from a salt of propanesulfonic acid is preferable. Styrenesulfonic acid, a salt of styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and 2- Acrylamide-2-methylpropanesulfone One or two or more structural units formed from monomers selected from the salts are more preferable.

以上説明したアクリル酸重合体やアクリル酸共重合体の塩、更にはアクリル酸と共重合する単量体の塩としては、1)ナトリウム、カリウム、リチウム等のアルカリ金属塩、2)カルシウム、マグネシウム等のアルカリ土類金属塩、3)トリエタノールアミン、ジエタノールアミン等の有機アミン塩等が挙げられるが、なかでもアルカリ金属塩が好ましく、ナトリウム塩がより好ましい。   Examples of the salt of the acrylic acid polymer and acrylic acid copolymer described above, and the salt of the monomer copolymerized with acrylic acid are 1) alkali metal salts such as sodium, potassium, lithium, etc. 2) calcium, magnesium 3) Organic amine salts such as triethanolamine and diethanolamine, and the like. Among them, alkali metal salts are preferable, and sodium salts are more preferable.

本発明に供するアクリル酸重合体、アクリル酸共重合体及びこれらの塩は、いずれも公知の方法で合成できる。これには例えば、特開平5−117306号に記載の方法が挙げられる。   Any of the acrylic acid polymers, acrylic acid copolymers and salts thereof used in the present invention can be synthesized by known methods. Examples thereof include the method described in JP-A-5-117306.

本発明の水硬性セメント組成物の調製方法は、骨材のうちで細骨材の少なくとも一部として、高炉スラグ細骨材に、以上説明したアクリル酸重合体、アクリル酸共重合体及びこれらの塩から選ばれる一つ又は二つ以上のアクリル酸系重合体を水で希釈した水性液を散布及び混合して付着した処理済高炉スラグ細骨材であって、高炉スラグ細骨材100重量部当たり、アクリル酸系重合体を0.002〜0.3重量部の割合となるように、好ましくはアクリル酸系重合体を0.005〜0.2重量部の割合となるように付着したものである。調製する水硬性セメント組成物の流動性を保持しつつ、ブリーディングの発生をより良く抑制するためである。   The method for preparing the hydraulic cement composition of the present invention includes the above-described acrylic acid polymer, acrylic acid copolymer, and these as the blast furnace slag fine aggregate as at least a part of the fine aggregate among the aggregates. A treated blast furnace slag fine aggregate adhered by spraying and mixing an aqueous solution obtained by diluting one or two or more acrylic polymers selected from salt with water, and 100 parts by weight of the blast furnace slag fine aggregate Attached so that the acrylic acid polymer is in a proportion of 0.002 to 0.3 parts by weight, preferably the acrylic acid polymer is in a proportion of 0.005 to 0.2 parts by weight. It is. This is for better suppressing the occurrence of bleeding while maintaining the fluidity of the hydraulic cement composition to be prepared.

本発明において、高炉スラグ細骨材にアクリル酸系重合体を付着させる方法は、アクリル酸系重合体を水で希釈した水性液を高炉スラグ細骨材に散布及び混合して付着させる方法である。   In the present invention, the method of attaching an acrylic acid polymer to a blast furnace slag fine aggregate is a method of attaching an aqueous liquid obtained by diluting an acrylic acid polymer with water to the blast furnace slag fine aggregate by spraying and mixing. .

本発明の水硬性セメント組成物の調製方法では、高炉スラグ細骨材にアクリル酸系重合体を付着した処理済高炉スラグ細骨材を、細骨材の少なくとも一部として用いるが、全細骨材中10〜90重量%となる割合で用いるのが好ましい。処理済高炉スラグ細骨材と共に用いる細骨材としては、いずれも公知の川砂、山砂、海砂、砕砂等が挙げられる。また粗骨材としては、いずれも公知の川砂利、砕石、軽量骨材等が挙げられる。   In the method for preparing a hydraulic cement composition of the present invention, a treated blast furnace slag fine aggregate obtained by attaching an acrylic acid polymer to a blast furnace slag fine aggregate is used as at least a part of the fine aggregate. It is preferable to use at a ratio of 10 to 90% by weight in the material. Examples of the fine aggregate used together with the treated blast furnace slag fine aggregate include known river sand, mountain sand, sea sand, crushed sand and the like. Examples of the coarse aggregate include known river gravel, crushed stone, and lightweight aggregate.

本発明に供するセメントとしては、普通セメント、早強セメント、中庸熱ポルトランドセメント等の各種ポルトランドセメントの他に、高炉セメント、フライアッシュセメント、シリフュームセメント等の各種混合セメントが挙げられる。   Examples of the cement used in the present invention include various mixed cements such as blast furnace cement, fly ash cement, and silifume cement, in addition to various portland cements such as ordinary cement, early-strength cement, and moderately hot portland cement.

本発明に供するセメント混和剤としては、いずれも公知のセメント混和剤を使用できる。これには例えば、減水剤、AE剤、AE減水剤、高性能減水剤、高性能AE減水剤、増粘剤、硬化促進剤、防錆剤等が挙げられる。   As the cement admixture used in the present invention, any known cement admixture can be used. This includes, for example, water reducing agents, AE agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, thickeners, curing accelerators, rust inhibitors and the like.

