JP3578984B2 - Dispersant for hydraulic composition - Google Patents

Dispersant for hydraulic composition Download PDF

Info

Publication number
JP3578984B2
JP3578984B2 JP2000382272A JP2000382272A JP3578984B2 JP 3578984 B2 JP3578984 B2 JP 3578984B2 JP 2000382272 A JP2000382272 A JP 2000382272A JP 2000382272 A JP2000382272 A JP 2000382272A JP 3578984 B2 JP3578984 B2 JP 3578984B2
Authority
JP
Japan
Prior art keywords
copolymer
hydraulic composition
carbon atoms
dispersant
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000382272A
Other languages
Japanese (ja)
Other versions
JP2002187755A (en
Inventor
大介 柴
富士桜 倭
修一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000382272A priority Critical patent/JP3578984B2/en
Publication of JP2002187755A publication Critical patent/JP2002187755A/en
Application granted granted Critical
Publication of JP3578984B2 publication Critical patent/JP3578984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水硬性組成物用分散剤に関する。
【0002】
【従来の技術】
コンクリート製品や土木、建築構造物には、コンクリートを型枠に注入しながら内部、又は外部振動機で締め固めるものや、パイル、ポール、ヒューム管のように遠心締め固めにより得られる製品がある。これらコンクリート製品や高強度構造物は強度を確保するために、高性能減水剤の添加が必須となっている。
【0003】
しかし高性能減水剤を添加したコンクリートは、練り時間によって流動性にバラツキが生じ易く、コンクリートの充填性が低下して締め固めが不足したり、分離現象による耐久性の低下、コンクリート肌面の美観の損傷を生じる。
【0004】
また、コンクリートの練り上がり直後から60分程度までの流動性の低下を防止するアルケニルエーテルと無水マレイン酸共重合体とポリカルボン酸系分散剤の併用(特開平5−345647号)が提案されているが、これらはコンクリートが練り上がるまでの極めて初期の流動性の安定化には効果は低い。
【0005】
さらに、高強度構造物においては、近年、W/C〔水(W)/水硬性粉体(C)×100で算出される重量比〕≦30%の超高強度領域の水硬性組成物に対して、適量の添加で分散性と分散保持性を発現し、遅延作用の小さな分散剤が要求されている。高強度コンクリート用途に対しては、アルキレンオキサイド付加モル数を50から100に特定したポリカルボン酸系分散剤(特開平8−12396号)が提案されているが、W/C≦30%において、混練直後のコンクリートの過剰な粘性を抑制し、コンクリートの充填までの分散保持をより安定にすることが必要とされている。
【0006】
【発明が解決しようとする課題】
本発明は、練り時間の変動によらず、コンクリートに安定した流動性を付与し、安定したコンクリート製品やコンクリート構造物を提供できる水硬性組成物用分散剤を得ることを課題とする。
【0007】
特に、W/C≦30%の超高強度領域のモルタルやコンクリート等の水硬性組成物に対して、適量の添加で分散性と分散保持性を発現し、遅延作用の小さく、混練直後の組成物の過剰な粘性発現を抑制できる分散剤を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、下記(イ)成分と(ロ)成分とを含有する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物用の分散剤(ただし、下記の一般式(B’)で表される単量体(a’)と、下記の一般式(C)及び(D)で表される化合物から選ばれる1種以上の単量体(b)とを含有する単量体混合物を重合して得られる共重合体を含有するものを除く)、及び該分散剤を含有する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物、並びに、該分散剤を使用する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物の製造方法に関する。
(イ)成分:下記一般式(A)で示されるアリルエーテルとマレイン酸との共重合体又はその塩。
【0009】
O(AO)n1 (A)
(式中、Rアリル基、AOは炭素数2〜3のオキシアルキレン基、nは15〜90の数、Rは水素原子又は炭素数1〜3のアルキル基を表す。)
(ロ)成分:下記の一般式(B)で表される単量体(a)と、下記の一般式(C)及び(D)で表される化合物から選ばれる1種以上の単量体(b)とを含有する単量体混合物を重合して得られる共重合体であって、該共重合体を構成する単量体(a)、(b)の反応単位が、(a)/(b)=1/100〜60/100である共重合体
【0010】
【化3】

