JP4798806B2 - Low shrinkage AE concrete composition using blast furnace cement - Google Patents

Low shrinkage AE concrete composition using blast furnace cement Download PDF

Info

Publication number
JP4798806B2
JP4798806B2 JP2009153472A JP2009153472A JP4798806B2 JP 4798806 B2 JP4798806 B2 JP 4798806B2 JP 2009153472 A JP2009153472 A JP 2009153472A JP 2009153472 A JP2009153472 A JP 2009153472A JP 4798806 B2 JP4798806 B2 JP 4798806B2
Authority
JP
Japan
Prior art keywords
blast furnace
cement
shrinkage
fine aggregate
concrete composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009153472A
Other languages
Japanese (ja)
Other versions
JP2011006305A (en
Inventor
光男 木之下
和秀 齊藤
千秋 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2009153472A priority Critical patent/JP4798806B2/en
Publication of JP2011006305A publication Critical patent/JP2011006305A/en
Application granted granted Critical
Publication of JP4798806B2 publication Critical patent/JP4798806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0027Standardised cement types
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は高炉セメントを用いた低収縮AEコンクリート組成物に関する。普通ポルトランドセメントに高炉スラグ微粉末を混合した高炉セメントは、普通ポルトランドセメントに比べて、水和熱が低い、長期強度の伸びが大きい、水密性が大きい、硫酸塩に対する化学的侵食に対して抵抗性が大きい、アルカリ骨材反応の抑制効果がある等、多くの特徴を有するため、土木構造物のコンクリートに多く使用されている。その反面、高炉セメントを用いたものは、普通ポルトランドセメントを用いたものに比べて、乾燥収縮が大きいので、収縮ひび割れが発生し易く、また中性化による劣化が速いという不利な点もあるため、建築物のコンクリートには使用され難くいという問題もある。しかし、近年のコンクリート構造物の長寿命化を目的としたコンクリートの高耐久性化の要求に応えるためには、セメントとして高炉セメントを用いて調製したAEコンクリート組成物についても、得られる硬化体の乾燥収縮を低減する機能を持つと同時に中性化速度を抑える機能を持ち、更に加えて凍結融解に抵抗する機能も併せ持つことが求められている。本発明はセメントとして高炉セメントを用いて調製したAEコンクリート組成物であって、得られる硬化体の乾燥収縮を低減する機能、中性化速度を抑える機能及び凍結融解作用に対して抵抗する機能、以上の三つの機能を同時に有する低収縮AEコンクリート組成物に関する。   The present invention relates to a low shrinkage AE concrete composition using blast furnace cement. Blast furnace cement made by mixing fine powder of blast furnace slag with ordinary Portland cement has lower heat of hydration, greater long-term strength elongation, greater water tightness, and resistance to chemical attack on sulfates than ordinary Portland cement. Since it has many features such as high properties and the effect of suppressing alkali-aggregate reaction, it is often used for concrete in civil engineering structures. On the other hand, those using blast furnace cement have the disadvantages that they are more susceptible to shrinkage cracking and faster deterioration due to neutralization than those using ordinary Portland cement. There is also a problem that it is difficult to be used for building concrete. However, in order to meet the demand for higher durability of concrete for the purpose of prolonging the life of concrete structures in recent years, AE concrete compositions prepared using blast furnace cement as cement are also used for the obtained cured body. It is required to have a function of reducing drying shrinkage and a function of suppressing the neutralization rate, and also a function of resisting freezing and thawing. The present invention is an AE concrete composition prepared using blast furnace cement as a cement, a function of reducing the drying shrinkage of the obtained hardened body, a function of suppressing the neutralization rate, and a function of resisting freeze-thaw action, The present invention relates to a low shrinkage AE concrete composition having the above three functions simultaneously.

従来、AEコンクリート組成物から得られる硬化体の乾燥収縮率を低減する方法として、1)乾燥収縮低減剤を使用する、2)膨張材を使用する、3)粗骨材として石灰石砕石を使用する等の方法が有効であり、これらの材料を用いてAEコンクリート組成物を調製し、得られる硬化体の乾燥収縮率を800×10−6以下に抑えることが必要であると指摘されている(例えば、非特許文献1参照)。しかし、得られる硬化体の乾燥収縮率を低減する目的で、これらの材料を用いてAEコンクリート組成物を調製する方法はいずれも相応に有効ではあるが、前記1)や2)の方法には、多量に用いると、得られる硬化体の強度の低下や凍結融解作用に対する抵抗性の低下を招き、コスト高にもなるという問題があり、また前記3)の方法には、そもそもこの方法それ自体が大きな乾燥収縮低減抑制効果を期待するものではないという問題がある。一方、スラグ細骨材の利用について、細骨材の少なくとも一部として、高炉スラグ細骨材を特定の条件下でコンクリートやモルタルの調製に利用することが知られている(例えば、特許文献1〜5参照)。しかし、かかる従来手段により、セメントとして高炉セメントを用い、また細骨材の少なくとも一部として高炉スラグ細骨材を用いてAEコンクリート組成物を調製すると、得られる硬化体の圧縮強度の点で相応の効果があるものの、該硬化体に要求される低い乾燥収縮率、小さい中性化率及び強い凍結融解作用に対する抵抗性を同時に満足することができないという問題がある。 Conventionally, as a method of reducing the drying shrinkage rate of a cured product obtained from an AE concrete composition, 1) a drying shrinkage reducing agent is used, 2) an expansion material is used, and 3) limestone crushed stone is used as a coarse aggregate. It is pointed out that it is necessary to prepare an AE concrete composition using these materials, and to suppress the drying shrinkage rate of the obtained cured product to 800 × 10 −6 or less. For example, refer nonpatent literature 1). However, for the purpose of reducing the drying shrinkage rate of the resulting cured product, any method of preparing an AE concrete composition using these materials is correspondingly effective. However, the methods 1) and 2) described above are not effective. If used in a large amount, there is a problem that the strength of the resulting cured product is reduced and the resistance to freezing and thawing action is reduced, and the cost is increased. In addition, the method 3) is originally the method itself. However, there is a problem that it does not expect a great effect of reducing drying shrinkage. On the other hand, regarding the use of slag fine aggregate, it is known that blast furnace slag fine aggregate is used for preparation of concrete or mortar under specific conditions as at least part of the fine aggregate (for example, Patent Document 1). ~ 5). However, when AE concrete composition is prepared using blast furnace cement as cement and blast furnace slag fine aggregate as at least a part of fine aggregate by such conventional means, it is suitable in terms of compressive strength of the obtained hardened body. However, there is a problem that a low drying shrinkage rate, a small neutralization rate, and a strong resistance to freezing and thawing required for the cured product cannot be satisfied at the same time.