本発明の水硬性セメント組成物の調製方法では、以上説明したようなセメント、骨材、水及びセメント混和剤を用い、詳しくは後述するように、セメント及び骨材を空練りした後、セメント混和剤を水と共に加えて練り混ぜることにより水硬性セメント組成物を調製する。水硬性セメント組成物がコンクリートである場合には通常、水/セメント比を40〜70%、単位水量を160〜200kg/m、細骨材の単位量を700〜920kg/m、粗骨材の単位量を720〜1200kg/m、セメント100重量部当たりセメント混和剤を0.02〜2重量部とする。 In the method for preparing a hydraulic cement composition of the present invention, the cement, aggregate, water, and cement admixture as described above are used. As will be described in detail later, the cement and aggregate are kneaded and then mixed with cement. A hydraulic cement composition is prepared by adding an agent with water and kneading. When the hydraulic cement composition is concrete, the water / cement ratio is usually 40 to 70%, the unit water amount is 160 to 200 kg / m 3 , the fine aggregate unit amount is 700 to 920 kg / m 3 , and the coarse bone The unit amount of the material is 720 to 1200 kg / m 3 , and the cement admixture is 0.02 to 2 parts by weight per 100 parts by weight of cement.

既に明らかなように、以上説明した本発明には、骨材のうちで細骨材の少なくとも一部として高炉スラグ細骨材を用いて水硬性セメント組成物を調製するときに、ブリーディングの発生を抑制し、また得られる硬化体の諸物性に何ら悪影響を与えない水硬性セメント組成物を調製することができるという効果がある。   As is clear from the above, the present invention described above shows the occurrence of bleeding when preparing a hydraulic cement composition using a blast furnace slag fine aggregate as at least a part of the fine aggregate among the aggregates. There is an effect that it is possible to prepare a hydraulic cement composition that suppresses and does not adversely affect the physical properties of the obtained cured product.

本発明の水硬性セメント組成物の調製方法の実施形態としては、次の1)〜12)が挙げられる。
1)セメントとして普通ポルトランドセメント(比重3.16、ブレーン値3300)366kg、細骨材として大井川水系砂(比重2.63)245kg及び処理済高炉スラグ細骨材{鋼管鉱業社製福山産高炉水砕スラグ(比重2.74)をJIS−A5011(コンクリート用スラグ骨材)に準じて粒度分布5mmに調整した高炉スラグ細骨材100重量部当たり平均分子量300000のアクリル酸重合体を0.01重量部の割合で付着したもの}597kg、粗骨材として岡崎産砕石(比重2.68)925kg、水183kg及びセメント混和剤としてAE減水剤を前記の普通ポルトランドセメント100重量部当たり0.2重量部の割合で用いる水硬性セメント組成物の調製方法。
Examples of the method for preparing the hydraulic cement composition of the present invention include the following 1) to 12).
1) 366 kg of ordinary Portland cement (specific gravity 3.16, brain value 3300) as cement, 245 kg of Oikawa water sand (specific gravity 2.63) as fine aggregate, and treated blast furnace slag fine aggregate {Fukuyama blast furnace water produced by Steel Pipe Mining Co., Ltd. 0.01 weight of an acrylic acid polymer having an average molecular weight of 300,000 per 100 parts by weight of blast furnace slag fine aggregate prepared by adjusting pulverized slag (specific gravity 2.74) to a particle size distribution of 5 mm according to JIS-A5011 (slag aggregate for concrete) 597 kg, 925 kg of Okazaki crushed stone (specific gravity 2.68), 183 kg of water and AE water reducing agent as cement admixture, 0.2 parts by weight per 100 parts by weight of the above ordinary Portland cement A method for preparing a hydraulic cement composition used at a ratio of

2)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量300000のアクリル酸重合体を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   2) As the treated blast furnace slag fine aggregate, except that the acrylic acid polymer having an average molecular weight of 300,000 attached per 100 parts by weight of the blast furnace slag fine aggregate of 1) is used at a rate of 0.03 parts by weight. A method for preparing a hydraulic cement composition as in 1).

3)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量1200000のアクリル酸重合体を0.008重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   3) As the treated blast furnace slag fine aggregate, except that the acrylic acid polymer having an average molecular weight of 1200000 attached per 100 parts by weight of the blast furnace slag fine aggregate of 1) is used except that A method for preparing a hydraulic cement composition as in 1).

4)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量1200000のアクリル酸重合体を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   4) As the treated blast furnace slag fine aggregate, except that the acrylic acid polymer having an average molecular weight of 1200,000 attached per 100 parts by weight of the blast furnace slag fine aggregate of 1) is used. A method for preparing a hydraulic cement composition as in 1).

5)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量5000000のアクリル酸重合体を0.008重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   5) As the treated blast furnace slag fine aggregate, except that the acrylic acid polymer having an average molecular weight of 5000000 per 100 parts by weight of the blast furnace slag fine aggregate of 1) is used in a proportion of 0.008 parts by weight. A method for preparing a hydraulic cement composition as in 1).

6)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量5000000のアクリル酸重合体を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   6) As the treated blast furnace slag fine aggregate, except that the acrylic acid polymer having an average molecular weight of 5000000 per 100 parts by weight of the blast furnace slag fine aggregate of 1) is used in a proportion of 0.03 parts by weight. A method for preparing a hydraulic cement composition as in 1).

7)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量300000のアクリル酸重合体のナトリウム塩を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   7) As the treated blast furnace slag fine aggregate, one obtained by adhering a sodium salt of an acrylic acid polymer having an average molecular weight of 300,000 per 100 parts by weight of the blast furnace slag fine aggregate of 1) in a ratio of 0.03 part by weight is used. A method for preparing a hydraulic cement composition in the same manner as in 1) above except for the above.

8)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量1200000のアクリル酸重合体のナトリウム塩を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   8) As the treated blast furnace slag fine aggregate, one obtained by adhering a sodium salt of an acrylic acid polymer having an average molecular weight of 1200,000 per 100 parts by weight of the blast furnace slag fine aggregate of the above 1) is used. A method for preparing a hydraulic cement composition in the same manner as in 1) above except for the above.