Figure 0003578984
【0011】
(式中、R、Rは水素原子又はメチル基、mは0〜2の数、AOは炭素数2〜3のオキシアルキレン基、n23以上100未満の数、Xは水素原子又は炭素数1〜3のアルキル基を表す。)
【0012】
【化4】
Figure 0003578984
(式中、R、R’は水素原子又はメチル基、m’は0〜2の数、A’Oは炭素数2〜3のオキシアルキレン基、n’は100〜300の数、X’は水素原子又は炭素数1〜3のアルキル基を表す。)
【化5】
Figure 0003578984
【0013】
(式中、R〜Rは水素原子、メチル基又は(CHm2COOM、Rは水素原子又はメチル基、M、M、Yは水素原子又は陽イオン、mは0〜2の数を表す。)
【0014】
【発明の実施の形態】
本発明の共重合体(イ)を構成するアルケニルエーテルの一般式(A)に於いて、R1 はアリル基である。AOは、エチレンオキシド(以下EO)、プロピレンオキシド(以下PO)であり、付加形態は単独、ランダム、ブロック又は交互のいずれでもよい。好ましくはEOである。R2は炭素数1〜3のアルキル基が好ましく、メチル、エチル、プロピル基等が挙げられる。特にメチル基が好ましい。
【0015】
アルキレンオキシドの平均付加モル数nは、15〜90の範囲であり、15〜60がより好ましく、20〜50が特に好ましい。この範囲内で物理的な攪拌力や温度による影響を受けにくく、安定した流動性を得ることができる。
【0016】
本発明の共重合体(イ)は、これら一般式(A)で表される単量体とマレイン酸との共重合体、好ましくはモル比が、一般式(A)の単量体/マレイン酸=30/70〜70/30である共重合体又はその塩である。マレイン酸は無水物であってもよい。かかる共重合体(イ)の製造方法としては、特開平2−163108号、特開平5−345647号記載の方法が挙げられる。
【0017】
また、共重合体(イ)の好ましい重量平均分子量は流動性付与の点から、3000〜30万、更には5000〜10万である。
【0018】
共重合体(イ)の一例として、マリアリムEKM、マリアリムAKM(日本油脂社製)やスーパー200(電気化学社製)が挙げられる。
【0019】
本発明の共重合体(ロ)は、炭素数2〜3のアルキレンオキシドを平均付加モル数で23以上100未満モル付加した一般式(B)で表される単量体(a)と前記一般式(C)及び/又は(D)、好ましくは一般式(C)で表される単量体(b)とを含有する単量体混合物を重合してなる。前述した(イ)成分と併用した場合に安定した初期流動性を得るため、アルキレンオキシドの平均付加モル数n223以上100未満の範囲であり、23以上90以下が好ましく、23以上75以下がさらに好ましく、23以上50以下が最も好ましい。なお、共重合体(ロ)を得るための単量体混合物において、n2が異なる複数の単量体(a)を用いる場合は、全単量体(a)のn2の平均値が23以上100未満の範囲にあるように組成を調整する。例えば、2種の単量体(a)を用いる場合、一方はn223〜96、他方はn2’=23以上100未満で、n2≠n2’かつn2’≦n2+3であることが好ましく、n2’≦n2+5であることがより好ましく、n2’≦n2+10であることが最も好ましい。更に、本発明の効果を損なわない範囲で、単量体(a)としてn2が100以上の単量体を併用することもできる。
【0020】
一般式(B)で表される単量体(a)としては、メトキシポリエチレングリコール、メトキシポリプロピレングリコール、エトキシポリエチレンポリプロピレングリコール等の片末端アルキル基封鎖ポリアルキレングリコールと(メタ)アクリル酸とのエステル化物や、(メタ)アクリル酸へのEO、PO付加物が好ましく用いられる。付加形態は単独、ランダム、ブロック又は交互のいずれでもよい。より好ましくはメトキシポリエチレングリコールと(メタ)アクリル酸とのエステル化物であり、EO平均付加モル数が2以上100未満のメトキシポリエチレングリコールとメタクリル酸とのエステル化物が特に好ましい。
【0021】
一般式(C)で示される単量体としては、(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸系単量体、無水マレイン酸、マレイン酸、無水イタコン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸系単量体、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキルアンモニウム塩が好ましく、より好ましくは(メタ)アクリル酸又はこれらのアルカリ金属塩である。
【0022】
一般式(D)で示される単量体としては、アリルスルホン酸、メタリルスルホン酸、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキルアンモニウム塩が使用される。
【0023】
好ましくは、共重合体(ロ)は、前記一般式(B)で表される単量体(a)と、一般式(C)及び(D)で表される単量体の1種以上(b)とを合わせて50重量%以上、更には80〜100重量%以上、特には100重量%含有する単量体混合物を重合して得られる。
【0024】
共重合体(ロ)を構成する一般式(B)の単量体(a)と、一般式(C)及び/又は一般式(D)の単量体(b)の反応単位は、(a)/(b)=1/100〜500/100が流動性に優れ、好ましい。より好ましくは1/100〜100/100、更に好ましくは10/100〜60/100、特に好ましくは10/100〜40/100である。
【0025】
共重合体(ロ)の重量平均分子量は、流動性の点より5000〜500000の範囲が良く、20000〜100000、更に30000〜85000の範囲が流動性に特に優れる。重量平均分子量はゲルパーミエーションクロマトグラフィ法(標準物質ポリスチレンスルホン酸ナトリウム換算)による。
【0026】
共重合体(ロ)は公知の方法で製造できる。例えば、特開平7−223852号公報、特開平4−209737号公報、特開昭58−74552号公報の溶液重合法が挙げられ、水や炭素数1〜4の低級アルコール中、過硫酸アンモニウム、過酸化水素等の重合開始剤存在下、必要なら亜硫酸水素ナトリウムやメルカプトエタノール等を添加し、50〜100℃で0.5〜10時間反応させればよい。
【0027】
なお、共重合体(ロ)の原料として他の共重合可能なモノマーを併用でき、具体的には、アクリロニトリル、(メタ)アクリル酸アルキル(C〜C12)エステル、(メタ)アクリルアミド、スチレン、スチレンスルホン酸等が挙げられる。
【0028】
本発明の共重合体(イ)と(ロ)の組成比は(イ)/(ロ)=5〜95/95〜5(固形分重量比)が好ましく、10〜90/90〜10がより好ましく、20〜80/80〜20が特に好ましい。本発明の(イ)成分と(ロ)成分とを併用することで、コンクリートの練り上がり初期の流動性に関して、物理的な攪拌力や温度による影響を受けにくくなると推察され、極めて安定した流動性が得られる。
【0029】
本発明のコンクリート混和剤は、共重合体(イ)と(ロ)の合計がセメントに対して固形分で0.02〜1.0重量%、好ましくは0.1〜0.5重量%となるように添加される。
【0030】
また本発明の共重合体(イ)と(ロ)はコンクリートに対し、予め両者を配合してから添加しても別々に添加してもよく、先に混練水で希釈してから用いてもよい。
【0031】
本発明のコンクリート混和剤は、生コンクリートの製造の他、特に振動機や重力加速度3G〜60Gの遠心力で締め固めて成型するコンクリート製品の製造に適する。更に、振動機を使用しない自己充填性の、50cm(JIS A−1101スランプ試験に準ずるフロー値)以上の流動性を示す高流動性コンクリートにも用いることができる。
【0032】
添加対象となるコンクリートはセメント、細骨材、粗骨材等を主成分とするものであるが、各種の高炉スラグ、フライアッシュ、珪砂、シリカフューム等を使用することができる。更に公知の添加剤(材)と併用することもでき、例えば、AE剤、AE減水剤、高性能減水剤、遅延剤、早強剤、促進剤、起泡剤、発泡剤、消泡剤、増粘剤、防水剤、防泡剤、高炉スラグ、フライアッシュ、等が挙げられる。これらを用いて調製された水硬性組成物のうち、本発明の分散剤は、水/水硬性粉体(特にセメント)重量比(W/C)が10〜25%、特に15〜25%の高強度水硬性組成物に特に好適である。
【0033】
【実施例】
<コンクリート配合>
表1に示す配合条件によりコンクリートを調製した。
【0034】
【表1】
Figure 0003578984
【0035】
W:水
C:シリカフュームセメント(密度:3.08)
S:細骨材、君津産陸砂(密度:2.61、FM:2.64)
G:粗骨材、和歌山産砕石(密度:2.63、FM:6.64)
W/C=(Wの単位重量/Cの単位重量)×100(%)
s/a=〔細骨材容積/(細骨材容積+粗骨材容積)〕×100(%)。
【0036】
<性能評価>
表2に示す共重合体(イ)と表3に示す共重合体(ロ)を、表4の組み合わせ、固形分重量比で配合してなる分散剤を、それぞれ表1のコンクリートに添加し、このコンクリートを50L強制ミキサーで30L練り、排出したフレッシュコンクリートについて、以下の測定を行った。結果を表4に示す。なお、表4中、実施例1〜7、11、20は比較例であるが、便宜的に実施例の欄に示してある。
【0037】
(1)分散性
初期のスランプフロー(SF)値〔高流動コンクリート施工指針(コンクリートライブラリー93)〕が、650〜700mmとなるのに要する分散剤の固形分量の総粉体に対する添加率を測定する。数値が小さい程、分散性が良い。
【0038】
(2)分散保持性
排出30分後のSF値に対する初期SF値(上記分散性測定の際の初期SF値)の百分率を、分散保持性の尺度とする。数値が大きいほど分散保持性が良好とする。ただし、100%を超える場合は、骨材分離する傾向にあるため、好ましくない。
【0039】
(3)粘性
排出直後のフレッシュコンクリートから、目開き5mmの篩で粗骨材を分離して得たモルタルを、ステンレス鋼(SUS304)を加工して作製した図1の形状の装置に、下部排出開口を閉じた状態で充填し上部投入開口の面で擦り切った後、下部排出開口を開放してモルタルを自然流下させ、上部投入開口から目視で観察したときにモルタルの少なくとも一部に孔が確認されるまでの時間(流下時間)を測定し、これを粘性の評価に用いた。流下時間が過度に大きいと、充填時に多量の巻込み気泡や未充填部分が発生するので好ましくなく、流下時間が過度に小さいと、骨材分離抵抗性が低下して、未充填部分や水路が発生してやはり好ましくない。