特開2001−58861号公報JP 2001-58861 A 特開2002−179451号公報JP 2002-179451 A 特開2004−10455号公報JP 2004-10455 A 特開2005−219958号公報JP 2005-219958 A 特開2006−16212号公報JP 2006-16212 A

「鉄筋コンクリート造建築物の収縮ひび割れ制御設計・施工指針(案)・同解説」、日本建築学会編、2006年、121頁“Shrinkage crack control design / construction guidelines (draft) / commentary explanation of reinforced concrete buildings”, edited by Architectural Institute of Japan, 2006, p. 121

本発明が解決しようとする課題は、セメントとして高炉セメントを用いて調製したAEコンクリート組成物であって、得られる硬化体が低い乾燥収縮率、小さい中性化率及び強い凍結融解に対する抵抗性を同時に有するものとなる高炉セメントを用いた低収縮AEコンクリート組成物を提供する処にある。   The problem to be solved by the present invention is an AE concrete composition prepared using blast furnace cement as a cement, and the obtained cured product has a low drying shrinkage rate, a small neutralization rate, and a strong resistance to freezing and thawing. It is in providing the low shrinkage | contraction AE concrete composition using the blast furnace cement which it has simultaneously.

しかして本発明者らは、前記の課題を解決するべく研究した結果、セメントとして高炉セメントを用いると共に、混和剤の少なくとも一部として特定のセメント分散剤及び特定の空気量調節剤をそれぞれ所定割合で用い、また細骨材の少なくとも一部として粗粒率を所定範囲に調製した特定の高炉スラグ細骨材を所定割合で用い、また水を所定割合で用いて、且つ水/セメント比を所定範囲内に調製したものが正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, the blast furnace cement is used as the cement, and a specific cement dispersant and a specific air amount adjusting agent are respectively used at a predetermined ratio as at least a part of the admixture. In addition, a specific blast furnace slag fine aggregate with a coarse grain ratio adjusted to a predetermined range as at least a part of the fine aggregate is used at a predetermined ratio, water is used at a predetermined ratio, and a water / cement ratio is predetermined. It was found that those prepared within the range are correct and suitable.

すなわち本発明は、セメント、水、細骨材、粗骨材及び混和剤(但し、乾燥収縮低減剤を除く)を用いて調製した低収縮AEコンクリート組成物であって、セメントとして高炉セメントを用いると共に、該高炉セメント100質量部当たり、混和剤の少なくとも一部として下記のセメント分散剤を0.1〜1.5質量部及び下記の空気量調節剤を0.001〜0.01質量部の割合で用い、また低収縮AEコンクリート1m当たり、細骨材の少なくとも一部として下記の高炉スラグ細骨材を100〜750kgとなる割合で用い、また水を135〜175kgとなる割合で用いて、且つ水/セメント比を30〜60%に調製して成ることを特徴とする高炉セメントを用いた低収縮AEコンクリート組成物に係る。 That is, the present invention is a low-shrinkage AE concrete composition prepared using cement, water, fine aggregate, coarse aggregate, and an admixture (excluding a dry shrinkage reducing agent), and uses blast furnace cement as the cement. In addition, per 100 parts by mass of the blast furnace cement, 0.1 to 1.5 parts by mass of the following cement dispersant and 0.001 to 0.01 parts by mass of the following air amount regulator as at least a part of the admixture. The following blast furnace slag fine aggregate is used at a rate of 100 to 750 kg as a fine aggregate per 1 m 3 of low shrinkage AE concrete, and water is used at a rate of 135 to 175 kg. And a low shrinkage AE concrete composition using a blast furnace cement, characterized in that the water / cement ratio is adjusted to 30 to 60%.

セメント分散剤:分子中に下記の構成単位Aを45〜85モル%、下記の構成単位Bを15〜55モル%及び下記の構成単位Cを0〜5モル%(合計100モル%)の割合で有する質量平均分子量2000〜70000の水溶性ビニル共重合体からなるもの。
構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
Cement dispersant: 45 to 85 mol% of the following structural unit A in the molecule, 15 to 55 mol% of the following structural unit B, and 0 to 5 mol% of the following structural unit C (total of 100 mol%) A water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 70000.
Structural unit A: One or more selected from structural units formed from methacrylic acid and structural units formed from methacrylic acid salt Structural unit B: Consists of 5 to 100 oxyethylene units in the molecule Structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group Structural unit C: one selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate Or two or more

空気量調節剤:アルキルリン酸モノエステル塩及び樹脂酸石けんから選ばれるもの。   Air amount regulator: selected from alkyl phosphate monoester salts and resin acid soaps.

高炉スラグ細骨材:JIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を2.0〜3.3の範囲に調製したもの。   Blast furnace slag fine aggregate: A blast furnace slag fine aggregate included in the blast furnace slag fine aggregate classification according to JIS-A5011-1 and having a coarse particle ratio in the range of 2.0 to 3.3. Prepared.