9)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量350000のアクリル酸共重合体{アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体であって、アクリル酸から形成された構成単位/2−アクリルアミド−2−メチルプロパンスルホン酸から形成された構成単位=90/10(モル比)の割合で有する共重合体}を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   9) As treated blast furnace slag fine aggregate, acrylic acid copolymer having an average molecular weight of 350,000 per 100 parts by weight of blast furnace slag fine aggregate of 1) above {copolymerization of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid A copolymer having a constitutional unit formed from acrylic acid / a constitutional unit formed from 2-acrylamido-2-methylpropanesulfonic acid = 90/10 (molar ratio). A method for preparing a hydraulic cement composition in the same manner as in 1) above, except that a material adhered at a ratio of 03 parts by weight is used.

10)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量350000のアクリル酸共重合体のナトリウム塩{アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体であって、アクリル酸から形成された構成単位/2−アクリルアミド−2−メチルプロパンスルホン酸から形成された構成単位=90/10(モル比)の割合で有する共重合体のナトリウム塩}を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   10) Sodium salt of acrylic acid copolymer having an average molecular weight of 350,000 per 100 parts by weight of blast furnace slag fine aggregate of 1) as treated blast furnace slag fine aggregate {acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid Of a copolymer having a constitutional unit formed from acrylic acid / a constitutional unit formed from 2-acrylamido-2-methylpropanesulfonic acid = 90/10 (molar ratio). The method for preparing a hydraulic cement composition in the same manner as in 1) above, except that a sodium salt} is attached at a ratio of 0.03 part by weight.

11)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量500000のアクリル酸共重合体{アクリル酸とスチレンスルホン酸ナトリウムとの共重合体であって、アクリル酸から形成された構成単位/スチレンスルホン酸ナトリウムから形成された構成単位=90/10(モル比)の割合で有する共重合体}を0.01重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   11) As a treated blast furnace slag fine aggregate, an acrylic acid copolymer having an average molecular weight of 500,000 per 100 parts by weight of the blast furnace slag fine aggregate of the above 1) {a copolymer of acrylic acid and sodium styrenesulfonate; Use a copolymer having a constitutional unit formed from acrylic acid / a constitutional unit formed from sodium styrenesulfonate = copolymer having a ratio of 90/10 (molar ratio)} at a ratio of 0.01 part by weight. A method for preparing a hydraulic cement composition in the same manner as in 1) above except for the above.

12)処理済高炉スラグ細骨材として、前記1)の高炉スラグ細骨材100重量部当たり平均分子量500000のアクリル酸共重合体{アクリル酸とスチレンスルホン酸ナトリウムとの共重合体であって、アクリル酸から形成された構成単位/スチレンスルホン酸ナトリウムから形成された構成単位=90/10(モル比)の割合で有する共重合体}を0.03重量部の割合で付着したものを用いること以外は前記1)と同様にする水硬性セメント組成物の調製方法。   12) As a treated blast furnace slag fine aggregate, an acrylic acid copolymer having an average molecular weight of 500,000 per 100 parts by weight of the blast furnace slag fine aggregate of the above 1) {a copolymer of acrylic acid and sodium styrenesulfonate; Use a structure in which a structural unit formed from acrylic acid / a structural unit formed from sodium styrenesulfonate = copolymer having a ratio of 90/10 (molar ratio)} is attached at a ratio of 0.03 parts by weight. A method for preparing a hydraulic cement composition in the same manner as in 1) above except for the above.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、部は重量部を、また%は重量%を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated, parts means parts by weight and% means% by weight.

試験区分1(アクリル酸系重合体の合成及び水性液の調製)
・アクリル酸重合体(P−1)の合成及び水性液の調製
反応容器にアクリル酸72部、3−メルカプトプロピオン酸3.6部、イオン交換水1360部を仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に反応系の温度を60℃に保ち、過硫酸ナトリウムの20%水溶液6部を滴下して重合を開始し、5時間重合反応を行なって、重合体を水性液として得た。この重合体を分析したところ、平均分子量6000のアクリル酸重合体(P−1)であった。アクリル酸重合体(P−1)の水性液に水を加え、固形分濃度5%の水性液を調製した。
Test Category 1 (Synthesis of acrylic acid polymer and preparation of aqueous liquid)
Synthesis of acrylic acid polymer (P-1) and preparation of aqueous liquid A reaction vessel was charged with 72 parts of acrylic acid, 3.6 parts of 3-mercaptopropionic acid, and 1360 parts of ion-exchanged water, and dissolved uniformly while stirring. Thereafter, the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system was kept at 60 ° C., 6 parts of a 20% aqueous solution of sodium persulfate was added dropwise to initiate polymerization, and a polymerization reaction was carried out for 5 hours to obtain a polymer as an aqueous liquid. When this polymer was analyzed, it was an acrylic acid polymer (P-1) having an average molecular weight of 6000. Water was added to the aqueous liquid of acrylic acid polymer (P-1) to prepare an aqueous liquid having a solid content concentration of 5%.

・アクリル酸重合体(P−2)の合成及び水性液の調製
アクリル酸重合体(P−1)の場合と同様にして、アクリル酸重合体(P−2)を合成し、固形分濃度5%の水性液を調製した。
Synthesis of acrylic acid polymer (P-2) and preparation of aqueous liquid In the same manner as in the case of acrylic acid polymer (P-1), an acrylic acid polymer (P-2) was synthesized, and the solid content concentration was 5 % Aqueous liquid was prepared.