【0040】
【表2】
Figure 0003578984
【0041】
(注)AO及びnの欄の( )の次の数字がnである。また、共重合体(イ)のNo.6のEOとPOはランダム付加である。Mwは重量平均分子量である(以下同様)。
【0042】
【表3】
Figure 0003578984
【0043】
(注)単量体(a)の種類の欄の( )の次の数字がnである。
【0044】
【表4】
Figure 0003578984
【0045】
比較例2、4以外の比較例は、分散性が不十分なため、所定のSF値を得るのに、多量の添加が必要となる。また、比較例1、2、5、6は、分散保持性が悪く、経時と共にSF値が過度に増大し、骨材分離してしまうので好ましくない。更に、比較例4、6、8は、モルタル粘性が極めて高く、充填性に支障が生じる場合がある。比較例は全般に、W/Cがより低い系(配合B)で、粘性の増大が激しい傾向がある。
【0046】
一方、実施例は何れも、W/Cの低い領域でも分散性、分散保持性及び粘性が安定していることがわかる。特に、共重合体(ロ)のEO付加モル数nが50以下の場合に、モルタル粘性が低いので好ましい。また、分散性と粘性のバランスを考慮すると、共重合体(ロ)が三元共重合の場合がより好ましい。
【図面の簡単な説明】
【図1】実施例で流下時間の測定に用いた装置を示す概略図
【符号の説明】
1…上部投入開口
2…下部排出開口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dispersant for a hydraulic composition.
[0002]
[Prior art]
Concrete products, civil engineering, and building structures include products obtained by compacting concrete with an internal or external vibrator while pouring concrete into a formwork, and products obtained by centrifugal compaction such as piles, poles, and fume tubes. For these concrete products and high-strength structures, it is essential to add a high-performance water reducing agent in order to secure the strength.
[0003]
However, concrete to which a high-performance water reducing agent is added tends to vary in fluidity depending on the kneading time, and the filling of the concrete is reduced, resulting in insufficient compaction, the separation phenomenon resulting in reduced durability, and the appearance of the concrete surface. Causes damage.
[0004]
Further, a combination use of an alkenyl ether, a maleic anhydride copolymer, and a polycarboxylic acid-based dispersant for preventing a decrease in fluidity from immediately after kneading of concrete to about 60 minutes has been proposed (JP-A-5-345647). However, these are not very effective in stabilizing the fluidity at the very beginning until the concrete is kneaded.
[0005]
Furthermore, in the high-strength structure, in recent years, the hydraulic composition in the ultra-high-strength region of W / C [weight ratio calculated by water (W) / hydraulic powder (C) × 100] ≦ 30% has been developed. On the other hand, there is a demand for a dispersant which exhibits dispersibility and dispersion retention properties when added in an appropriate amount and has a small delay effect. For high-strength concrete applications, polycarboxylic acid-based dispersants (JP-A-8-12396) in which the number of moles of alkylene oxide added is specified to be from 50 to 100 have been proposed, but when W / C ≦ 30%, It is necessary to suppress the excessive viscosity of the concrete immediately after kneading and to stabilize the dispersion and maintenance until the concrete is filled.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a hydraulic composition dispersant capable of imparting stable fluidity to concrete and providing a stable concrete product or concrete structure regardless of fluctuations in the kneading time.
[0007]
In particular, it exhibits a dispersibility and a dispersion retention property by adding an appropriate amount to a hydraulic composition such as mortar or concrete in an ultra-high strength region of W / C ≦ 30%, has a small delay effect, and has a composition immediately after kneading. It is an object of the present invention to provide a dispersant capable of suppressing an excessive viscosity expression of a substance.
[0008]
[Means for Solving the Problems]
The present invention provides a dispersant for a high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25%, comprising the following components (a) and (b) (provided that the following general formula: It contains a monomer (a ′) represented by (B ′) and one or more monomers (b) selected from compounds represented by the following general formulas (C) and (D). A high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25%, which contains a copolymer obtained by polymerizing a monomer mixture) and the dispersant ; Also, the present invention relates to a method for producing a high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25% using the dispersant .
(A) Component: A copolymer of allyl ether and maleic acid represented by the following general formula (A) or a salt thereof.
[0009]
R 1 O (AO) n1 R 2 (A)
(In the formula, R 1 represents an allyl group , AO represents an oxyalkylene group having 2 to 3 carbon atoms, n 1 represents a number of 15 to 90, and R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