本発明の低収縮AEコンクリート組成物は、セメント、水、細骨材、粗骨材及び混和剤(但し、乾燥収縮低減剤を除く)を用いて調製したものであり、セメントとして高炉セメントを用いたものである。高炉セメントは、普通ポルトランドセメントに高炉スラグ微粉末を混合して造られるものであり、JIS−R5211の規格で、高炉スラグ微粉末の分量によって、A種(5超〜30%)、B種(30超〜60%)、C種(60超〜70%)の3種類に分けられている。本発明ではこれらのいずれをも使用することができるが、高炉セメントとしては汎用されている高炉セメントB種が好ましい。   The low-shrinkage AE concrete composition of the present invention is prepared using cement, water, fine aggregate, coarse aggregate, and an admixture (excluding a dry shrinkage reducing agent), and blast furnace cement is used as the cement. It was. Blast furnace cement is made by mixing ordinary Portland cement with fine powder of blast furnace slag. According to the standard of JIS-R5211, depending on the amount of fine powder of blast furnace slag, type A (over 5 to 30%), type B ( 30 to 60%) and C type (60 to 70%). In the present invention, any of these can be used, but as the blast furnace cement, a blast furnace cement type B which is widely used is preferable.

本発明の低収縮AEコンクリート組成物は、細骨材の少なくとも一部として高炉スラグ細骨材を用いたものである。この高炉スラグ細骨材は、JIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を2.0〜3.3の範囲に調製したものである。なかでも、高炉スラグ細骨材としては、粗粒率を2.2〜3.1の範囲に調製したものが好ましく、粒度による区分が5mm高炉スラグ細骨材又は2.5mm高炉スラグ細骨材であるものが好ましい。またかかる高炉スラグ細骨材としては、その由来は特に制限されないが、高炉水砕スラグ細骨材が好ましい。以上説明した高炉スラグ細骨材以外の細骨材としては、川砂、山砂、海砂、砕砂等が挙げられる。尚、ここで、粗粒率(finess modulus、F.M.)は、80、40、20、10、5、2.5、1.2、0.6、0.3及び0.15(単位mm)の各ふるいからなる1組のふるいを用いて高炉スラグ細骨材をふるい分け試験し、各ふるい毎でふるいを通らない高炉スラグ細骨材の元の高炉スラグ細骨材に対する重量百分率を求め、更にその和を求めて、かかる和を100で除した数値であり、コンクリート用語として一般的に使用されている用語である。   The low shrinkage AE concrete composition of the present invention uses blast furnace slag fine aggregate as at least a part of the fine aggregate. This blast furnace slag fine aggregate is a blast furnace slag fine aggregate included in the classification according to the grain size of the blast furnace slag fine aggregate described in JIS-A5011-1 and has a coarse particle ratio of 2.0 to 3.3. It was prepared in the range. Especially, as a blast furnace slag fine aggregate, what adjusted the coarse-grain rate to the range of 2.2-3.1 is preferable, and the classification by a particle size is 5mm blast furnace slag fine aggregate or 2.5mm blast furnace slag fine aggregate. Are preferred. The origin of the blast furnace slag fine aggregate is not particularly limited, but a blast furnace granulated slag fine aggregate is preferable. Examples of the fine aggregate other than the blast furnace slag fine aggregate described above include river sand, mountain sand, sea sand, and crushed sand. Here, the fine particle ratio (F.M.) is 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.15 (units). mm), a blast furnace slag fine aggregate is screened using a set of sieves, and the weight percentage of the blast furnace slag fine aggregate that does not pass through the sieve is determined for each sieve. Further, the sum is obtained, and the sum is divided by 100, which is a term generally used as a concrete term.

本発明の低収縮AEコンクリート組成物で用いる粗骨材としては、いずれも公知の川砂利、砕石、軽量骨材等が挙げられる。   Examples of the coarse aggregate used in the low-shrinkage AE concrete composition of the present invention include known river gravel, crushed stone, and lightweight aggregate.

本発明の低収縮AEコンクリート組成物で用いる混和剤としては、乾燥収縮低減剤を除いて、従来公知のAEコンクリート組成物に用いられるものが挙げられるが、かかる混和剤としては少なくともその一部として下記のセメント分散剤及び空気量調節剤を用いる。   Examples of the admixture used in the low-shrinkage AE concrete composition of the present invention include those used in conventionally known AE concrete compositions except for the drying shrinkage reducing agent. The following cement dispersant and air amount regulator are used.

本発明の低収縮AEコンクリート組成物の混和剤として用いるセメント分散剤は、分子中に下記の構成単位Aを45〜85モル%、下記の構成単位Bを15〜55モル%及び下記の構成単位Cを0〜5モル%(合計100モル%)の割合で有する質量平均分子量2000〜70000(GPC法、プルラン換算、以下同じ)の水溶性ビニル共重合体からなるセメント分散剤である。   The cement dispersant used as an admixture for the low-shrinkage AE concrete composition of the present invention is composed of 45 to 85 mol% of the following structural unit A, 15 to 55 mol% of the following structural unit B, and the following structural unit in the molecule. It is a cement dispersant made of a water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 70000 (GPC method, pullullan conversion, the same applies hereinafter) having C in a proportion of 0 to 5 mol% (total of 100 mol%).

構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上。   Structural unit A: One or two or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylate.

構成単位B:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位。   Structural unit B: a structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group composed of 5 to 100 oxyethylene units in the molecule.

構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上。   Structural unit C: One or two or more selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate.

以上説明したセメント分散剤としての水溶性ビニル共重合体それ自体は公知の方法で合成できる。これには例えば、特開昭58−74552号公報や特開平1−226757号公報等に記載された方法が挙げられる。セメント分散剤の使用量は、高炉セメント100質量部当たり、0.1〜1.5質量部の割合とする。   The water-soluble vinyl copolymer itself as a cement dispersant described above can be synthesized by a known method. Examples thereof include the methods described in JP-A-58-74552 and JP-A-1-226757. The amount of cement dispersant used is 0.1 to 1.5 parts by mass per 100 parts by mass of blast furnace cement.