・アクリル酸重合体(P−3)の合成及び水性液の調製
反応容器にn−へキサン2600部を仕込み、攪拌しながら雰囲気を窒素置換し、反応系の温度を60℃に保った。次にアクリル酸350部、ポリプロピレングリコール3部、アセトン140部及び重合開始剤として2,2−アゾビス(2,4−ジメチルバレロニトリル)0.1部を添加した。白濁による反応が始まってからアクリル酸1200部及びアセトン360部の混合液1560部と前記の重合開始剤0.5部を分割して添加した。全量仕込みが終わった後、更に60℃の温度下で2時間熟成して、重合体の懸濁液を得た。この懸濁液を濾過し、濾別した固形分を乾燥して、重合体を得た。この重合体を分析したところ、平均分子量300000のアクリル酸重合体(P−3)であった。アクリル酸重合体(P−3)に水を加え、固形分濃度1%の水性液を調製した。
-Synthesis of acrylic acid polymer (P-3) and preparation of aqueous liquid A reactor was charged with 2600 parts of n-hexane, the atmosphere was replaced with nitrogen while stirring, and the temperature of the reaction system was kept at 60 ° C. Next, 350 parts of acrylic acid, 3 parts of polypropylene glycol, 140 parts of acetone and 0.1 part of 2,2-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator were added. After the reaction due to white turbidity started, 1,560 parts of a mixture of 1200 parts of acrylic acid and 360 parts of acetone and 0.5 part of the polymerization initiator were added in portions. After the entire amount was charged, the mixture was further aged at 60 ° C. for 2 hours to obtain a polymer suspension. This suspension was filtered, and the solid content separated by filtration was dried to obtain a polymer. When this polymer was analyzed, it was an acrylic acid polymer (P-3) having an average molecular weight of 300,000. Water was added to the acrylic acid polymer (P-3) to prepare an aqueous liquid having a solid concentration of 1%.

・アクリル酸重合体(P−4),(P−5)の合成及び水性液の調製
アクリル酸重合体(P−3)の場合と同様にして、アクリル酸重合体(P−4),(P−5)を合成し、それぞれ固形分濃度1%の水性液を調製した。
Synthesis of acrylic acid polymers (P-4) and (P-5) and preparation of aqueous liquid In the same manner as in the case of acrylic acid polymer (P-3), acrylic acid polymers (P-4), ( P-5) was synthesized, and aqueous solutions each having a solid content concentration of 1% were prepared.

・アクリル酸重合体のナトリウム塩(P−6)の合成及び水性液の調製
アクリル酸重合体(P−3)を水性液とした後、これに20%水酸化ナトリウム水溶液を加えて中和し、アクリル酸重合体のナトリウム塩(P−6)を水性液として得た。この水性液に水を加え、固形分濃度1%の水性液を調製した。
Synthesis of sodium salt of acrylic acid polymer (P-6) and preparation of aqueous liquid After making acrylic acid polymer (P-3) into an aqueous liquid, 20% aqueous sodium hydroxide solution was added thereto for neutralization. The sodium salt of acrylic acid polymer (P-6) was obtained as an aqueous liquid. Water was added to this aqueous liquid to prepare an aqueous liquid having a solid content concentration of 1%.

・アクリル酸重合体(P−7)の合成及び水性液の調製
アクリル酸重合体(P−4)を水性液とした後、これに20%水酸化ナトリウム水溶液を加えて中和し、アクリル酸重合体のナトリウム塩(P−7)を水性液として得た。この水性液に水を加え、固形分濃度1%の水性液を調製した。
-Synthesis of acrylic acid polymer (P-7) and preparation of aqueous liquid After making acrylic acid polymer (P-4) into an aqueous liquid, it was neutralized by adding a 20% aqueous sodium hydroxide solution to the acrylic acid. A sodium salt of the polymer (P-7) was obtained as an aqueous liquid. Water was added to this aqueous liquid to prepare an aqueous liquid having a solid content concentration of 1%.

・アクリル酸共重合体(P−8)の合成及び水性液の調製
反応容器にアクリル酸63部、メタクリル酸10部、3−メルカプトプロピオン酸2.5部及びイオン交換水1360部を仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に反応系の温度を60℃に保ち、過硫酸ナトリウムの20%水溶液6部を滴下して重合を開始し、5時間重合反応を行なって、共重合体を水性液として得た。この共重合体を分析したところ、平均分子量13000のアクリル酸共重合体{アクリル酸とメタクリル酸との共重合体であって、アクリル酸から形成された構成単位/メタクリル酸から形成された構成単位=88/12(モル比)の割合で有する共重合体}(P−8)であった。アクリル酸共重合体(P−8)の水性液に水を加え、固形分濃度5%の水性液を調製した。
-Synthesis of acrylic acid copolymer (P-8) and preparation of aqueous liquid A reaction vessel was charged with 63 parts of acrylic acid, 10 parts of methacrylic acid, 2.5 parts of 3-mercaptopropionic acid and 1360 parts of ion-exchanged water, and stirred. The solution was uniformly dissolved while the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system was kept at 60 ° C., 6 parts of a 20% aqueous solution of sodium persulfate was added dropwise to initiate polymerization, and a polymerization reaction was carried out for 5 hours to obtain a copolymer as an aqueous liquid. When this copolymer was analyzed, an acrylic acid copolymer having an average molecular weight of 13,000 {a copolymer of acrylic acid and methacrylic acid, a structural unit formed from acrylic acid / a structural unit formed from methacrylic acid = Copolymer having a ratio of 88/12 (molar ratio)} (P-8). Water was added to the aqueous liquid of acrylic acid copolymer (P-8) to prepare an aqueous liquid having a solid content concentration of 5%.

・アクリル酸共重合体のナトリウム塩(P−9)の合成及び水性液の調製
アクリル酸共重合体(P−8)の水性液を20%水酸化ナトリウム水溶液で中和し、アクリル酸共重合体のナトリウム塩(P−9)を水性液として得た。この水性液に水を加えて、固形分濃度5%の水性液を調製した。
・ Synthesis of sodium salt of acrylic acid copolymer (P-9) and preparation of aqueous liquid Aqueous liquid of acrylic acid copolymer (P-8) was neutralized with 20% aqueous sodium hydroxide solution, acrylic acid copolymer The combined sodium salt (P-9) was obtained as an aqueous liquid. Water was added to this aqueous liquid to prepare an aqueous liquid having a solid content concentration of 5%.