(B) Component: at least one monomer selected from the monomers (a) represented by the following general formula (B) and the compounds represented by the following general formulas (C) and (D) (B) is a copolymer obtained by polymerizing a monomer mixture containing (a) and (b), wherein the reaction units of the monomers (a) and (b) constituting the copolymer are (a) / (B) = 1/100 to 60/100 copolymer .
[0010]
Embedded image
Figure 0003578984
[0011]
(Wherein, R 3 and R 4 are hydrogen atoms or methyl groups, m 1 is a number of 0 to 2, AO is an oxyalkylene group having 2 to 3 carbon atoms, n 2 is a number of 23 or more and less than 100, X is hydrogen Represents an atom or an alkyl group having 1 to 3 carbon atoms.)
[0012]
Embedded image
Figure 0003578984
(Wherein R and R ′ are a hydrogen atom or a methyl group, m ′ is a number of 0 to 2, A′O is an oxyalkylene group having 2 to 3 carbon atoms, n ′ is a number of 100 to 300, and X ′ is Represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
Embedded image
Figure 0003578984
[0013]
(Wherein, R 5 to R 7 are a hydrogen atom, a methyl group or (CH 2 ) m2 COOM 2 , R 8 is a hydrogen atom or a methyl group, M 1 , M 2 , Y is a hydrogen atom or a cation, and m 2 is Represents the number of 0 to 2)
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the general formula (A) of the alkenyl ether constituting the copolymer (a) of the present invention, R 1 is an allyl group. AO is ethylene oxide (hereinafter referred to as EO) or propylene oxide (hereinafter referred to as PO), and the addition form may be any of single, random, block or alternating. Preferably, it is EO. R 2 is preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl, ethyl and propyl group. Particularly, a methyl group is preferable.
[0015]
The average addition mole number n 1 of the alkylene oxide is in the range of 15 to 90, more preferably from 15 to 60, particularly preferably 20 to 50. Within this range, it is hardly affected by physical stirring power and temperature, and stable fluidity can be obtained.
[0016]
The copolymer (a) of the present invention is a copolymer of the monomer represented by the general formula (A) and maleic acid, preferably, the monomer / maleic of the general formula (A) having a molar ratio of It is a copolymer having an acid of 30/70 to 70/30 or a salt thereof. Maleic acid may be an anhydride. Examples of the method for producing such a copolymer (a) include the methods described in JP-A-2-163108 and JP-A-5-345647.
[0017]
The preferred weight average molecular weight of the copolymer (a) is 3000 to 300,000, and more preferably 5000 to 100,000 from the viewpoint of imparting fluidity.
[0018]
Examples of the copolymer (a) include Marialim EKM, Marialim AKM (manufactured by NOF Corporation) and Super 200 (manufactured by Denki Kagaku).
[0019]
The copolymer (b) of the present invention comprises a monomer (a) represented by the general formula (B) in which an alkylene oxide having 2 to 3 carbon atoms is added in an amount of 23 or more and less than 100 in terms of an average addition mole number, and It is obtained by polymerizing a monomer mixture containing the monomer (b) represented by the formula (C) and / or (D), preferably the general formula (C). To obtain a stable initial fluidity when used in combination with the above-mentioned component (i), the average addition molar number n 2 of the alkylene oxide is in the range of less than 23 or more 100 preferably 23 or more and 90 or less, 23 or more 75 or less Is more preferable, and 23 or more and 50 or less are most preferable. When a plurality of monomers (a) having different n 2 are used in the monomer mixture for obtaining the copolymer (b), the average value of n 2 of all the monomers (a) is 23. The composition is adjusted so as to be in the range of at least 100 and less than 100. For example, when two kinds of monomers (a) are used, one is n 2 = 23 to 96, the other is n 2 ′ = 23 or more and less than 100, and n 2 ≠ n 2 ′ and n 2 ′ ≦ n 2 +3 Is preferable, n 2 ′ ≦ n 2 +5 is more preferable, and n 2 ′ ≦ n 2 +10 is most preferable. Further, as long as the effects of the present invention are not impaired, a monomer having n 2 of 100 or more can be used in combination as the monomer (a).
[0020]
Examples of the monomer (a) represented by the general formula (B) include an esterified product of (meth) acrylic acid with a polyalkylene glycol having an alkyl group at one end, such as methoxypolyethylene glycol, methoxypolypropylene glycol, or ethoxypolyethylene polypropylene glycol. Alternatively, an EO or PO adduct to (meth) acrylic acid is preferably used. The additional form may be single, random, block or alternating. More preferably, it is an esterified product of methoxypolyethylene glycol and (meth) acrylic acid, and particularly preferably an esterified product of methoxypolyethylene glycol and methacrylic acid having an average addition mole number of EO of 2 or more and less than 100.