また本発明の低収縮AEコンクリート組成物の混和剤として用いる空気量調節剤は、アルキルリン酸モノエステル塩及び樹脂酸石けん(ロジン石けん)から選ばれる空気量調節剤である。なかでもアルキルリン酸モノエステル塩が好ましく、オクチルリン酸モノエステルカリウム塩がより好ましい。空気量調節剤の使用量は、高炉セメント100質量部当たり、0.001〜0.01質量部の割合とする。   The air amount adjusting agent used as an admixture of the low shrinkage AE concrete composition of the present invention is an air amount adjusting agent selected from alkyl phosphate monoester salts and resin acid soap (rosin soap). Of these, alkyl phosphate monoester salts are preferable, and octyl phosphate monoester potassium salt is more preferable. The amount of the air amount regulator used is 0.001 to 0.01 parts by mass per 100 parts by mass of the blast furnace cement.

本発明の低収縮AEコンクリート組成物は、以上説明した高炉セメント、水、細骨材、粗骨材及び混和剤(但し、乾燥収縮低減剤を除く)を練り混ぜて調製するが、この際に細骨材の少なくとも一部として、前記した高炉スラグ細骨材を、低収縮AEコンクリート組成物1m当たり、100〜750kgとなる割合、好ましくは150〜650kgとなる割合で用いる。またこの際に水を、低収縮AEコンクリート組成物1m当たり、135〜175kgとなる割合、好ましくは145〜165kgとなる割合で用いる。調製する低収縮AEコンクリート組成物1m当たりの水が175kgを超える場合には、本発明が目的とする収縮低減効果が得られず、逆に水が135kgより少ない場合には、流動性が大きく低下するという問題が生じる。 The low shrinkage AE concrete composition of the present invention is prepared by kneading the blast furnace cement, water, fine aggregate, coarse aggregate and admixture (excluding the dry shrinkage reducing agent) described above. As at least a part of the fine aggregate, the above-mentioned blast furnace slag fine aggregate is used at a rate of 100 to 750 kg, preferably 150 to 650 kg, per 1 m 3 of the low shrinkage AE concrete composition. At this time, water is used at a rate of 135 to 175 kg, preferably 145 to 165 kg per 1 m 3 of the low shrinkage AE concrete composition. When the amount of water per 1 m 3 of the low shrinkage AE concrete composition to be prepared exceeds 175 kg, the intended shrinkage reduction effect of the present invention cannot be obtained. Conversely, when the amount of water is less than 135 kg, the fluidity is large. The problem of deteriorating arises.

本発明の低収縮AEコンクリート組成物は、空気量(連行空気(AE)量)を3〜7容量%に調整するのが好ましく、3.5〜6容量%に調整するのがより好ましい。かかる空気量の範囲内にて、所期の効果を充分に発現する。   In the low-shrinkage AE concrete composition of the present invention, the amount of air (entrained air (AE) amount) is preferably adjusted to 3 to 7% by volume, and more preferably adjusted to 3.5 to 6% by volume. Within the range of the air amount, the desired effect is sufficiently exhibited.

本発明の低収縮AEコンクリート組成物は、水/セメント比を30〜60%とするが、得られる硬化体の乾燥収縮の低減、中性化速度の抑制及び凍結融解作用に対する抵抗性をより高レベルで同時に満足させるためには水/セメント比を35〜55%とするのが好ましい。   The low-shrinkage AE concrete composition of the present invention has a water / cement ratio of 30 to 60%, but has a reduced drying shrinkage, suppression of neutralization rate, and higher resistance to freeze-thaw action of the resulting cured body. In order to satisfy the level at the same time, the water / cement ratio is preferably 35 to 55%.

本発明の低収縮AEコンクリート組成物は、以上説明したように、高炉セメント、水、細骨材、粗骨材及び混和剤(但し、乾燥収縮低減剤を除く)を用いて調製したものであるが、本発明の効果を損なわない範囲内で、必要に応じて、防錆剤、急結剤、硬化促進剤、凝結遅延剤等の添加剤を併用することができる。   As described above, the low shrinkage AE concrete composition of the present invention is prepared using blast furnace cement, water, fine aggregate, coarse aggregate, and an admixture (excluding a dry shrinkage reducing agent). However, an additive such as a rust inhibitor, a quick setting agent, a curing accelerator, and a setting retarder can be used in combination within the range not impairing the effects of the present invention.

本発明の低収縮AEコンクリート組成物は、得られる硬化体の乾燥収縮率が400×10−6〜650×10−6となるものが好ましい。以上説明した本発明の低収縮AEコンクリート組成物は、建設現場で打設される場合だけでなく、コンクリート製品工場で加工される場合にも適用できる。 The low-shrinkage AE concrete composition of the present invention preferably has a dry shrinkage rate of 400 × 10 −6 to 650 × 10 −6 of the obtained cured body. The low-shrinkage AE concrete composition of the present invention described above can be applied not only when it is placed at a construction site but also when it is processed at a concrete product factory.

本発明によると、得られる硬化体が優れた圧縮強度を発現するだけでなく、得られる硬化体の乾燥収縮率が低く、また中性化率が小さく、しかも凍結融解作用に対する抵抗性が強いという効果がある。   According to the present invention, the obtained cured product not only exhibits excellent compressive strength, but also has a low drying shrinkage rate, a low neutralization rate, and a high resistance to freeze-thaw action. effective.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to these examples. In the following examples and the like, unless otherwise indicated,% means mass% and part means mass part.