・アクリル酸共重合体(P−10)の合成及び水性液の調製
反応容器にアクリル酸65部、アリルスルホン酸ナトリウム14部、3−メルカプトプロピオン酸0.3部及びイオン交換水1410部を仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に反応系の温度を60℃に保ち、過硫酸ナトリウムの20%水溶液7部を滴下して重合を開始し、6時間重合反応を行なって、共重合体を水性液として得た。この共重合体を分析したところ、平均分子量23000のアクリル酸共重合体{アクリル酸とアリルスルホン酸ナトリウムとの共重合体であって、アクリル酸から形成された構成単位/アリルスルホン酸ナトリウムから形成された構成単位=90/10(モル比)の割合で有する共重合体}(P−10)であった。アクリル酸共重合体(P−10)の水性液に水を加え、固形分濃度5%の水性液を調製した。
Synthesis of acrylic acid copolymer (P-10) and preparation of aqueous liquid A reaction vessel was charged with 65 parts of acrylic acid, 14 parts of sodium allyl sulfonate, 0.3 part of 3-mercaptopropionic acid and 1410 parts of ion-exchanged water. After stirring, the solution was uniformly dissolved, and the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system was kept at 60 ° C., and 7 parts of a 20% aqueous solution of sodium persulfate was added dropwise to initiate polymerization, and a polymerization reaction was carried out for 6 hours to obtain a copolymer as an aqueous liquid. When this copolymer was analyzed, an acrylic acid copolymer having an average molecular weight of 23,000 {a copolymer of acrylic acid and sodium allyl sulfonate, formed from acrylic acid / formed from sodium allyl sulfonate The structural unit was 90/10 (molar ratio) in a ratio of copolymer} (P-10). Water was added to the aqueous liquid of acrylic acid copolymer (P-10) to prepare an aqueous liquid having a solid content concentration of 5%.

・アクリル酸共重合体(P−11)の合成及び水性液の調製
アクリル酸共重合体(P−10)の場合と同様にして、アクリル酸共重合体(P−11)を合成し、固形分濃度5%の水性液を調製した。
-Synthesis of acrylic acid copolymer (P-11) and preparation of aqueous liquid In the same manner as in the case of acrylic acid copolymer (P-10), an acrylic acid copolymer (P-11) was synthesized and solidified. A 5% aqueous solution was prepared.

・アクリル酸共重合体(P−12)の合成及び水性液の調製
反応容器にn−へキサン3100部を仕込み、攪拌しながら雰囲気を窒素置換し、反応系の温度を60℃に保った。次にアクリル酸315部、2−アクリルアミド−2−メチルプロパンスルホン酸100部、ポリプロピレングリコール1部、アセトン160部及び重合開始剤として2,2−アゾビス(2,4−ジメチルバレロニトリル)0.15部を添加した。白濁による反応が始まってから、アクリル酸945部、2−アクリルアミド−2−メチルプロパンスルホン酸300部及びアセトン400部の混合液1645部と前記の重合開始剤0.5部を分割して添加した。全量仕込みが終わった後、更に60℃の温度下で3時間熟成して、共重合体の懸濁液を得た。この懸濁液を濾過し、濾別した固形分を乾燥して、共重合体を得た。この共重合体を分析したところ、平均分子量350000のアクリル酸共重合体{アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体であって、アクリル酸から形成された構成単位/2−アクリルアミド−2−メチルプロパンスルホン酸から形成された構成単位=90/10(モル比)の割合で有する共重合体}(P−12)であった。アクリル酸共重合体(P−12)に水を加え、固形分濃度1%の水性液を調製した。
-Synthesis of acrylic acid copolymer (P-12) and preparation of aqueous liquid A reactor was charged with 3100 parts of n-hexane, the atmosphere was replaced with nitrogen while stirring, and the temperature of the reaction system was kept at 60 ° C. Next, 315 parts of acrylic acid, 100 parts of 2-acrylamido-2-methylpropanesulfonic acid, 1 part of polypropylene glycol, 160 parts of acetone and 0.15 of 2,2-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator Parts were added. After the reaction due to white turbidity began, 945 parts of acrylic acid, 1645 parts of a mixture of 300 parts of 2-acrylamido-2-methylpropanesulfonic acid and 400 parts of acetone and 0.5 part of the polymerization initiator were added in portions. . After the entire amount was charged, the mixture was further aged at 60 ° C. for 3 hours to obtain a copolymer suspension. This suspension was filtered, and the solid content separated by filtration was dried to obtain a copolymer. When this copolymer was analyzed, an acrylic acid copolymer having an average molecular weight of 350,000 {a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, which is a structural unit formed from acrylic acid / The structural unit formed from 2-acrylamido-2-methylpropanesulfonic acid = a copolymer having a ratio of 90/10 (molar ratio)} (P-12). Water was added to the acrylic acid copolymer (P-12) to prepare an aqueous liquid having a solid content concentration of 1%.

・アクリル酸共重合体のナトリウム塩(P−13)の合成及び水性液の調製
アクリル酸共重合体(P−12)の水性液を20%水酸化ナトリウム水溶液で中和し、アクリル酸共重合体のナトリウム塩(P−13)を水性液として得た。この水性液に水を加え、固形分濃度1%の水性液を調製した。
-Synthesis of sodium salt of acrylic acid copolymer (P-13) and preparation of aqueous liquid Neutralizing the aqueous liquid of acrylic acid copolymer (P-12) with 20% aqueous sodium hydroxide solution The combined sodium salt (P-13) was obtained as an aqueous liquid. Water was added to this aqueous liquid to prepare an aqueous liquid having a solid content concentration of 1%.

・アクリル酸共重合体(P−14)及び(P−15)の調製
アクリル酸共重合体(P−12)の場合と同様にして、アクリル酸共重合体(P−14)及び(P−15)を合成し、粉体として得た。
-Preparation of acrylic acid copolymers (P-14) and (P-15) In the same manner as in the case of acrylic acid copolymers (P-12), acrylic acid copolymers (P-14) and (P- 15) was synthesized and obtained as a powder.

・アクリル酸共重合体(P−16)〜(P−18)の合成及び水性液の調製
アクリル酸共重合体(P−12)の場合と同様にして、アクリル酸共重合体(P−16)〜(P−18)を合成し、固形分濃度1%又は5%の水性液を調製した。以上で合成したアクリル酸系重合体の内容及び更に調製した水性液の内容を表1にまとめて示した。





















-Synthesis of acrylic acid copolymers (P-16) to (P-18) and preparation of aqueous liquid In the same manner as in the case of acrylic acid copolymer (P-12), acrylic acid copolymer (P-16) ) To (P-18) were synthesized to prepare an aqueous liquid having a solid concentration of 1% or 5%. The contents of the acrylic acid polymer synthesized above and the contents of the prepared aqueous liquid are summarized in Table 1.





















Figure 0004845714
Figure 0004845714

表1において、アクリル酸系重合体のうちでアクリル酸共重合体の組成についてはその構成単位を形成することとなる単量体で示し、またかっこ内の数値はかかる単量体から形成された構成単位のモル比で示した。したがって、例えばP−8は、アクリル酸とメタクリル酸との共重合体であって、アクリル酸から形成された構成単位/メタクリル酸から形成された構成単位=88/12(モル比)の割合で有する共重合体を意味する。   In Table 1, among the acrylic acid polymers, the composition of the acrylic acid copolymer is shown as a monomer that will form the structural unit, and the numerical values in parentheses are formed from the monomer. The molar ratio of the structural units is shown. Therefore, for example, P-8 is a copolymer of acrylic acid and methacrylic acid, and a ratio of structural unit formed from acrylic acid / structural unit formed from methacrylic acid = 88/12 (molar ratio). It means a copolymer having.

試験区分2(処理済高炉スラグ細骨材の調製)
バットに高炉スラグ細骨材{鋼管鉱業社製福山産高炉水砕スラグをJIS−A5011(コンクリート用スラグ骨材)に準じて粒度分布5mmに調整したもの}を広げ、試験区分1で調製したアクリル酸系重合体等の水性液又は粉体を表2に記載の付着量となるよう散布しながらハンドスコップで混合した後、高炉スラグ細骨材の含水比が10%となるよう水を加え、更にミキサーで5分間混合して処理済高炉スラグ細骨材を得た。ここで調製した処理済高炉スラグ細骨材の内容を表2にまとめて示した。





Test category 2 (Preparation of treated blast furnace slag fine aggregate)
Blast furnace slag fine aggregate {Fukuyama granulated blast furnace granulated slag manufactured by Steel Pipe Mining Co., Ltd., adjusted to a particle size distribution of 5 mm according to JIS-A5011} on the bat, and acrylic prepared in test category 1 After mixing with a hand scoop while spraying an aqueous liquid or powder such as an acid polymer to the amount shown in Table 2, water is added so that the water content of the blast furnace slag fine aggregate is 10%, Furthermore, it mixed for 5 minutes with the mixer, and processed blast furnace slag fine aggregate was obtained. The contents of the treated blast furnace slag fine aggregate prepared here are summarized in Table 2.





Figure 0004845714
Figure 0004845714

表2において、
付着量:高炉スラグ細骨材100重量部当たりのアクリル酸系重合体等の付着量(部)
AM:ポリアクリルアミド
MC:メチルセルロース
HC:ヒドロキシプロピルメチルセルロース
AA−MA:アクリルアミドとアクリル酸メチルとの共重合体であって、アクリルアミドから形成された構成単位/アクリル酸メチルから形成された構成単位=70/30(モル比)の割合で有する平均分子量21000の共重合体
In Table 2,
Adhesion amount: Adhesion amount (parts) of acrylic acid polymer per 100 parts by weight of blast furnace slag fine aggregate
AM: polyacrylamide MC: methylcellulose HC: hydroxypropyl methylcellulose AA-MA: a copolymer of acrylamide and methyl acrylate, which is a structural unit formed from acrylamide / a structural unit formed from methyl acrylate = 70 / Copolymer having an average molecular weight of 21,000 at a ratio of 30 (molar ratio)

試験区分3(処理済高炉スラグ細骨材の評価)
試験区分2で調製した処理済高炉スラグ細骨材を屋外に高さ3mの小山状にして8週間に亘り野積みし、野積み期間中に表3に記載した所定の期間でサンプリングした処理済高炉スラグ細骨材を、20kg×60分間の条件で遠心脱水し、遠心脱水後の処理済高炉スラグ細骨材の含水比(%)を測定した。結果を表3にまとめて示した。ここで遠心脱水後の含水比(%)の数値が大きいほど処理済高炉スラグ細骨材の保水性が高いことを意味する。


Test Category 3 (Evaluation of treated blast furnace slag fine aggregate)
Treated blast furnace slag fine aggregates prepared in Test Category 2 were piled up in a 3m high hill outside for 8 weeks and sampled for the specified period shown in Table 3 during the field loading period. The blast furnace slag fine aggregate was centrifugally dehydrated under the conditions of 20 kg × 60 minutes, and the water content ratio (%) of the treated blast furnace slag fine aggregate after centrifugal dehydration was measured. The results are summarized in Table 3. Here, the larger the value of the water content ratio (%) after centrifugal dehydration, the higher the water retention of the treated blast furnace slag fine aggregate.