[0021]
Examples of the monomer represented by the general formula (C) include unsaturated monocarboxylic acid monomers such as (meth) acrylic acid and crotonic acid, maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, and fumaric acid. And the like, or an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and a mono-, di-, or trialkylammonium salt which may have a substituted hydroxyl group, and more preferably ( (Meth) acrylic acid or alkali metal salts thereof.
[0022]
Examples of the monomer represented by the general formula (D) include allyl sulfonic acid, methallyl sulfonic acid, or an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and a mono- or di-substituted hydroxyl group thereof. , Trialkylammonium salts are used.
[0023]
Preferably, the copolymer (b) comprises one or more monomers (a) represented by the general formula (B) and one or more monomers represented by the general formulas (C) and (D) ( b) is obtained by polymerizing a monomer mixture containing at least 50% by weight, more preferably at least 80 to 100% by weight, especially 100% by weight.
[0024]
The reaction unit of the monomer (a) of the general formula (B) constituting the copolymer (b) and the monomer (b) of the general formula (C) and / or the general formula (D) is (a) ) / (B) = 1 / 100-500 / 100 is excellent in fluidity and is preferred. The ratio is more preferably 1/100 to 100/100, further preferably 10/100 to 60/100, and particularly preferably 10/100 to 40/100.
[0025]
The weight average molecular weight of the copolymer (b) is preferably in the range of 5,000 to 500,000 from the viewpoint of fluidity, and in the range of 20,000 to 100,000, and more preferably 30,000 to 85,000, and the fluidity is particularly excellent. The weight average molecular weight is determined by gel permeation chromatography (standard substance: sodium polystyrene sulfonate).
[0026]
The copolymer (b) can be produced by a known method. For example, the solution polymerization method described in JP-A-7-223852, JP-A-4-209737, and JP-A-58-74552 may be mentioned. In water or a lower alcohol having 1 to 4 carbon atoms, ammonium persulfate, In the presence of a polymerization initiator such as hydrogen oxide, if necessary, sodium bisulfite, mercaptoethanol, or the like may be added, and the reaction may be performed at 50 to 100 ° C. for 0.5 to 10 hours.
[0027]
In addition, other copolymerizable monomers can be used in combination as a raw material of the copolymer (b). Specifically, acrylonitrile, alkyl (meth) acrylate (C 1 -C 12 ) ester, (meth) acrylamide, styrene And styrene sulfonic acid.
[0028]
The composition ratio of the copolymers (a) and (b) of the present invention is preferably (a) / (b) = 5-95 / 95-5 (solid content weight ratio), more preferably 10-90 / 90-10. Preferably, 20-80 / 80-20 are especially preferable. It is presumed that the combined use of the component (a) and the component (b) of the present invention makes it difficult for the fluidity in the initial stage of kneading of the concrete to be affected by the physical stirring force and the temperature. Is obtained.
[0029]
In the concrete admixture of the present invention, the total amount of the copolymers (a) and (b) is 0.02 to 1.0% by weight, preferably 0.1 to 0.5% by weight, based on the cement. To be added.
[0030]
Further, the copolymers (a) and (b) of the present invention may be added to concrete in advance after blending both or may be added separately, or may be used after previously diluted with kneading water. Good.
[0031]
The concrete admixture of the present invention is suitable not only for production of ready-mixed concrete but also for production of concrete products which are compacted and compacted by a vibrator or a centrifugal force having a gravitational acceleration of 3G to 60G. Furthermore, it can be used for a highly fluid concrete having a fluidity of 50 cm (flow value according to JIS A-1101 slump test) or more, which is self-filling without using a vibrator.
[0032]