試験区分1(セメント分散剤としての水溶性ビニル共重合体の合成)
・セメント分散剤としての水溶性ビニル共重合体(p−1)の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位が23個、以下n=23とする)エチレングリコールメタクリレート300g及びメタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸4g及び水490gを反応容器に仕込み、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、水溶性ビニル共重合体(p−1)の40%水溶液を得た。水溶性ビニル共重合体(p−1)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量33800の水溶性ビニル共重合体であった。
Test Category 1 (Synthesis of water-soluble vinyl copolymer as cement dispersant)
Synthesis of water-soluble vinyl copolymer (p-1) as a cement dispersant 60 g of methacrylic acid, 300 g of methoxypoly (23 oxyethylene units, hereinafter n = 23) ethylene glycol methacrylate and 5 g of sodium methallylsulfonate Then, 4 g of 3-mercaptopropionic acid and 490 g of water were charged into a reaction vessel, 58 g of 48% aqueous sodium hydroxide solution was added, and the mixture was partially neutralized with stirring and dissolved uniformly. After the atmosphere in the reaction vessel was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, 25 g of a 20% aqueous solution of sodium persulfate was added to start radical polymerization reaction, and the reaction was continued for 5 hours. The reaction was terminated. Thereafter, 23 g of a 48% aqueous sodium hydroxide solution was added to completely neutralize the reaction product, thereby obtaining a 40% aqueous solution of the water-soluble vinyl copolymer (p-1). When the water-soluble vinyl copolymer (p-1) was analyzed, it was formed from a structural unit formed from sodium methacrylate / a structural unit formed from methoxypoly (n = 23) ethylene glycol methacrylate / sodium methallylsulfonate. The structural unit was a water-soluble vinyl copolymer having a mass average molecular weight of 33,800 at a ratio of 70/27/3 (mol%).

・セメント分散剤としての水溶性ビニル共重合体(p−2)、(p−4)及び(pr−1)〜(pr−3)の合成
水溶性ビニル共重合体(p−1)の合成と同様にして、水溶性ビニル共重合体(p−2)、(p−4)及び(pr−1)〜(pr−3)を合成した。
以上で合成したセメント分散剤としての各水溶性ビニル共重合体の内容を表1にまとめて示した。
Synthesis of water-soluble vinyl copolymers (p-2), (p-4) and (pr-1) to (pr-3) as cement dispersants Synthesis of water-soluble vinyl copolymer (p-1) In the same manner, water-soluble vinyl copolymers (p-2), (p-4) and (pr-1) to (pr-3) were synthesized.
The contents of each water-soluble vinyl copolymer as a cement dispersant synthesized as described above are summarized in Table 1.

Figure 0004798806
Figure 0004798806

表1において、
A−1:メタクリル酸ナトリウム
A−2:メタクリル酸
B−1:メトキシポリ(n=23)エチレングリコールメタクリレート
B−2:メトキシポリ(n=68)エチレングリコールメタクリレート
B−3:メトキシポリ(n=9)エチレングリコールメタクリレート
C−1:メタリルスルホン酸ナトリウム
C−2:アリルスルホン酸ナトリウム
In Table 1,
A-1: Sodium methacrylate A-2: Methacrylic acid B-1: Methoxypoly (n = 23) ethylene glycol methacrylate B-2: Methoxypoly (n = 68) ethylene glycol methacrylate B-3: Methoxypoly (n = 9) ethylene Glycol methacrylate C-1: Sodium methallyl sulfonate C-2: Sodium allyl sulfonate

試験区分2(低収縮AEコンクリート組成物の調製)
実施例1
表2に記載の条件で、50リットルのパン型強制練りミキサーに、練り混ぜ用の水(水道水)、セメントとして高炉セメントB種、細骨材として高炉スラグ細骨材及び天然砂、セメント分散剤として試験区分1で合成した水溶性ビニル共重合体(p−1)及び空気量調節剤としてオクチルリン酸モノエステルカリウム塩の各所定量を投入し、45秒間練り混ぜた。次に、粗骨材を投入して60秒間練り混ぜ、目標スランプが10±1cm、目標空気量が4.5±1%の範囲とした実施例1の低収縮AEコンクリート組成物を調製した。
Test Category 2 (Preparation of low shrinkage AE concrete composition)
Example 1
Under the conditions shown in Table 2, in a 50 liter pan-type forced kneading mixer, kneading water (tap water), blast furnace cement type B as cement, blast furnace slag fine aggregate and natural sand as fine aggregate, cement dispersion A predetermined amount of each of water-soluble vinyl copolymer (p-1) synthesized in Test Category 1 as an agent and octyl phosphate monoester potassium salt as an air amount regulator was added and kneaded for 45 seconds. Next, the coarse aggregate was added and kneaded for 60 seconds to prepare a low-shrinkage AE concrete composition of Example 1 with a target slump of 10 ± 1 cm and a target air amount of 4.5 ± 1%.

実施例2〜4、6、8、10及び比較例1〜9
表2に記載の条件で、実施例1と同様にして、実施例2〜4、6、8、10及び比較例1〜9の低収縮AEコンクリート組成物を調製した。
Examples 2-4, 6, 8, 10 and Comparative Examples 1-9
Under the conditions shown in Table 2, the low-shrinkage AE concrete compositions of Examples 2 to 4, 6, 8, 10 and Comparative Examples 1 to 9 were prepared in the same manner as in Example 1.