Figure 0004845714
Figure 0004845714

試験区分4(水硬性セメント組成物の調製及び評価)
表4に記載の調合条件で、各例の水硬性セメント組成物(コンクリート)を次のように調製した。50Lのパン型強制練りミキサーに普通ポルトランドセメント(比重3.16、ブレーン値3300)、細骨材として大井川水系砂(比重2.63)及び試験区分3で8週間に亘り野積み状態で屋外放置試験した処理済高炉スラグ細骨材並びに粗骨材(岡崎産砕石、比重2.68)を順次投入して15秒間空練りした。次に各例いずれも目標スランプが18±1cmの範囲内に入るようAE減水剤(竹本油脂社製の商品名チューポールEX20)をセメント重量に対し0.2重量%となるよう練り混ぜ水と共に添加して2分間練り混ぜた。この際、目標空気量が4〜5%となるよう空気量調整剤(竹本油脂社製の商品名AE200)を添加した。





Test category 4 (Preparation and evaluation of hydraulic cement composition)
Under the mixing conditions shown in Table 4, hydraulic cement compositions (concrete) of each example were prepared as follows. Portland cement (specific gravity 3.16, brain value 3300), Oikawa water sand (specific gravity 2.63) as fine aggregate and 50L bread type forced kneading mixer and left unattended in the field for 8 weeks in test section 3 The treated blast furnace slag fine aggregate and coarse aggregate (Okazaki crushed stone, specific gravity 2.68) were sequentially added and kneaded for 15 seconds. Next, in each example, an AE water reducing agent (trade name Tupol EX20 manufactured by Takemoto Yushi Co., Ltd.) is mixed with water so that the target slump falls within the range of 18 ± 1 cm so as to be 0.2% by weight with respect to the cement weight. Added and kneaded for 2 minutes. At this time, an air amount adjusting agent (trade name AE200 manufactured by Takemoto Yushi Co., Ltd.) was added so that the target air amount was 4 to 5%.





Figure 0004845714
Figure 0004845714

調製した各例の水硬性セメント組成物(コンクリート)について、その物性を次のように評価した。結果を表5にまとめて示した。
スランプ:JIS−A1101に準拠して測定した。
空気量:JIS−A1128に準拠して測定した。
圧縮強度:JIS−A1108に準拠して測定した。
ブリーディング率:JIS−A1123に準拠してブリーディング量を測定し、ブリーディング率を次の式を用いて求めた。
ブリーディング率(%)=(最大ブリーディング量/試料中の全水量)×100
尚、表5において、ブリーディング率(%)の数値が小さいほどブリーディングが少ないことを意味する。





























About the hydraulic cement composition (concrete) of each prepared example, the physical property was evaluated as follows. The results are summarized in Table 5.
Slump: Measured according to JIS-A1101.
Air amount: Measured according to JIS-A1128.
Compressive strength: measured in accordance with JIS-A1108.
Bleeding rate: The amount of bleeding was measured according to JIS-A1123, and the bleeding rate was determined using the following equation.
Bleeding rate (%) = (maximum bleeding amount / total water amount in sample) × 100
In Table 5, the smaller the numerical value of the bleeding rate (%), the smaller the bleeding.





























Figure 0004845714
Figure 0004845714

表5において、
比較例6:処理済高炉スラグ細骨材に代えて処理前の高炉スラグ細骨材を用い、またアクリル酸重合体(P−1)を0.18kg/mの割合で水硬性セメント組成物(コンクリート)を調製する時に添加した。
比較例7:処理済高炉スラグ細骨材に代えて処理前の高炉スラグ細骨材を用い、またアクリル酸系重合体(P−2)を0.18kg/mの割合で水硬性セメント組成物(コンクリート)を調製する時に添加した。
In Table 5,
Comparative Example 6: A blast furnace slag fine aggregate before treatment was used in place of the treated blast furnace slag fine aggregate, and a hydraulic cement composition containing acrylic acid polymer (P-1) at a rate of 0.18 kg / m 3 . Added when preparing (concrete).
Comparative Example 7: A blast furnace slag fine aggregate before treatment was used in place of the treated blast furnace slag fine aggregate, and a hydraulic cement composition containing acrylic acid polymer (P-2) at a rate of 0.18 kg / m 3. It was added when preparing the object (concrete).

Claims (4)

セメント、骨材、水及びセメント混和剤を用いて水硬性セメント組成物を調製する方法において、セメント及び骨材を空練りした後、セメント混和剤を練り混ぜ水と共に加えて練り混ぜ、前記骨材のうちで細骨材の少なくとも一部として下記の処理済高炉スラグ細骨材を用いることを特徴とする水硬性セメント組成物の調製方法。
処理済高炉スラグ細骨材:高炉スラグ細骨材に平均分子量50000〜6000000のアクリル酸重合体、全構成単位中にアクリル酸から形成された構成単位を80〜95モル%有する平均分子量50000〜6000000のアクリル酸共重合体及びこれらの塩から選ばれる一つ又は二つ以上のアクリル酸系重合体を水で希釈した水性液を散布及び混合して付着したものであって且つ高炉スラグ細骨材100重量部当たりアクリル酸系重合体を0.002〜0.3重量部の割合となるよう付着したもの。
Cement, aggregate, with water and cement admixture in the method of preparing a hydraulic cement composition, after air-kneading cement and aggregate, kneaded in addition with water kneading a cement admixture, the aggregate Among them, the following treated blast furnace slag fine aggregate is used as at least a part of the fine aggregate, and a method for preparing a hydraulic cement composition is characterized.
Treated blast furnace slag fine aggregate: Acrylic acid polymer having an average molecular weight of 50,000 to 6000000 on the blast furnace slag fine aggregate, and an average molecular weight of 50,000 to 6000000 having 80 to 95 mol% of structural units formed from acrylic acid in all the structural units. A blast furnace slag fine aggregate which is obtained by spraying and mixing an aqueous solution obtained by diluting one or two or more acrylic polymers selected from these acrylic acid copolymers and salts thereof with water. What attached acrylic acid polymer so that it might become a ratio of 0.002-0.3 weight part per 100 weight part.
アクリル酸系重合体が、アクリル酸共重合体及びその塩から選ばれる一つ又は二つ以上である請求項1記載の水硬性セメント組成物の調製方法。 Process for the preparation of the acrylic polymer is one or more in a claim 1 Symbol placement of hydraulic cement composition is selected from acrylic acid copolymers and salts thereof. アクリル酸共重合体が、アクリル酸から形成された構成単位以外の他の構成単位として、スチレンスルホン酸、スチレンスルホン酸の塩、2−アクリルアミド−2−メチルプロパンスルホン酸及び2−アクリルアミド−2−メチルプロパンスルホン酸の塩から選ばれる一つ又は二つ以上の単量体から形成された構成単位を有するものである請求項1又は2記載の水硬性セメント組成物の調製方法。 As other structural units other than the structural unit formed from acrylic acid, the acrylic acid copolymer includes styrene sulfonic acid, a salt of styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and 2-acrylamido-2- The method for preparing a hydraulic cement composition according to claim 1 or 2 , comprising a structural unit formed from one or two or more monomers selected from a salt of methylpropanesulfonic acid. 塩がいずれもナトリウム塩である請求項1〜のいずれか一つの項記載の水硬性セメント組成物の調製方法。 All the salts are sodium salts, The preparation method of the hydraulic cement composition as described in any one of Claims 1-3 .
JP2006345454A 2006-12-22 2006-12-22 Method for preparing hydraulic cement composition Expired - Lifetime JP4845714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345454A JP4845714B2 (en) 2006-12-22 2006-12-22 Method for preparing hydraulic cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345454A JP4845714B2 (en) 2006-12-22 2006-12-22 Method for preparing hydraulic cement composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002169456A Division JP4212086B2 (en) 2002-06-11 2002-06-11 Hydraulic cement composition

Publications (2)

Publication Number Publication Date
JP2007077021A JP2007077021A (en) 2007-03-29
JP4845714B2 true JP4845714B2 (en) 2011-12-28

Family

ID=37937679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345454A Expired - Lifetime JP4845714B2 (en) 2006-12-22 2006-12-22 Method for preparing hydraulic cement composition

Country Status (1)

Country Link
JP (1) JP4845714B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496493A (en) * 1978-01-18 1979-07-30 Sanyo Chem Ind Ltd Chemical agent for production of granulated slag
JPS5795857A (en) * 1980-12-08 1982-06-14 Taiho Kogyo Co Ltd Water-granulated slag solidification prevention
JP2631414B2 (en) * 1990-07-26 1997-07-16 鹿島建設株式会社 Mortar filling method to concrete gap in reverse driving method
JPH04292443A (en) * 1991-03-19 1992-10-16 Nisshin Steel Co Ltd Slag powder treated with polyhydroxyl group-containing substance
JPH07121821B2 (en) * 1991-05-27 1995-12-25 秩父小野田株式会社 Admixture for concrete or mortar and kneaded product containing the same
JPH04362054A (en) * 1991-06-07 1992-12-15 Nkk Corp Cement paving composition having high water permeability
JPH11228197A (en) * 1998-02-16 1999-08-24 Taiheiyo Cement Corp Cementitious packing material
JP2001305275A (en) * 2000-02-15 2001-10-31 Takenaka Komuten Co Ltd Radioactive material storage facility
JP2001322853A (en) * 2000-05-12 2001-11-20 Kao Corp Dispersant for blast-furnace slag fine aggregate
JP2002104867A (en) * 2000-09-28 2002-04-10 Teihyu Corp Concrete product by centrifugal forming

Also Published As

Publication number Publication date
JP2007077021A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2013510786A (en) Dry mortar mixture
JP2000327386A (en) Cement dispersant and hydraulic composition including the same
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
JP6821250B2 (en) Method for producing a cured product of hydraulic composition
CA2745417A1 (en) Copolymer containing acid building blocks and various types of polyether building blocks
JP4323016B2 (en) Cement additive and cement kneaded material
JP6553883B2 (en) Cement admixture and cement composition containing the same
JP2003252666A (en) Segregation reducing agent for concrete
JP6132527B2 (en) Blast furnace slag-containing cement slurry composition and method for preparing soil cement slurry using the same
JP7328979B2 (en) Manufacture of calcium hydroxide nanoparticles and their use as hardening accelerators in mineral binder compositions
JP2002187755A (en) Dispersant for hydraulic composition
JP4845714B2 (en) Method for preparing hydraulic cement composition
JP4212086B2 (en) Hydraulic cement composition
JP6145997B2 (en) Admixture for hydraulic composition and hydraulic composition using the same
JP2016179926A (en) Cement admixture and cement composition
JP4266557B2 (en) Powdered cement dispersant composition
JPH05319889A (en) Hydraulic cement composition
JP6837824B2 (en) Hydraulic composition
JP2003212625A (en) Powdery cement dispersant composition
JP2546385B2 (en) Centrifugal compaction slag reduction method for concrete
CN111630017A (en) Dispersant for reducing mixing time of mineral binder system
JP4056836B2 (en) Hydraulic composition
JP4263033B2 (en) Aggregate for hydraulic cement composition and hydraulic cement composition
WO2021234461A1 (en) Composition for aerated or lightweight concrete
US20230022017A1 (en) Process for the preparation of dispersing agents in a solid form and their use in mineral binding compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term