The concrete to be added is mainly composed of cement, fine aggregate, coarse aggregate and the like, and various blast furnace slag, fly ash, silica sand, silica fume and the like can be used. Further, it can be used in combination with known additives (materials), for example, an AE agent, an AE water reducing agent, a high-performance water reducing agent, a retarding agent, a quick strengthening agent, an accelerator, a foaming agent, a foaming agent, a defoaming agent, Examples include thickeners, waterproofing agents, antifoaming agents, blast furnace slag, fly ash, and the like. Among the hydraulic compositions prepared using these, the dispersant of the present invention has a water / hydraulic powder (particularly cement) weight ratio (W / C) of 10 to 25%, particularly 15 to 25%. It is particularly suitable for high-strength hydraulic compositions.
[0033]
【Example】
<Concrete mix>
Concrete was prepared under the mixing conditions shown in Table 1.
[0034]
[Table 1]
Figure 0003578984
[0035]
W: Water C: Silica fume cement (density: 3.08)
S: Fine aggregate, land sand from Kimitsu (density: 2.61, FM: 2.64)
G: Coarse aggregate, crushed stone from Wakayama (density: 2.63, FM: 6.64)
W / C = (unit weight of W / unit weight of C) × 100 (%)
s / a = [fine aggregate volume / (fine aggregate volume + coarse aggregate volume)] × 100 (%).
[0036]
<Performance evaluation>
The copolymer (a) shown in Table 2 and the copolymer (b) shown in Table 3 were added to the concrete shown in Table 1 in combination with the combination shown in Table 4 at a solid content weight ratio. 30 L of this concrete was kneaded with a 50 L forced mixer, and the following measurement was performed on the discharged fresh concrete. Table 4 shows the results. In Table 4, Examples 1 to 7, 11, and 20 are comparative examples, but are shown in the column of Examples for convenience.
[0037]
(1) Dispersibility The slump flow (SF) value at the initial stage [High fluidity concrete construction guideline (concrete library 93)] measures the addition ratio of the solid content of the dispersant to the total powder required to reach 650 to 700 mm. I do. The smaller the value, the better the dispersibility.
[0038]
(2) Dispersion retention The percentage of the initial SF value (the initial SF value at the time of the dispersibility measurement) with respect to the SF value 30 minutes after discharge was used as a measure of dispersion retention. The larger the value, the better the dispersion retention. However, if it exceeds 100%, the aggregate tends to separate, which is not preferable.
[0039]
(3) A mortar obtained by separating coarse aggregate from a fresh concrete immediately after viscous discharge with a sieve having an opening of 5 mm and processing the stainless steel (SUS304) into a device having a shape shown in FIG. After filling with the opening closed and scraping off at the surface of the upper input opening, the lower discharge opening is opened to allow the mortar to flow naturally, and holes are formed in at least a part of the mortar when visually observed from the upper input opening. The time until it was confirmed (flow time) was measured and used for the evaluation of viscosity. If the flowing time is excessively large, a large amount of entrapped air bubbles and unfilled portions are generated at the time of filling. It is still undesirable because it occurs.
[0040]
[Table 2]
Figure 0003578984
[0041]
The following numbers are n 1 of Note in column AO and n 1 (). Further, the copolymer (a) No. EO and PO of 6 are random additions. Mw is a weight average molecular weight (the same applies hereinafter).
[0042]
[Table 3]
Figure 0003578984
[0043]
(Note) The following numbers of the monomer of the type of column (a) () is n 2.
[0044]
[Table 4]
Figure 0003578984
[0045]
Comparative Examples other than Comparative Examples 2 and 4 have insufficient dispersibility, so that a large amount of addition is required to obtain a predetermined SF value. Further, Comparative Examples 1, 2, 5, and 6 are not preferable because the dispersion retention is poor, the SF value excessively increases with time, and aggregates are separated. Further, Comparative Examples 4, 6, and 8 have extremely high mortar viscosity, which may cause a problem in the filling property. Comparative examples generally have a lower W / C (formulation B) and tend to have a sharp increase in viscosity.
[0046]
On the other hand, in each of the examples, it can be seen that the dispersibility, the dispersion retention, and the viscosity are stable even in the low W / C region. In particular, when the EO addition molar number n 2 of the copolymer (B) is 50 or less, because of the low mortar viscosity preferred. Further, in consideration of the balance between the dispersibility and the viscosity, it is more preferable that the copolymer (b) is a terpolymer.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an apparatus used for measuring a flow time in an embodiment.
1 Upper opening 2 Lower outlet