Figure 0004798806
Figure 0004798806

表2において、
使用量:高炉セメント100質量部当たりの水溶性ビニル共重合体又は空気量調節剤としての添加質量部
天然砂:粗粒率=2.60、密度=2.57g/cmの大井川水系天然砂
高炉セメント:高炉セメントB種、密度=3.04g/cm
粗骨材:岡崎産砕石、密度=2.68g/cm
p−1、P−2、p−4,pr−1〜pr−3:試験区分1で合成したセメント分散剤としての水溶性ビニル共重合体
A−1:オクチルリン酸モノエステルカリウム塩
A−2:樹脂酸石けん系AE剤(竹本油脂社製の商品名チューポールAE−300)
S−1:粒度による区分=5mm高炉スラグ細骨材、粗粒率=2.55、密度=2.70g/cm
S−2:粒度による区分=5mm高炉スラグ細骨材、粗粒率=2.65、密度=2.69g/cm
S−3:粒度による区分=5mm高炉スラグ細骨材、粗粒率=3.02、密度=2.76g/cm
S−4:粒度による区分=2.5mm高炉スラグ細骨材、粗粒率=2.30、密度=2.68g/cm
S−5:粒度による区分=2.5mm高炉スラグ細骨材、粗粒率=2.71、密度=2.72g/cm
R−1:粒度による区分=2.5mm、粗粒率=1.85、密度=2.72g/cmの高炉スラグ細骨材
R−2:粒度による区分=5〜0.3mm、粗粒率=4.05、密度=2.82g/cmの高炉スラグ細骨材
In Table 2,
Amount used: Water-soluble vinyl copolymer per 100 parts by mass of blast furnace cement or parts by mass added as an air amount regulator Natural sand: Oikawa water-based natural sand with coarse particle ratio = 2.60 and density = 2.57 g / cm 3 Blast furnace cement: Blast furnace cement type B, density = 3.04 g / cm 3
Coarse aggregate: Okazaki crushed stone, density = 2.68 g / cm 3
p-1, P-2, p-4, pr-1 to pr-3: water-soluble vinyl copolymer as a cement dispersant synthesized in test category 1 A-1: potassium octyl phosphate monoester A- 2: Resin acid soap-based AE agent (Brand name Tupol AE-300 manufactured by Takemoto Yushi Co., Ltd.)
S-1: Classification by particle size = 5 mm blast furnace slag fine aggregate, coarse particle ratio = 2.55, density = 2.70 g / cm 3
S-2: Classification by particle size = 5 mm blast furnace slag fine aggregate, coarse particle ratio = 2.65, density = 2.69 g / cm 3
S-3: Classification by particle size = 5 mm blast furnace slag fine aggregate, coarse particle ratio = 3.02, density = 2.76 g / cm 3
S-4: Classification by particle size = 2.5 mm blast furnace slag fine aggregate, coarse particle ratio = 2.30, density = 2.68 g / cm 3
S-5: Classification by particle size = 2.5 mm blast furnace slag fine aggregate, coarse particle ratio = 2.71, density = 2.72 g / cm 3
R-1: Classification by particle size = 2.5 mm, coarse particle ratio = 1.85, density = 2.72 g / cm 3 Blast furnace slag fine aggregate R-2: Classification by particle size = 5-0.3 mm, coarse particle Blast furnace slag fine aggregate with rate = 4.05 and density = 2.82 g / cm 3

試験区分3(低収縮AEコンクリート組成物の評価)
試験区分2で調製した各例の低収縮AEコンクリート組成物について、空気量及びスランプを下記のように求め、結果を表3にまとめて示した。また各例の低収縮AEコンクリート組成物から得られる硬化体について、乾燥収縮率、促進中性化深さ、凍結融解耐久性指数及び圧縮強度を下記のように求め、結果を表3にまとめて示した。
Test category 3 (Evaluation of low shrinkage AE concrete composition)
About the low shrinkage | contraction AE concrete composition of each example prepared by the test division 2, the air content and slump were calculated | required as follows, and the result was put together in Table 3 and shown. Moreover, about the hardening body obtained from the low shrinkage | contraction AE concrete composition of each example, dry shrinkage rate, accelerated neutralization depth, freeze-thaw durability index, and compressive strength were calculated | required as follows, and a result is put together in Table 3. Indicated.

・空気量(容量%):練り混ぜ直後の低収縮AEコンクリート及び更に90分間静置後のものについて、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時にJIS−A1101に準拠して測定した。
・乾燥収縮率(%):JIS−A1129に準拠し、各例の低収縮AEコンクリート組成物等を20℃×60%RHの条件下で保存した材齢26週の供試体について、コンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・促進中性化深さ(mm):各例の低収縮AEコンクリート組成物等について、10×10×40cmの角型供試体の打ち込み面、底面及び両端面をエポキシ樹脂でシールし、20℃×60%RH、炭酸ガス濃度5%の条件下で促進試験を行なった。材齢26週に供試体の断面を切断し、1%フェノールフタレイン溶液を吹き付けて赤色化しない部分を中性化した部分とし、外側からの幅を促進中性化深さとした。この数値は小さいほど中性化が進まず、耐久性が優れていることを示す。
・凍結融解耐久性指数(300サイクル):各例の低収縮AEコンクリート組成物等について、JIS−A1148に準拠して測定した値を用い、ASTM−C666−75の耐久性指数で計算した数値を示した。この数値は、最大値が100で、100に近いほど、凍結融解に対する抵抗性が優れていることを示す。
・圧縮強度(N/mm):各例の低収縮AEコンクリート組成物について、JIS−A1108に準拠し、材齢7日、材齢28日及び材齢91日で測定した。











Air content (volume%): Measured in accordance with JIS-A1128 for low-shrinkage AE concrete immediately after kneading and after standing for 90 minutes.
-Slump (cm): Measured according to JIS-A1101 simultaneously with the measurement of the air amount.
-Drying shrinkage rate (%): According to JIS-A1129, a test sample of 26 weeks of age in which the low-shrinkage AE concrete composition of each example was stored under the conditions of 20 ° C. × 60% RH was measured by the comparator method. The drying shrinkage strain was measured to determine the drying shrinkage rate. The smaller this value, the smaller the drying shrinkage.
-Accelerated neutralization depth (mm): For each example of the low shrinkage AE concrete composition, the implantation surface, bottom surface and both end surfaces of a 10 × 10 × 40 cm square specimen were sealed with epoxy resin, and 20 ° C. The acceleration test was performed under the conditions of × 60% RH and carbon dioxide gas concentration 5%. The cross section of the specimen was cut at the age of 26 weeks, and a 1% phenolphthalein solution was sprayed to make the portion that did not turn red as a neutralized portion, and the width from the outside was set as the accelerated neutralization depth. A smaller value indicates that neutralization does not progress and durability is excellent.
-Freeze-thaw durability index (300 cycles): Using the values measured in accordance with JIS-A1148 for the low-shrinkage AE concrete compositions of each example, the numerical value calculated by the durability index of ASTM-C666-75 Indicated. This numerical value indicates that the maximum value is 100, and the closer to 100, the better the resistance to freezing and thawing.
-Compressive strength (N / mm < 2 >): About the low shrinkage | contraction AE concrete composition of each example, based on JIS-A1108, it measured by material age 7 days, material age 28 days, and material age 91 days.











Figure 0004798806
Figure 0004798806

表3において、
*1:材料分離したため、均一な供試体が得られなかったので、測定しなかった。
*2:目標とする流動性(スランプ値)が得られなかったので、測定しなかった。
*3:30以下となり破壊した。
In Table 3,
* 1: Since materials were separated, a uniform specimen could not be obtained, so measurement was not performed.
* 2: Since the target fluidity (slump value) was not obtained, it was not measured.
* 3: Broken below 30.

表1〜表3の結果からも明らかなように、セメントとして高炉セメントを用いると共に、混和剤の少なくとも一部として特定のセメント分散剤及び特定の空気量調節剤をそれぞれ所定割合で用い、また細骨材の少なくとも一部として粗粒率2.0〜3.3の範囲内にある特定の高炉スラグ細骨材を単位質量で100〜750kgとなる割合で用い、また水を単位質量で135〜175kgとなる割合で用いて、且つ水/セメント比を30〜60%に調製した本発明の低収縮AEコンクリートによると、得られる硬化体が、優れた圧縮強度を発現するだけでなく、同時に乾燥収縮率が低く、また中性化率が小さく、しかも凍結融解作用に対する抵抗性が強いものになる。   As is clear from the results of Tables 1 to 3, blast furnace cement is used as the cement, and a specific cement dispersant and a specific air amount adjusting agent are used at a predetermined ratio as at least a part of the admixture. A specific blast furnace slag fine aggregate having a coarse particle ratio in the range of 2.0 to 3.3 is used as at least a part of the aggregate in a proportion of 100 to 750 kg in unit mass, and water is in a unit mass of 135 to According to the low-shrinkage AE concrete of the present invention, which is used at a ratio of 175 kg and adjusted to a water / cement ratio of 30 to 60%, the obtained hardened body not only exhibits excellent compressive strength, but also dries at the same time. The shrinkage rate is low, the neutralization rate is low, and the resistance to freeze-thaw action is strong.

Claims (7)

セメント、水、細骨材、粗骨材及び混和剤(但し、乾燥収縮低減剤を除く)を用いて調製した低収縮AEコンクリート組成物であって、セメントとして高炉セメントを用いると共に、該高炉セメント100質量部当たり、混和剤の少なくとも一部として下記のセメント分散剤を0.1〜1.5質量部及び下記の空気量調節剤を0.001〜0.01質量部の割合で用い、また低収縮AEコンクリート1m当たり、細骨材の少なくとも一部として下記の高炉スラグ細骨材を100〜750kgとなる割合で用い、また水を135〜175kgとなる割合で用いて、且つ水/セメント比を30〜60%に調製して成ることを特徴とする高炉セメントを用いた低収縮AEコンクリート組成物。
セメント分散剤:分子中に下記の構成単位Aを45〜85モル%、下記の構成単位Bを15〜55モル%及び下記の構成単位Cを0〜5モル%(合計100モル%)の割合で有する質量平均分子量2000〜70000の水溶性ビニル共重合体からなるもの。
構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
空気量調節剤:アルキルリン酸モノエステル塩及び樹脂酸石けんから選ばれるもの。
高炉スラグ細骨材:JIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を2.0〜3.3の範囲に調製したもの。
A low-shrinkage AE concrete composition prepared using cement, water, fine aggregate, coarse aggregate, and an admixture (excluding a dry shrinkage reducing agent), wherein a blast furnace cement is used as the cement, and the blast furnace cement The following cement dispersant is used in an amount of 0.1 to 1.5 parts by mass and the following air amount regulator in an amount of 0.001 to 0.01 parts by mass as at least a part of the admixture per 100 parts by mass. The following blast furnace slag fine aggregate is used at a rate of 100 to 750 kg, and water is used at a rate of 135 to 175 kg per 1 m 3 of low shrinkage AE concrete, and water / cement. A low-shrinkage AE concrete composition using a blast furnace cement, characterized in that the ratio is adjusted to 30 to 60%.
Cement dispersant: 45 to 85 mol% of the following structural unit A in the molecule, 15 to 55 mol% of the following structural unit B, and 0 to 5 mol% of the following structural unit C (total of 100 mol%) A water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 70000.
Structural unit A: one or two or more selected from structural units formed from methacrylic acid and structural units formed from methacrylate
Structural unit B: a structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group composed of 5 to 100 oxyethylene units in the molecule
Structural unit C: one or more selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate
Air amount regulator: selected from alkyl phosphate monoester salts and resin acid soaps.
Blast furnace slag fine aggregate: A blast furnace slag fine aggregate included in the blast furnace slag fine aggregate classification according to JIS-A5011-1 and having a coarse particle ratio in the range of 2.0 to 3.3. Prepared.
高炉セメントが高炉セメントB種である請求項1記載の高炉セメントを用いた低収縮AEコンクリート組成物。   The low-shrinkage AE concrete composition using the blast furnace cement according to claim 1, wherein the blast furnace cement is a type B blast furnace cement. 高炉スラグ細骨材が、粗粒率を2.2〜3.1の範囲に調製したものである請求項1又は2記載の高炉セメントを用いた低収縮AEコンクリート組成物。   The low-shrinkage AE concrete composition using a blast furnace cement according to claim 1 or 2, wherein the blast furnace slag fine aggregate is prepared with a coarse particle ratio in a range of 2.2 to 3.1. 高炉スラグ細骨材が、粒度による区分が5mm高炉スラグ細骨材又は2.5mm高炉スラグ細骨材であるものである請求項1〜3のいずれか一つの項記載の高炉セメントを用いた低収縮AEコンクリート組成物。   The blast furnace slag fine aggregate is classified into 5 mm blast furnace slag fine aggregate or 2.5 mm blast furnace slag fine aggregate according to the particle size. Shrink AE concrete composition. 水/セメント比を35〜55%に調製した請求項1〜のいずれか一つの項記載の高炉セメントを用いた低収縮AEコンクリート組成物。 The low shrinkage AE concrete composition using the blast furnace cement according to any one of claims 1 to 4 , wherein the water / cement ratio is adjusted to 35 to 55%. 空気量を3〜7容量%に調製した請求項1〜のいずれか一つの項記載の高炉セメントを用いた低収縮AEコンクリート組成物。 The low shrinkage AE concrete composition using the blast furnace cement according to any one of claims 1 to 5 , wherein the amount of air is adjusted to 3 to 7% by volume. 得られる硬化体の乾燥収縮率が400×10−6〜650×10−6となるものである請求項1〜のいずれか一つの項記載の高炉セメントを用いた低収縮AEコンクリート組成物。 The low shrinkage AE concrete composition using the blast furnace cement according to any one of claims 1 to 6 , wherein a dry shrinkage ratio of the obtained cured product is 400 x 10-6 to 650 x 10-6 .
JP2009153472A 2009-06-29 2009-06-29 Low shrinkage AE concrete composition using blast furnace cement Active JP4798806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153472A JP4798806B2 (en) 2009-06-29 2009-06-29 Low shrinkage AE concrete composition using blast furnace cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153472A JP4798806B2 (en) 2009-06-29 2009-06-29 Low shrinkage AE concrete composition using blast furnace cement

Publications (2)

Publication Number Publication Date
JP2011006305A JP2011006305A (en) 2011-01-13
JP4798806B2 true JP4798806B2 (en) 2011-10-19

Family

ID=43563448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153472A Active JP4798806B2 (en) 2009-06-29 2009-06-29 Low shrinkage AE concrete composition using blast furnace cement

Country Status (1)

Country Link
JP (1) JP4798806B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610626B2 (en) * 2010-12-01 2014-10-22 株式会社竹中工務店 Preparation method of low shrinkage AE concrete and low shrinkage AE concrete
JP5748271B2 (en) * 2011-03-04 2015-07-15 株式会社竹中工務店 Non-shrink AE concrete composition
JP5660724B2 (en) * 2011-03-31 2015-01-28 株式会社竹中工務店 Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP5868188B2 (en) * 2012-01-11 2016-02-24 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Additive for high salinity cement composition and high salinity cement composition
JP5975716B2 (en) * 2012-04-26 2016-08-23 株式会社竹中工務店 Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof
CN102731040B (en) * 2012-06-15 2013-11-06 徐庆旭 Method for preparing building block brick series products by using waste electrolytic manganese slag
JP6130767B2 (en) * 2013-10-11 2017-05-17 ランデス株式会社 Mortar or concrete composition with improved frost resistance using blast furnace slag fine aggregate, molded product formed by molding the same, and method for producing molded product
JP6155373B1 (en) * 2016-08-22 2017-06-28 国立大学法人 岡山大学 Method for producing composition for mortar or concrete, method for producing molded product obtained by molding the composition, and method for quality control
JP6977983B2 (en) * 2017-01-04 2021-12-08 国立大学法人 岡山大学 Concrete manufacturing method and concrete fatigue strength evaluation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226757A (en) * 1988-03-04 1989-09-11 Takemoto Oil & Fat Co Ltd Dispersing agent for cement
JP3158657B2 (en) * 1992-05-08 2001-04-23 宇部興産株式会社 Manufacturing method of low shrinkage lightweight concrete
JP2003277113A (en) * 2002-03-22 2003-10-02 Taiheiyo Cement Corp Method for producing powdery cement dispersant
JP4212086B2 (en) * 2002-06-11 2009-01-21 Jfeミネラル株式会社 Hydraulic cement composition
JP4500325B2 (en) * 2007-04-26 2010-07-14 株式会社竹中工務店 Shrinkage reducing AE concrete composition
JP5330895B2 (en) * 2008-05-19 2013-10-30 克紀 綾野 Molded product formed by molding mortar or concrete composition
JP5008202B2 (en) * 2008-06-25 2012-08-22 株式会社竹中工務店 Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete

Also Published As

Publication number Publication date
JP2011006305A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
JP5539673B2 (en) Concrete composition using blast furnace slag composition
JP5502321B2 (en) Concrete and mortar admixture
JP5892696B2 (en) Concrete composition and concrete hardened body using blast furnace cement
JP6029672B2 (en) Quickly suspendable powdery composition
EP1876153A1 (en) Ultrahigh-strength fiber-reinforced cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement admixture
JP6192208B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP2009155151A (en) Water reducing agent for cement composition and cement composition
JP2008543997A5 (en)
JP2007076955A (en) Centrifugal force concrete product and its manufacturing method
US20200207670A1 (en) Hybrid foam
JP5545616B2 (en) Concrete composition using blast furnace cement composition
JP5545617B2 (en) Concrete composition using blast furnace cement
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JP4459912B2 (en) Drying shrinkage reducing agent and hardened cement using the same
JP7545385B2 (en) Activation of ground granulated blast furnace slag
JP2019151517A (en) Concrete composition and hardened concrete
JP5610626B2 (en) Preparation method of low shrinkage AE concrete and low shrinkage AE concrete
CN105050980A (en) Composition comprising a copolymer
JP5660724B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP5822397B2 (en) AE concrete composition using blast furnace cement
JP2001302307A (en) Cement additive and concrete composition produced by using the same
JP6263404B2 (en) Preparation method of concrete containing blast furnace slag
JP5344692B2 (en) Preparation method of AE concrete using blast furnace cement and AE concrete
JP5545615B2 (en) Concrete composition using blast furnace slag composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250