Claims (5)

下記(イ)成分と(ロ)成分とを含有する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物用の分散剤(ただし、下記の一般式(B’)で表される単量体(a’)と、下記の一般式(C)及び(D)で表される化合物から選ばれる1種以上の単量体(b)とを含有する単量体混合物を重合して得られる共重合体を含有するものを除く)。
(イ)成分:下記一般式(A)で示されるアリルエーテルとマレイン酸との共重合体又はその塩。
O(AO)n1 (A)
(式中、Rはアリル基、AOは炭素数2〜3のオキシアルキレン基、nは15〜90の数、Rは水素原子又は炭素数1〜3のアルキル基を表す。)
(ロ)成分:下記の一般式(B)で表される単量体(a)と、下記の一般式(C)及び(D)で表される化合物から選ばれる1種以上の単量体(b)とを含有する単量体混合物を重合して得られる共重合体であって、該共重合体を構成する単量体(a)、(b)の反応単位が、(a)/(b)=1/100〜60/100である共重合体。
Figure 0003578984
(式中、R、Rは水素原子又はメチル基、mは0〜2の数、AOは炭素数2〜3のオキシアルキレン基、nは23以上100未満の数、Xは水素原子又は炭素数1〜3のアルキル基を表す。)
Figure 0003578984
(式中、R、R’は水素原子又はメチル基、m’は0〜2の数、A’Oは炭素数2〜3のオキシアルキレン基、n’は100〜300の数、X’は水素原子又は炭素数1〜3のアルキル基を表す。)
Figure 0003578984
(式中、R〜Rは水素原子、メチル基又は(CH)m2COOM、Rは水素原子又はメチル基、M、M、Yは水素原子又は陽イオン、mは0〜2の数を表す。)
A dispersant for a high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25%, comprising the following components (a) and (b) (however, the following general formula (B ′) A monomer mixture containing a monomer (a ′) represented by the following formula and one or more monomers (b) selected from compounds represented by the following general formulas (C) and (D) Excluding those containing a copolymer obtained by polymerizing
(A) Component: A copolymer of allyl ether and maleic acid represented by the following general formula (A) or a salt thereof.
R 1 O (AO) n1 R 2 (A)
(In the formula, R 1 represents an allyl group, AO represents an oxyalkylene group having 2 to 3 carbon atoms, n 1 represents a number of 15 to 90, and R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
(B) Component: at least one monomer selected from the monomers (a) represented by the following general formula (B) and the compounds represented by the following general formulas (C) and (D) (B) is a copolymer obtained by polymerizing a monomer mixture containing (a) and (b), wherein the reaction units of the monomers (a) and (b) constituting the copolymer are (a) / (B) = 1/100 to 60/100 copolymer.
Figure 0003578984
(Wherein, R 3 and R 4 are hydrogen atoms or methyl groups, m 1 is a number of 0 to 2, AO is an oxyalkylene group having 2 to 3 carbon atoms, n 2 is a number of 23 or more and less than 100, X is hydrogen Represents an atom or an alkyl group having 1 to 3 carbon atoms.)
Figure 0003578984
(Wherein R and R ′ are a hydrogen atom or a methyl group, m ′ is a number of 0 to 2, A′O is an oxyalkylene group having 2 to 3 carbon atoms, n ′ is a number of 100 to 300, and X ′ is Represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
Figure 0003578984
(Wherein, R 5 to R 7 are a hydrogen atom, a methyl group or (CH 2 ) m2 COOM 2 , R 8 is a hydrogen atom or a methyl group, M 1 , M 2 , Y is a hydrogen atom or a cation, and m 2 is Represents the number of 0 to 2)
(イ)成分と(ロ)成分の固形分重量比が、(イ)/(ロ)=5〜95/95〜5である請求項1記載の水硬性組成物用分散剤。The dispersant for a hydraulic composition according to claim 1, wherein the solid content weight ratio of the component (a) and the component (b) is (a) / (b) = 5 to 95/95 to 5. 共重合体(イ)を構成するアリルエーテルとマレイン酸の反応単位が、30/70〜70/30である請求項1又は2記載の水硬性組成物用分散剤。The dispersant for a hydraulic composition according to claim 1 or 2, wherein the reaction unit of the allyl ether and maleic acid constituting the copolymer (a) is 30/70 to 70/30. 請求項1〜の何れか記載の水硬性組成物用分散剤を含有する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物。A high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25%, comprising the hydraulic composition dispersant according to any one of claims 1 to 3 . 請求項1〜の何れか記載の水硬性組成物用分散剤を使用する、水/水硬性粉体重量比が10〜25%の高強度水硬性組成物の製造方法。A method for producing a high-strength hydraulic composition having a water / hydraulic powder weight ratio of 10 to 25% using the hydraulic composition dispersant according to any one of claims 1 to 3 .
JP2000382272A 2000-12-15 2000-12-15 Dispersant for hydraulic composition Expired - Fee Related JP3578984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382272A JP3578984B2 (en) 2000-12-15 2000-12-15 Dispersant for hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382272A JP3578984B2 (en) 2000-12-15 2000-12-15 Dispersant for hydraulic composition

Publications (2)

Publication Number Publication Date
JP2002187755A JP2002187755A (en) 2002-07-05
JP3578984B2 true JP3578984B2 (en) 2004-10-20

Family

ID=18850130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382272A Expired - Fee Related JP3578984B2 (en) 2000-12-15 2000-12-15 Dispersant for hydraulic composition

Country Status (1)

Country Link
JP (1) JP3578984B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI293066B (en) * 2003-11-05 2008-02-01 Nippon Catalytic Chem Ind Cement admixture
JP4666344B2 (en) * 2003-11-05 2011-04-06 株式会社日本触媒 Cement admixture
JP4494143B2 (en) * 2004-09-15 2010-06-30 花王株式会社 Admixture for hydraulic composition
JP2007076970A (en) * 2005-09-15 2007-03-29 Nippon Shokubai Co Ltd Admixture composition for hydraulic material
JP2007210843A (en) * 2006-02-10 2007-08-23 Lion Corp Powdery cement admixture
CN101547708A (en) * 2006-12-07 2009-09-30 东洋纺织株式会社 (meth)acrylate copolymer, process for producing the same and medical device
JP5100366B2 (en) * 2007-12-27 2012-12-19 花王株式会社 Admixture for hydraulic composition
JP5311891B2 (en) * 2008-06-16 2013-10-09 花王株式会社 Additive composition for hydraulic composition
FR2939128B1 (en) * 2008-12-03 2010-11-12 Coatex Sas USE OF A COMBINATION OF COMBINED POLYMERS AS AN AGENT ENHANCING THE HANDLING OF AQUEOUS FORMULATION BASED ON HYDRAULIC BINDERS.
JP2011102221A (en) * 2009-11-11 2011-05-26 Construction Research & Technology Gmbh Copolymer as cement dispersant, mixing agent for concrete including the same, and cement composition
CN111234426A (en) * 2020-02-21 2020-06-05 广州机械科学研究院有限公司 Polytetrafluoroethylene composite material

Also Published As

Publication number Publication date
JP2002187755A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
ITRM940369A1 (en) MIXED COMPOSITION ADDITIVE FOR THE CONTROL OF THE FLUIDITY OF CEMENT-BASED MIXTURES.
JP3578984B2 (en) Dispersant for hydraulic composition
JP6260037B2 (en) Multifunctional admixture for concrete
JP3964096B2 (en) Concrete admixture
JP3188245B2 (en) Surfactant composition
JP4896443B2 (en) Method for producing centrifugal molded cured body
JPH09328345A (en) Admixture for concrete
JPH0812397A (en) Self-packing concrete admixture
JPS641426B2 (en)
JPH027897B2 (en)
JP7103691B2 (en) Additives for hydraulic compositions and hydraulic compositions
JP5351473B2 (en) Hydraulic composition for ultra high strength concrete
JP6234284B2 (en) Cement admixture and cement composition using the same
JP3290335B2 (en) Hydraulic composition
JP7037224B1 (en) Additives for hydraulic compositions and hydraulic compositions
JP6751579B2 (en) Additives for hydraulic compositions
JP5100366B2 (en) Admixture for hydraulic composition
JP2019085280A (en) Blast furnace slag containing-cement slurry composition and preparation method for soil cement slurry using the same
JP4087042B2 (en) Cement dispersant
JP4290387B2 (en) Cement dispersant
JP4963046B2 (en) Method for producing hydraulic composition molded body
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP2018509489A (en) Novel copolymers as water reducing agents in hydraulic compositions
JP3436901B2 (en) Admixture for hydraulic compositions
JP4105108B2 (en) Dispersant for hydraulic composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R151 Written notification of patent or utility model registration

Ref document number: 3578984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees