JP3914123B2 - Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition - Google Patents

Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition Download PDF

Info

Publication number
JP3914123B2
JP3914123B2 JP2002265224A JP2002265224A JP3914123B2 JP 3914123 B2 JP3914123 B2 JP 3914123B2 JP 2002265224 A JP2002265224 A JP 2002265224A JP 2002265224 A JP2002265224 A JP 2002265224A JP 3914123 B2 JP3914123 B2 JP 3914123B2
Authority
JP
Japan
Prior art keywords
caking agent
caking
component
weight
ethylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002265224A
Other languages
Japanese (ja)
Other versions
JP2004099389A (en
Inventor
浩之 光藤
千秋 吉澤
隆 和田
篤 山口
智雄 高橋
光男 木之下
龍志 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2002265224A priority Critical patent/JP3914123B2/en
Publication of JP2004099389A publication Critical patent/JP2004099389A/en
Application granted granted Critical
Publication of JP3914123B2 publication Critical patent/JP3914123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高炉水砕スラグ又はその粒度調整物の固結防止剤、固結防止方法及び水硬性セメント組成物用細骨材に関する。近年、天然砂が枯渇しつつあるなかで資源保護の観点から、土木工事用材料やコンクリート用細骨材等に使用される天然砂の代替として、高炉水砕スラグやこれを粉砕して粒度調整した粒度調整物(以下、これらを単に高炉水砕スラグ等という)を使用する機会が増えてきている。ところで、高炉水砕スラグ等は、出荷待ちや使用待ちのために野積み状態で長期間貯蔵されたり、また船舶等で長期間輸送されることが多いが、これをそのまま長期間に亘って貯蔵したり、輸送すると、固結して遂には岩塊のようになってしまう。かかる固結は、気温の高い夏季において著しい。固結したものは前記のような天然砂の代替として使えず、それを敢えて天然砂の代替として使おうとすると、膨大な労力を要する。高炉水砕スラグ等を天然砂の代替として使用する場合には、その長期間に亘る貯蔵や輸送中に、それが固結しないようにすることが要求されるのである。一方、高炉水砕スラグ等は、天然砂に比べて粒が角張り、粒度分布が比較的均一なため、保水性が低く、これを細骨材として用いて水硬性セメント組成物を調製すると、細骨材として天然砂を用いた場合に比べて、調製した水硬性セメント組成物のブリーディングが多くなる。ブリーディングは、水硬性セメント組成物を調製するときに用いた練り混ぜ水の一部がセメント粒子や骨材から分離する現象である。調製した水硬性セメント組成物のブリーディングが多いと、得られる硬化体の表面仕上げに支障をきたすだけでなく、型枠内における硬化体の沈降が大きくなったり、また硬化体に水みちが形成されたり、更には分離した水により硬化体と鉄筋との付着強度が低下する。このため高炉水砕スラグ等を水硬性セメント組成物用細骨材として用いる場合には、優れた保水性が要求されるのである。本発明はかかる要求に応える高炉水砕スラグ等の固結防止剤、固結防止方法及び水硬性セメント組成物用細骨材に関する。
【0002】
【従来の技術】
従来、高炉水砕スラグ等の固結防止剤としては、以下の特許文献1〜4に記載されているようなものが知られている。
【特許文献1】
特開昭54−130496号公報
【特許文献2】
特開昭57−95857号公報
【特許文献3】
特開昭58−104050号公報
【特許文献4】
特開2001−58855号公報
特許文献1には高炉水砕スラグ等の固結防止剤として脂肪族オキシカルボン酸やその塩が記載されている。特許文献2には高炉水砕スラグ等の固結防止剤としてリグニンスルホン酸やその塩が記載されている。特許文献3には高炉水砕スラグ等の固結防止剤として糖類が記載されている。特許文献4には高炉水砕スラグ等の固結防止剤として脂肪族オキシカルボン酸やその塩のアルキレンオキサイド付加物が記載されている。これら従来の固結防止剤は通常、水で希釈したその水性液を高炉水砕スラグ等へ例えばスプレーすることにより使用されている。ところが、かかる従来の固結防止剤には、程度の差はあるもののそれらが発揮する固結防止効果が不充分で、とりわけそれらを使用した高炉水砕スラグ等を長期間に亘り貯蔵や輸送すると、もともと高炉水砕スラグ等の保水性が低く、これに使用した固結防止剤が希釈水や雨水により流れ落ちるためと推察されるが、所期の固結防止効果が発揮されなくなるという問題がある。また従来の固結防止剤を使用した高炉水砕スラグ等を水硬性セメント組成物用細骨材として用いると、調製した水硬性セメント組成物にブリーディングが発生し、得られる硬化体の強度を低下させるという問題がある。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、長期間に亘り高炉水砕スラグ等の固結を充分に防止できる固結防止剤及び固結防止方法、並びに高炉水砕スラグ等を細骨材として用いて水硬性セメント組成物を調製する場合に調製した水硬性セメント組成物にブリーディングが発生するのを抑制できる水硬性セメント組成物用細骨材を提供する処にある。
【0004】
【課題を解決するための手段】
前記の課題を解決する本発明は、高炉水砕スラグ等の固結防止剤であって下記のA成分及びB成分から成ることを特徴とする固結防止剤(以下、単に本発明の固結防止剤という)に係る。
A成分:全構成単位中に、下記の式1で示される構成単位を90モル%以上有するアクリル酸系重合体から選ばれる一つ又は二つ以上
【0005】
【式1】

Figure 0003914123
【0006】
式1において、
M:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン
【0007】
B成分:グルコン酸、グルコン酸の塩、グルコン酸のエチレンオキサイド付加物、グルコン酸のエチレンオキサイド付加物の塩及びグルコン酸の塩のエチレンオキサイド付加物から選ばれる一つ又は二つ以上
【0008】
また本発明は、高炉水砕スラグ等の固結防止方法であって、高炉水砕スラグ等100重量部当たり本発明の固結防止剤を0.002〜0.3重量部の割合となるよう用いることを特徴とする固結防止方法(以下、単に本発明の固結防止方法という)に係る。
【0009】
更に本発明は、前記の本発明に係る固結防止方法によって得られる水硬性セメント組成物用細骨材(以下、単に本発明の水硬性セメント組成物用細骨材という)に係る。
【0010】
先ず、本発明の固結防止剤について説明する。本発明の固結防止剤は、前記のA成分及びB成分から成るものである。A成分は、全構成単位中に、式1で示される構成単位を90モル%以上有するアクリル酸系重合体から選ばれる一つ又は二つ以上である。かかるアクリル酸系重合体には、アクリル酸の重合体、アクリル酸塩の重合体、アクリル酸の重合体の塩、アクリル酸の共重合体、アクリル酸塩の共重合体、アクリル酸の共重合体の塩等が含まれる。
【0011】
本発明の固結防止剤に用いるA成分のアクリル酸系重合体が、式1で示される構成単位以外の他の構成単位を有するものである場合、そのようなアクリル酸系重合体は、式1で示される構成単位を形成することとなる単量体と他の構成単位を形成することとなる単量体とを共重合したものである。かかる他の構成単位を形成することとなる単量体としては、メタクリル酸、メタクリル酸の塩、クロトン酸、クロトン酸の塩、マレイン酸、無水マレイン酸、フマル酸、アクリル酸アルキル、メタクリル酸アルキル、アクリル酸ヒドロキシアルキル、メタクリル酸ヒドロキシアルキル、アクリル酸アミド、アリルスルホン酸、アリルスルホン酸の塩、メタリルスルホン酸、メタリルスルホン酸の塩、スチレンスルホン酸、スチレンスルホン酸の塩、スチレン、酢酸ビニル、エチレン、イソプレン、イソアミレン等が挙げられる。
【0012】
式1で示される構成単位を90モル%以上有するアクリル酸系重合体において、式1中のMとしては、1)ナトリウム、カリウム、リチウム等のアルカリ金属、2)カルシウム、マグネシウム等のアルカリ土類金属、3)アンモニウム、4)トリエタノールアミン、ジエタノールアミン等の有機アミンが挙げられる。
【0013】
本発明の固結防止剤に用いるA成分としては、式1中のMがナトリウムである場合の式1で示される構成単位を100モル%有するポリアクリル酸ナトリウムが好ましい。また本発明の固結防止剤に用いるA成分のアクリル酸系重合体は、その数平均分子量が1000〜1000000のものが好ましく、3000〜500000のものがより好ましい。
【0014】
本発明の固結防止剤に用いるA成分のアクリル酸系重合体それ自体は、公知の方法で合成できる。
【0015】
本発明の固結防止剤に用いるB成分は、グルコン酸、グルコン酸の塩、グルコン酸のエチレンオキサイド付加物、グルコン酸のエチレンオキサイド付加物の塩及びグルコン酸の塩のエチレンオキサイド付加物から選ばれる一つ又は二つ以上である。グルコン酸の塩、グルコン酸のエチレンオキサイド付加物の塩及びグルコン酸の塩のエチレンオキサイド付加物において、その塩基としては、1)ナトリウム、カリウム、リチウム等のアルカリ金属、2)カルシウム、マグネシウム等のアルカリ土類金属、3)アンモニウム、4)トリエタノールアミン、ジエタノールアミン等の有機アミンが挙げられる。
【0016】
本発明の固結防止剤に用いるB成分としては、グルコン酸のエチレンオキサイド付加物のナトリウム塩及びグルコン酸ナトリウムのエチレンオキサイド付加物から選ばれる一つ又は二つ以上が好ましい。この場合、グルコン酸のエチレンオキサイド付加物のナトリウム塩としては、グルコン酸1モル当たり、エチレンオキサイドを1〜20モルの割合で付加したもののナトリウム塩が好ましく、エチレンオキサイドを1〜10モルの割合で付加したもののナトリウム塩がより好ましい。またグルコンサンナトリウムのエチレンオキサイド付加物としては、グルコン酸ナトリウム1モル当たり、エチレンオキサイドを1〜20モルの割合で付加したものが好ましく、エチレンオキサイドを1〜10モルの割合で付加したものがより好ましい。
【0017】
本発明の固結防止剤に用いるB成分のグルコン酸のエチレンオキサイド付加物、グルコン酸のエチレンオキサイド付加物の塩及びグルコン酸の塩のエチレンオキサイド付加物それ自体は、公知の方法で合成できる。
【0018】
本発明の固結防止剤は、以上説明したA成分及びB成分から成るものであるが、A成分を15〜98重量%及びB成分を2〜85重量%(合計100重量%)含有するものが好ましく、A成分を30〜90重量%及びB成分を10〜70重量%(合計100重量%)含有するものがより好ましい。
【0019】
次に、本発明の固結防止方法について説明する。本発明の固結防止方法は、高炉水砕スラグ等100重量部当たり前記した本発明の固結防止剤を0.002〜0.3重量部の割合、好ましくは0.005〜0.1重量部の割合となるよう用いる方法である。高炉水砕スラグ等100重量部当たり、本発明の固結防止剤の使用量が0.002重量部未満であると、固結防止効果及び保水効果が充分に発揮されず、逆に0.3重量部超としても、その割には固結防止効果及び保水効果が発揮されず、非経済的になるからである。
【0020】
本発明の固結防止方法では、高炉水砕スラグ等に本発明の固結防止剤をそのまま用いることもできるが、本発明の固結防止剤を水性液となし、該水性液を用いるのが好ましい。例えば、本発明の固結防止剤を水で希釈して0.5〜10重量%の水性液となし、かかる水性液を高炉水砕スラグ等にスプレーしつつ混合するのである。
【0021】
本発明の水硬性セメント組成物用細骨材は、前記した本発明の固結防止方法によって得られるものである。かかる水硬性セメント組成物用細骨材は、コンクリートやモルタル等の水硬性セメント組成物を調製するとき、公知の川砂、山砂、海砂、砕砂等の細骨材の少なくとも一部代替として用いるが、全細骨材中10〜90重量%となるように用いるのが好ましい。
【0022】
【発明の実施の形態】
本発明の固結防止剤の実施形態としては、次の1)〜5)が挙げられる。
1)A成分として数平均分子量3500のポリアクリル酸ナトリウムを85重量%及びB成分としてグルコン酸ナトリウムのエチレンオキサイド(1モル)付加物を15重量%含有して成る固結防止剤。
【0023】
2)A成分として数平均分子量13000のポリアクリル酸ナトリウムを70重量%及びB成分としてグルコン酸ナトリウムのエチレンオキサイド(3モル)付加物を30重量%含有して成る固結防止剤。
【0024】
3)A成分として数平均分子量50000のポリアクリル酸ナトリウムを60重量%及びB成分としてグルコン酸ナトリウムのエチレンオキサイド(8モル)付加物を40重量%含有して成る固結防止剤。
【0025】
4)A成分として数平均分子量300000のポリアクリル酸ナトリウムを50重量%及びB成分としてグルコン酸ナトリウムのエチレンオキサイド(3モル)付加物を50重量%含有して成る固結防止剤。
【0026】
5)A成分として数平均分子量480000のポリアクリル酸ナトリウムを30重量%及びB成分としてグルコン酸ナトリウムのエチレンオキサイド(5モル)付加物を70重量%含有して成る固結防止剤。
【0027】
また本発明の固結防止方法の実施形態としては、次の6)が挙げられる。
6)前記した1)〜5)のうちでいずれかの固結防止剤を水で希釈して濃度1〜5重量%の水性液となし、この水性液を高炉水砕スラグ等にスプレーしつつ混合して、高炉水砕スラグ100重量部当たり固結防止剤として0.03〜0.09重量部の割合となるよう用いる固結防止方法。
【0028】
更に本発明の水硬性セメント組成物用細骨材の実施形態としては、次の7)が挙げられる。
7)前記した6)の固結防止方法によって得られる水硬性セメント組成物用細骨材。
【0029】
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、%は重量%を、また部は重量部を意味する。
【0030】
【実施例】
試験区分1(固結防止剤のA成分の水性液の調製)
固結防止剤のA成分(A−1)の水性液の調製
反応容器にアクリル酸ナトリウムの30%水性液313g{アクリル酸ナトリウムとして94g(1モル)を含有する水性液}、3−メルカプトプロピオン酸2.7g及び水156gを仕込み、撹拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液10gを滴下して重合を開始し、5時間重合反応を継続して重合を完結した。数平均分子量3500の、アクリル酸ナトリウムの重合体(ポリアクリル酸ナトリウム)の20%水性液を調製した。これを固結防止剤のA成分(A−1)の20%水性液とした。
【0031】
固結防止剤のA成分(A−2)〜(A−7)及び(A−15)の水性液の調製固結防止剤のA成分(A−1)の水性液の調製と同様にして、固結防止剤のA成分(A−2)〜(A−7)及び(A−15)の20%水性液を調製した。
【0032】
固結防止剤のA成分(A−8)の水性液の調製
反応容器にアクリル酸の25%水性液288g{アクリル酸として72g(1モル)を含有する水性液}、3−メルカプトプロピオン酸2.5g及び水54.3gを仕込み、撹拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に、反応系の温度を温水浴にて80℃に保ち、過硫酸ナトリウムの20%水溶液6gを滴下して重合を開始し、6時間重合反応を継続して、アクリル酸の重合体を得た。次に反応系を20℃まで冷却した後、反応系を20〜30℃に保ちながら、顆粒状の水酸化ナトリウム40gを徐々に添加して、数平均分子量22000の、アクリル酸の重合体のナトリウム塩(ポリアクリル酸ナトリウム)の20%水性液を調製した。これを固結防止剤のA成分(A−8)の20%水性液とした。
【0033】
固結防止剤のA成分(A−9)の水性液の調製
反応容器にアクリル酸の25%水性液265g{アクリル酸として66.2g(0.92モル)}、メタクリル酸の25%水性液27.5g{メタクリル酸として6.9g(0.08モル)}、3−メルカプトプロピオン酸4g及び水157.8gを仕込み、撹拌しながら均一に溶解した後、雰囲気を窒素置換した。窒素雰囲気下に、反応系の温度を温水浴にて80℃に保ち、過硫酸ナトリウムの20%水溶液6gを滴下して重合を開始し、5時間重合反応を継続して、アクリル酸−メタクリル酸の共重合体を得た。次に反応系を20℃まで冷却した後、反応系を20〜30℃に保ちながら、顆粒状の水酸化ナトリウム40gを徐々に添加して、数平均分子量4500の、アクリル酸−メタクリル酸共重合体のナトリウム塩の25%水性液を調製した。これを固結防止剤のA成分(A−9)の20%水性液とした。
【0034】
固結防止剤のA成分(A−10)の水性液の調製
反応容器にアクリル酸ナトリウムの30%水性液313g{アクリル酸ナトリウムとして86.5g(0.92モル)}、スチレンスルホン酸ナトリウム16.6g(0.08モル)、3−メルカプトプロピオン酸4.5g及び水208gを仕込み、撹拌しながら均一に溶解した後,雰囲気を窒素置換した。窒素雰囲気下に、反応系の温度を温水浴にて80℃に保ち、過硫酸ナトリウムの20%水溶液5gを滴下して重合を開始し、5時間重合反応を継続して重合を完結し、数平均分子量7700の、アクリル酸ナトリウム−スチレンスルホン酸ナトリウムの共重合体の20%水性液を調製した。これを固結防止剤のA成分(A−10)の20%水性液とした。
【0035】
固結防止剤のA成分(A−11)〜(A−14)の水性液の調製
固結防止剤のA成分(A−10)の水性液の調製と同様にして、固結防止剤のA成分(A−11)〜(A−14)の20%水性液を調製した。以上で調製した各水性液におけるA成分の内容を表1にまとめて示した。
【0036】
試験区分2(固結防止剤のB成分の水性液の調製)
固結防止剤のB成分(B−1)の水性液の調製
グルコン酸ナトリウム436g(2モル)、水690g及び水酸化ナトリムの30%水溶液14gをオートクレーブに仕込み、均一に溶解した後、雰囲気を窒素置換した。反応系の温度を80℃に保ちながら、エチレンオキサイド88g(2モル)をオートクレーブに圧入して付加反応させた。反応系を冷却した後、酢酸の80%水溶液7.9gを加えてアルカリ触媒を中和し、グルコン酸ナトリウムのエチレンオキサイド(1モル)付加物を含有する反応液を得た。これに水を加えて20%水性液とした。これを固結防止剤のB成分(B−1)の20%水性液とした。
【0037】
固結防止剤のB成分(B−2)〜(B−7)の水性液の調製
固結防止剤のB成分(B−1)の水性液の調製と同様にして、固結防止剤のB成分(B−2)〜(B−7)の20%水性液を調製した。以上で調製した各水性液におけるB成分の内容を表1にまとめて示した。
【0038】
試験区分3(固結防止剤のC成分の水性液の調製)
固結防止剤のC成分(C−1)の水性液の調製
酒石酸ナトリウムを水に均一溶解し、酒石酸ナトリウムの20%水性液を調製した。これを固結防止剤のC成分(C−1)の20%水性液とした。
【0039】
固結防止剤のC成分(C−2)及び(C−3)の水性液の調製
固結防止剤のC成分(C−1)の水性液の調製と同様にして、固結防止剤のC成分(C−2)及び(C−3)の20%水性液を調製した。以上で調製した各水性液におけるC成分の内容を表1にまとめて示した。
【0040】
試験区分4(固結防止剤の水性液の調製)
実施例1{固結防止剤(M−1)の水性液の調製}
試験区分1で調製したA成分(A−1)の20%水性液85部と試験区分2で調製したB成分(B−1)の20%水性液15部とを混合して、固結防止剤(M−1)の20%水性液を調製した。
【0041】
実施例2〜14及び比較例1〜5{固結防止剤(M−2)〜(M−14)及び(R−1)〜(R−5)の水性液の調製}
固結防止剤(M−1)の水性液の調製と同様にして、固結防止剤(M−2)〜(M−14)及び(R−1)〜(R−5)の20%水性液を調製した。以上で調製した各水性液における固結防止剤の内容を表1にまとめて示した。
【0042】
【表1】
Figure 0003914123
【0043】
表1において、
A−1〜A−6,A−15:アクリル酸ナトリウムの重合体(ポリアクリル酸ナトリウム)
A−7:アクリル酸の重合体
A−8:アクリル酸の重合体のナトリウム塩(ポリアクリル酸ナトリウム)
A−9:アクリル酸/メタクリル酸=92/8(モル比)の共重合体のナトリウム塩
A−10:アクリル酸ナトリウム/スチレンスルホン酸ナトリウム=92/8(モル比)の共重合体
A−11:アクリル酸/アクリル酸メチル/アクリル酸ヒドロキシエチル=92/3/3(モル比)の共重合体
A−12:アクリル酸ナトリウム/アクリルアミド=92/8(モル比)の共重合体
A−13:アクリル酸ナトリウム/メタリルスルホン酸ナトリウム=95/5(モル比)の共重合体
A−14:アクリル酸ナトリウム/スチレン=98/2(モル比)の共重合体
【0044】
B−1:グルコン酸ナトリウムのエチレンオキサイド(1モル)付加物
B−2:グルコン酸ナトリウムのエチレンオキサイド(3モル)付加物
B−3:グルコン酸ナトリウムのエチレンオキサイド(8モル)付加物
B−4:グルコン酸ナトリウムのエチレンオキサイド(5モル)付加物
B−5:グルコン酸のエチレンオキサイド(15モル)付加物
B−6:グルコン酸ナトリウム
B−7:グルコン酸
【0045】
C−1:酒石酸ナトリウム
C−2:リグニンスルホン酸ナトリウム
C−3:グルコース
【0046】
試験区分5(固結防止性の評価1)
鋼管鉱業社製福山産の高炉水砕スラグ{JIS−A5011(コンクリート用スラグ骨材)に準じて5mm高炉スラグ細骨材の粒度分布に調整した粒度調整物}50kgをバットに広げた。別に、試験区分4で調製した固結防止剤の20%水性液等を更に水で希釈し、表2記載の使用濃度の水性液を調製した。バットに広げた水砕スラグにかかる使用濃度の水性液を固結防止剤として表2記載の添加量となるようスプレーしながらハンドスコップで混合し、更に高炉水砕スラグが含水率10%となるように水を加え、可傾式ミキサーで5分間混合して、固結防止剤を添加した高炉水砕スラグを得た。かくして固結防止剤を添加した高炉水砕スラグを内径100mmの円筒状容器に高さ125mmまで充填し、これに高炉水砕スラグの貯蔵高さ10mに相当する約0.15MPa(1.5kg/cm)の圧力を載荷して供試体とした。供試体は、水分の蒸発を防ぐため円筒状容器を密封し、80℃の恒温室で最長14週間まで養生した。所定期間養生終了後、供試体を脱枠し、粒度測定を行なった。粒度測定は、5mm篩を用いて行ない、篩を通過しないで篩上に残存したものの重量を測定し、その割合を求めた(表2中の5mm篩上割合)。結果を表2にまとめて示した。表2において、5mm篩上割合(%)の数値が低いほど、高炉水砕スラグの固結が防止されていることを意味する。
【0047】
試験区分6(保水性の評価1)
試験区分5で調製した固結防止剤を添加した高炉水砕スラグを、遠心力196km/s(20000ジー)、60分間の条件で遠心脱水し、遠心脱水後の固結防止剤を添加した高炉水砕スラグの含水比(%)を測定した。結果を表2にまとめて示した。ここで遠心脱水後の含水比(%)の数値が大きいほど固結防止剤を添加した高炉水砕スラグの保水性が高いことを意味する。
【0048】
【表2】
Figure 0003914123
【0049】
表2において、
添加量:高炉水砕スラグ100重量部当たりの固結防止剤の添加重量部
【0050】
試験区分7(固結防止性の評価2)
試験区分4で調製した固結防止剤の20%水性液等を更に水で希釈し、表3記載の使用濃度の水性液を調製した。高炉水砕スラグをクラッシャで破砕し、その破砕物にかかる使用濃度の水性液を固結防止剤として表3の添加量となるようスプレーした後、スクリーンで篩分けして、5mm高炉水砕スラグ細骨材粒度に調整した高炉水砕スラグ80トンを得た。得られた固結防止剤を添加した高炉水砕スラグを屋外に高さ3mの小山状にして14週間に亘り野積みし、野積み期間中に表3記載の時点で、下記の方法により貫入抵抗係数を求め、固結防止性を評価した。ここで貫入抵抗係数が0.45以下の場合、固結による問題なしと判断されている。結果を表3にまとめて示した。
・貫入抵抗係数
高炉スラグ骨材コンクリート施工指針に記載の貫入抵抗測定器を野積みの小山に貫入し、下記の計算式により貫入抵抗係数を算出した(コンクリート・ライブラリー第76号 高炉スラグ骨材コンクリート施工指針 P.21 土木学会 1993)。
貫入抵抗係数=100cm貫入時のばねばかりの荷重(kgf)/貫入長さ100(cm)又は、貫入抵抗係数=ばねばかり最大荷重20kgf/ばねばかり最大荷重20kgf時の貫入長さ(cm)
【0051】
試験区分8(保水性の評価2)
試験区分7において、貫入抵抗係数を求める同じ時点で、野積みされた高炉水砕スラグから保水性評価の試料を採取し、試験区分5と同様の条件により遠心脱水後の固結防止剤を添加した高炉水砕スラグの含水比(%)を測定した。結果を表3にまとめて示した。
【0052】
【表3】
Figure 0003914123
【0053】
試験区分9(水硬性セメント組成物の調製及び評価)
表4に記載の調合条件で、各例の水硬性セメント組成物(コンクリート)を次のように調製した。50Lのパン型強制練りミキサーに普通ポルトランドセメント(比重3.16、ブレーン値3300)、細骨材として大井川水系砂(比重2.63)及び試験区分7で8週間に亘り野積み状態で屋外放置試験した高炉水砕スラグ並びに粗骨材(岡崎産砕石、比重2.68)を順次投入して15秒間空練りした。次に各例いずれも目標スランプが18±1cmの範囲内に入るようAE減水剤(竹本油脂社製の商品名チューポールEX20)をセメント重量に対し0.2重量%となるよう練り混ぜ水と共に添加して2分間練り混ぜた。この際、目標空気量が4〜5%となるよう空気量調整剤(竹本油脂社製の商品名AE200)を添加した。
【0054】
【表4】
Figure 0003914123
【0055】
調製した各例の水硬性セメント組成物(コンクリート)について、その物性を次のように測定した。結果を表5にまとめて示した。
スランプ:JIS−A1101に準拠して測定した。
空気量:JIS−A1128に準拠して測定した。
圧縮強度:JIS−A1108に準拠して測定した。
ブリーディング率:JIS−A1123に準拠してブリーディング量を測定し、ブリーディング率を次の式を用いて求めた。
ブリーディング率(%)=(最大ブリーディング量/試料中の全水量)×100
尚、表5において、ブリーディング率(%)の数値が小さいほどブリーディングが少ないことを意味する。
【0056】
【表5】
Figure 0003914123
【0057】
表5において、
比較例24:固結防止剤を添加した高炉スラグ細骨材に代えて固結防止剤を添加していない高炉スラグ細骨材を用い、また固結防止剤(M−1)を0.18kg/mの割合で水硬性セメント組成物(コンクリート)を調製する時に添加した。
比較例25:固結防止剤を添加した高炉スラグ細骨材に代えて固結防止剤を添加していない高炉スラグ細骨材を用い、また固結防止剤(M−6)を0.18kg/mの割合で水硬性セメント組成物(コンクリート)を調製する時に添加した。
【0058】
【発明の効果】
既に明らかなように、以上説明した本発明には、長期間に亘り高炉水砕スラグ等の固結を充分に防止することができると同時に、骨材のうちで細骨材の少なくとも一部として高炉水砕スラグ等を用いた水硬性セメント組成物において、ブリーディングの発生を抑制し、また得られる硬化体の諸物性に何ら悪影響を与えないという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-caking agent, an anti-caking method, and a fine aggregate for a hydraulic cement composition for granulated blast furnace slag or a particle size adjusted product thereof. In recent years, natural sand has been depleted, and from the viewpoint of resource conservation, blast furnace granulated slag and its particle size adjustment as an alternative to natural sand used for civil engineering materials and concrete fine aggregates, etc. Opportunities have been increasing to use the adjusted particle size (hereinafter simply referred to as blast furnace granulated slag, etc.). By the way, blast furnace granulated slag, etc. is stored for a long time in a piled state for waiting for shipment or use, and is often transported for a long time by ship etc., but this is stored for a long time as it is. When transported or transported, it solidifies and eventually becomes like a rock mass. Such consolidation is remarkable in summer when the temperature is high. The consolidated one cannot be used as a substitute for natural sand as described above, and if it is to be used as a substitute for natural sand, enormous labor is required. When blast furnace granulated slag or the like is used as a substitute for natural sand, it is required that the blast furnace granulated slag does not solidify during its long-term storage and transportation. On the other hand, granulated blast furnace slag, etc., has a more squared grain than natural sand and a relatively uniform particle size distribution, so water retention is low, and when this is used as a fine aggregate, a hydraulic cement composition is prepared. As compared with the case where natural sand is used as the fine aggregate, bleeding of the prepared hydraulic cement composition is increased. Bleeding is a phenomenon in which a part of the kneading water used when preparing the hydraulic cement composition is separated from cement particles and aggregates. If the prepared hydraulic cement composition has a lot of bleeding, it will not only hinder the surface finish of the resulting cured body, but also the sedimentation of the cured body in the mold will increase, and water will form in the cured body. In addition, the adhesion strength between the cured body and the reinforcing bar is reduced by the separated water. For this reason, when using blast furnace granulated slag as a fine aggregate for hydraulic cement compositions, excellent water retention is required. The present invention relates to an anti-caking agent such as blast furnace granulated slag, a caking prevention method, and a fine aggregate for a hydraulic cement composition that meet such requirements.
[0002]
[Prior art]
Conventionally, what is described in the following patent documents 1-4 is known as anti-caking agents, such as granulated blast furnace slag.
[Patent Document 1]
Japanese Patent Laid-Open No. 54-130696 [Patent Document 2]
JP-A-57-95857 [Patent Document 3]
Japanese Patent Laid-Open No. 58-104050 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2001-58855 discloses an aliphatic oxycarboxylic acid or a salt thereof as an anti-caking agent such as granulated blast furnace slag. Patent Document 2 describes lignin sulfonic acid and salts thereof as anti-caking agents such as blast furnace granulated slag. Patent Document 3 describes saccharides as anti-caking agents such as blast furnace granulated slag. Patent Document 4 describes an alkylene oxide adduct of an aliphatic oxycarboxylic acid or a salt thereof as an anti-caking agent such as granulated blast furnace slag. These conventional anti-caking agents are usually used by, for example, spraying the aqueous liquid diluted with water onto blast furnace granulated slag or the like. However, although these conventional anti-caking agents have a degree of difference, the anti-caking effect exhibited by them is insufficient, especially when blast furnace granulated slag using them is stored and transported over a long period of time. The water retention capacity of blast furnace granulated slag, etc. was originally low, and it is speculated that the anti-caking agent used for this was washed away by diluting water or rain water, but there was a problem that the expected anti-caking effect was not exhibited. . In addition, when granulated blast furnace slag using a conventional anti-caking agent is used as a fine aggregate for hydraulic cement composition, bleeding occurs in the prepared hydraulic cement composition and the strength of the resulting cured product is reduced. There is a problem of making it.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to use an anti-caking agent and an anti-caking method capable of sufficiently preventing caking such as blast furnace granulated slag over a long period of time, and using blast furnace granulated slag as a fine aggregate. When preparing a hydraulic cement composition, it exists in the place which provides the fine aggregate for hydraulic cement compositions which can suppress generation | occurrence | production of bleeding in the hydraulic cement composition prepared.
[0004]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems is an anti-caking agent such as blast furnace granulated slag, which comprises the following components A and B (hereinafter simply referred to as caking of the present invention). (Referred to as an inhibitor).
Component A: One or two or more selected from acrylic polymers having 90% by mole or more of the structural unit represented by the following formula 1 in all the structural units
[Formula 1]
Figure 0003914123
[0006]
In Equation 1,
M: hydrogen atom, alkali metal, alkaline earth metal, ammonium or organic amine
Component B: one or more selected from gluconic acid, gluconic acid salt, gluconic acid ethylene oxide adduct, gluconic acid ethylene oxide adduct salt and gluconic acid salt ethylene oxide adduct
Further, the present invention is a method for preventing consolidation of blast furnace granulated slag and the like, and the amount of the anti-caking agent of the present invention is 0.002 to 0.3 parts by weight per 100 parts by weight of blast furnace granulated slag and the like. The present invention relates to an anti-caking method (hereinafter simply referred to as an anti-caking method of the present invention).
[0009]
Furthermore, the present invention relates to a fine aggregate for a hydraulic cement composition (hereinafter simply referred to as a fine aggregate for a hydraulic cement composition of the present invention) obtained by the above-described method for preventing caking according to the present invention.
[0010]
First, the anti-caking agent of the present invention will be described. The anti-caking agent of the present invention comprises the above-mentioned A component and B component. The component A is one or two or more selected from acrylic acid polymers having 90% by mole or more of the structural unit represented by Formula 1 in all the structural units. Such acrylic acid polymers include acrylic acid polymers, acrylate polymers, acrylic acid polymer salts, acrylic acid copolymers, acrylate copolymers, acrylic acid copolymers. Combined salts and the like are included.
[0011]
When the acrylic acid-based polymer of component A used for the anti-caking agent of the present invention has a structural unit other than the structural unit represented by formula 1, such an acrylic acid-based polymer has the formula The monomer which will form the structural unit shown by 1 and the monomer which will form another structural unit are copolymerized. Examples of the monomer that forms such other structural units include methacrylic acid, methacrylic acid salt, crotonic acid, crotonic acid salt, maleic acid, maleic anhydride, fumaric acid, alkyl acrylate, alkyl methacrylate. , Hydroxyalkyl acrylate, hydroxyalkyl methacrylate, acrylic amide, allyl sulfonic acid, allyl sulfonic acid salt, methallyl sulfonic acid, methallyl sulfonic acid salt, styrene sulfonic acid, styrene sulfonic acid salt, styrene, acetic acid Vinyl, ethylene, isoprene, isoamylene and the like can be mentioned.
[0012]
In the acrylic acid polymer having 90% by mole or more of the structural unit represented by the formula 1, M in the formula 1 is 1) an alkali metal such as sodium, potassium or lithium, and 2) an alkaline earth such as calcium or magnesium. Examples thereof include metals, 3) ammonium, 4) organic amines such as triethanolamine, diethanolamine and the like.
[0013]
As component A used in the anti-caking agent of the present invention, sodium polyacrylate having 100 mol% of the structural unit represented by formula 1 when M in formula 1 is sodium is preferable. In addition, the acrylic polymer of component A used for the anti-caking agent of the present invention preferably has a number average molecular weight of 1,000 to 1,000,000, more preferably 3,000 to 500,000.
[0014]
The A component acrylic acid polymer itself used in the anti-caking agent of the present invention can be synthesized by a known method.
[0015]
Component B used in the anti-caking agent of the present invention is selected from gluconic acid, gluconic acid salt, gluconic acid ethylene oxide adduct, gluconic acid ethylene oxide adduct salt, and gluconic acid salt ethylene oxide adduct. One or more. In the salt of gluconic acid, the salt of ethylene oxide adduct of gluconic acid, and the ethylene oxide adduct of gluconic acid salt, the bases are 1) alkali metals such as sodium, potassium and lithium, 2) calcium and magnesium, etc. Examples include alkaline earth metals, 3) ammonium, 4) organic amines such as triethanolamine and diethanolamine.
[0016]
The component B used in the anti-caking agent of the present invention is preferably one or more selected from a sodium salt of an ethylene oxide adduct of gluconic acid and an ethylene oxide adduct of sodium gluconate. In this case, the sodium salt of an ethylene oxide adduct of gluconic acid is preferably a sodium salt of ethylene oxide added at a rate of 1 to 20 mol per mol of gluconic acid, and ethylene oxide at a rate of 1 to 10 mol. The sodium salt of the added one is more preferable. Moreover, as ethylene oxide adduct of glucosone sodium, what added ethylene oxide in the ratio of 1-20 mol per mol of sodium gluconate is preferable, and what added ethylene oxide in the ratio of 1-10 mol is more. preferable.
[0017]
The ethylene oxide adduct of gluconic acid of B component, the salt of ethylene oxide adduct of gluconic acid and the ethylene oxide adduct of gluconic acid salt used in the anti-caking agent of the present invention can be synthesized by known methods.
[0018]
The anti-caking agent of the present invention comprises the A component and the B component described above, and contains 15 to 98% by weight of the A component and 2 to 85% by weight of the B component (total 100% by weight). It is preferable that the component A contains 30 to 90% by weight and the component B contains 10 to 70% by weight (total 100% by weight).
[0019]
Next, the caking prevention method of the present invention will be described. In the anti-caking method of the present invention, the above-described anti-caking agent of the present invention per 100 parts by weight of blast furnace granulated slag, etc. is in a proportion of 0.002 to 0.3 parts by weight, preferably 0.005 to 0.1% by weight. It is the method used so that it may become the ratio of a part. When the use amount of the anti-caking agent of the present invention is less than 0.002 parts by weight per 100 parts by weight of granulated blast furnace slag, the anti-caking effect and the water retention effect are not sufficiently exhibited, conversely 0.3 This is because, even if it exceeds the parts by weight, the anti-caking effect and the water retention effect are not exhibited, but it becomes uneconomical.
[0020]
In the anti-caking method of the present invention, the anti-caking agent of the present invention can be used as it is for blast furnace granulated slag, but the anti-caking agent of the present invention is an aqueous liquid, and the aqueous liquid is used. preferable. For example, the anti-caking agent of the present invention is diluted with water to form an aqueous liquid of 0.5 to 10% by weight, and the aqueous liquid is mixed while sprayed on blast furnace granulated slag or the like.
[0021]
The fine aggregate for hydraulic cement composition of the present invention is obtained by the above-described caking prevention method of the present invention. Such a fine aggregate for a hydraulic cement composition is used as a substitute for at least part of a known fine aggregate such as river sand, mountain sand, sea sand, and crushed sand when preparing a hydraulic cement composition such as concrete or mortar. However, it is preferable to use it so that it may become 10 to 90 weight% in all the fine aggregates.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the anti-caking agent of the present invention include the following 1) to 5).
1) An anti-caking agent comprising 85% by weight of sodium polyacrylate having a number average molecular weight of 3500 as an A component and 15% by weight of an ethylene oxide (1 mol) adduct of sodium gluconate as a B component.
[0023]
2) An anti-caking agent comprising 70% by weight of sodium polyacrylate having a number average molecular weight of 13,000 as the A component and 30% by weight of ethylene oxide (3 mol) adduct of sodium gluconate as the B component.
[0024]
3) An anti-caking agent comprising 60% by weight of sodium polyacrylate having a number average molecular weight of 50,000 as the A component and 40% by weight of ethylene oxide (8 mol) adduct of sodium gluconate as the B component.
[0025]
4) An anti-caking agent comprising 50% by weight of sodium polyacrylate having a number average molecular weight of 300,000 as the A component and 50% by weight of ethylene oxide (3 mol) adduct of sodium gluconate as the B component.
[0026]
5) An anti-caking agent comprising 30% by weight of sodium polyacrylate having a number average molecular weight of 480000 as the A component and 70% by weight of ethylene oxide (5 mol) adduct of sodium gluconate as the B component.
[0027]
Moreover, the following 6) is mentioned as an embodiment of the anti-caking method of the present invention.
6) Dilute any of the anti-caking agents with water from the above 1) to 5) to form an aqueous liquid having a concentration of 1 to 5% by weight, and spray this aqueous liquid onto blast furnace granulated slag, etc. An anti-caking method used by mixing and using 0.03-0.09 parts by weight as an anti-caking agent per 100 parts by weight of granulated blast furnace slag.
[0028]
Further, as an embodiment of the fine aggregate for hydraulic cement composition of the present invention, the following 7) may be mentioned.
7) A fine aggregate for a hydraulic cement composition obtained by the anti-caking method of 6) described above.
[0029]
Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means% by weight and part means parts by weight.
[0030]
【Example】
Test Category 1 (Preparation of aqueous liquid of component A of anti-caking agent)
Preparation of Aqueous Solution of Anti-caking Agent A Component (A-1) 313 g of a 30% aqueous solution of sodium acrylate {aqueous solution containing 94 g (1 mole) as sodium acrylate} in a reaction vessel, 3-mercaptopropion 2.7 g of acid and 156 g of water were charged and dissolved uniformly with stirring, and then the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system was kept at 60 ° C. in a warm water bath, 10 g of a 20% aqueous solution of sodium persulfate was added dropwise to initiate polymerization, and the polymerization reaction was continued for 5 hours to complete the polymerization. A 20% aqueous solution of a sodium acrylate polymer (sodium polyacrylate) having a number average molecular weight of 3,500 was prepared. This was made into the 20% aqueous liquid of A component (A-1) of an anti-caking agent.
[0031]
Preparation of aqueous liquids of component A (A-2) to (A-7) and (A-15) of anti-caking agent In the same manner as the preparation of aqueous solution of component A (A-1) of anti-caking agent 20% aqueous liquids of components A (A-2) to (A-7) and (A-15) of the anti-caking agent were prepared.
[0032]
Preparation of aqueous solution of anti-caking agent component A (A-8) 288 g of acrylic acid 25% aqueous solution {aqueous solution containing 72 g (1 mol) of acrylic acid} in the reaction vessel, 3-mercaptopropionic acid 2 0.5 g and 54.3 g of water were charged and dissolved uniformly with stirring, and the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system is kept at 80 ° C. in a warm water bath, 6 g of a 20% aqueous solution of sodium persulfate is added dropwise to initiate the polymerization, and the polymerization reaction is continued for 6 hours. Got. Next, after cooling the reaction system to 20 ° C., while maintaining the reaction system at 20 to 30 ° C., 40 g of granular sodium hydroxide was gradually added to obtain a sodium of acrylic acid polymer having a number average molecular weight of 22,000. A 20% aqueous solution of salt (sodium polyacrylate) was prepared. This was made into the 20% aqueous liquid of A component (A-8) of an anti-caking agent.
[0033]
Preparation of Aqueous Solution of Anti-caking Agent A Component (A-9) 265 g of 25% aqueous solution of acrylic acid {66.2 g (0.92 mol) as acrylic acid}, 25% aqueous solution of methacrylic acid in a reaction vessel 27.5 g {6.9 g (0.08 mol) as methacrylic acid}, 4 g of 3-mercaptopropionic acid and 157.8 g of water were charged and dissolved uniformly with stirring, and then the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system is kept at 80 ° C. in a warm water bath, 6 g of a 20% aqueous solution of sodium persulfate is added dropwise to initiate the polymerization, and the polymerization reaction is continued for 5 hours. Acrylic acid-methacrylic acid The copolymer of was obtained. Next, after cooling the reaction system to 20 ° C., while maintaining the reaction system at 20-30 ° C., 40 g of granular sodium hydroxide was gradually added, and the acrylic acid-methacrylic acid copolymer having a number average molecular weight of 4500 was added. A 25% aqueous solution of the combined sodium salt was prepared. This was used as a 20% aqueous liquid of component A (A-9) of the anti-caking agent.
[0034]
Preparation of aqueous solution of anti-caking agent component A (A-10) 313 g of a 30% aqueous solution of sodium acrylate {86.5 g (0.92 mol) as sodium acrylate}, sodium styrenesulfonate 16 .6 g (0.08 mol), 4.5 g of 3-mercaptopropionic acid and 208 g of water were charged and dissolved uniformly with stirring, and the atmosphere was replaced with nitrogen. Under a nitrogen atmosphere, the temperature of the reaction system is maintained at 80 ° C. in a warm water bath, 5 g of a 20% aqueous solution of sodium persulfate is added dropwise to initiate polymerization, and the polymerization reaction is continued for 5 hours to complete the polymerization. A 20% aqueous solution of a sodium acrylate-sodium styrene sulfonate copolymer having an average molecular weight of 7700 was prepared. This was made into the 20% aqueous liquid of A component (A-10) of an anti-caking agent.
[0035]
Preparation of aqueous solutions of anti-caking agent A components (A-11) to (A-14) In the same manner as the preparation of the aqueous solution of anti-caking agent A component (A-10), A 20% aqueous liquid of components A (A-11) to (A-14) was prepared. The contents of the component A in each aqueous liquid prepared above are summarized in Table 1.
[0036]
Test Category 2 (Preparation of aqueous solution of B component of anti-caking agent)
Preparation of aqueous solution of anti-caking agent B component (B-1) 436 g (2 mol) of sodium gluconate, 690 g of water and 14 g of 30% aqueous solution of sodium hydroxide were charged in an autoclave and dissolved uniformly. Replaced with nitrogen. While maintaining the temperature of the reaction system at 80 ° C., 88 g (2 mol) of ethylene oxide was injected into the autoclave to cause an addition reaction. After the reaction system was cooled, 7.9 g of an 80% aqueous solution of acetic acid was added to neutralize the alkali catalyst to obtain a reaction solution containing an ethylene oxide (1 mol) adduct of sodium gluconate. Water was added to make a 20% aqueous solution. This was made into the 20% aqueous liquid of B component (B-1) of an anti-caking agent.
[0037]
Preparation of aqueous solutions of anti-caking agent B components (B-2) to (B-7) In the same manner as the preparation of the aqueous solution of anti-caking agent B component (B-1), 20% aqueous liquids of B components (B-2) to (B-7) were prepared. The contents of component B in each aqueous liquid prepared above are summarized in Table 1.
[0038]
Test Category 3 (Preparation of C component aqueous liquid of anti-caking agent)
Preparation of aqueous solution of anti-caking agent C component (C-1) Sodium tartrate was uniformly dissolved in water to prepare a 20% aqueous solution of sodium tartrate. This was made into the 20% aqueous liquid of C component (C-1) of an anti-caking agent.
[0039]
Preparation of aqueous solution of anti-caking agent C component (C-2) and (C-3) In the same manner as the preparation of aqueous solution of anti-caking agent C component (C-1), 20% aqueous liquids of component C (C-2) and (C-3) were prepared. The contents of component C in each of the aqueous solutions prepared above are summarized in Table 1.
[0040]
Test Category 4 (Preparation of aqueous solution of anti-caking agent)
Example 1 {Preparation of aqueous liquid of anti-caking agent (M-1)}
Prevention of caking by mixing 85 parts of 20% aqueous solution of component A (A-1) prepared in test category 1 and 15 parts of 20% aqueous solution of component B (B-1) prepared in test category 2 A 20% aqueous solution of the agent (M-1) was prepared.
[0041]
Examples 2 to 14 and Comparative Examples 1 to 5 {Preparation of aqueous solutions of anti-caking agents (M-2) to (M-14) and (R-1) to (R-5)}
20% aqueous solution of anti-caking agents (M-2) to (M-14) and (R-1) to (R-5) in the same manner as the preparation of the aqueous solution of anti-caking agent (M-1). A liquid was prepared. Table 1 summarizes the contents of the anti-caking agent in each aqueous liquid prepared as described above.
[0042]
[Table 1]
Figure 0003914123
[0043]
In Table 1,
A-1 to A-6, A-15: Polymer of sodium acrylate (sodium polyacrylate)
A-7: Acrylic acid polymer A-8: Sodium salt of acrylic acid polymer (sodium polyacrylate)
A-9: Sodium salt of copolymer of acrylic acid / methacrylic acid = 92/8 (molar ratio) A-10: Copolymer A- of sodium acrylate / sodium styrenesulfonate = 92/8 (molar ratio) 11: Copolymer of acrylic acid / methyl acrylate / hydroxyethyl acrylate = 92/3/3 (molar ratio) A-12: Copolymer A- of sodium acrylate / acrylamide = 92/8 (molar ratio) 13: Copolymer of sodium acrylate / sodium methallyl sulfonate = 95/5 (molar ratio) A-14: Copolymer of sodium acrylate / styrene = 98/2 (molar ratio)
B-1: Sodium gluconate ethylene oxide (1 mol) adduct B-2: Sodium gluconate ethylene oxide (3 mol) adduct B-3: Sodium gluconate ethylene oxide (8 mol) adduct B- 4: Sodium gluconate ethylene oxide (5 mol) adduct B-5: Gluconic acid ethylene oxide (15 mol) adduct B-6: Sodium gluconate B-7: Gluconic acid
C-1: Sodium tartrate C-2: Sodium lignin sulfonate C-3: Glucose
Test category 5 (Evaluation of anti-caking property 1)
50 kg of granulated blast furnace slag from Fukuyama manufactured by Steel Pipe Mining Co., Ltd. {Granularity adjusted product adjusted to the particle size distribution of 5 mm blast furnace slag fine aggregate according to JIS-A5011 (concrete slag aggregate for concrete)} was spread on a bat. Separately, a 20% aqueous solution of the anti-caking agent prepared in Test Category 4 was further diluted with water to prepare aqueous solutions having the working concentrations shown in Table 2. An aqueous liquid having a working concentration applied to the granulated slag spread on the vat is mixed with a hand scoop while spraying to the addition amount shown in Table 2 as an anti-caking agent, and the water content of the blast furnace granulated slag becomes 10%. Water was added as described above and mixed for 5 minutes with a tiltable mixer to obtain granulated blast furnace slag to which an anti-caking agent was added. Thus, the granulated blast furnace slag to which the anti-caking agent was added was filled in a cylindrical container having an inner diameter of 100 mm to a height of 125 mm, and this was about 0.15 MPa (1.5 kg / kg) corresponding to a storage height of 10 m of blast furnace granulated slag. cm 2 ) was loaded and used as a specimen. The specimen was sealed in a cylindrical container to prevent evaporation of moisture, and was cured in a thermostatic chamber at 80 ° C. for up to 14 weeks. After curing for a predetermined period, the specimen was unframed and the particle size was measured. The particle size was measured using a 5 mm sieve, the weight of what remained on the sieve without passing through the sieve was measured, and the ratio was determined (the ratio on the 5 mm sieve in Table 2). The results are summarized in Table 2. In Table 2, it means that the consolidation of blast furnace granulated slag is prevented, so that the numerical value of a ratio (%) on a 5 mm sieve is low.
[0047]
Test category 6 (Evaluation of water retention 1)
The ground granulated blast furnace slag to which the anti-caking agent prepared in Test Category 5 was added was centrifugally dehydrated at a centrifugal force of 196 km / s 2 (20,000 Gee) for 60 minutes, and the anti-caking agent after centrifugal dehydration was added. The water content ratio (%) of granulated blast furnace slag was measured. The results are summarized in Table 2. Here, the larger the value of the water content ratio (%) after centrifugal dehydration, the higher the water retention of the granulated blast furnace slag to which the anti-caking agent is added.
[0048]
[Table 2]
Figure 0003914123
[0049]
In Table 2,
Amount added: parts by weight of anti-caking agent per 100 parts by weight of granulated blast furnace slag
Test category 7 (Evaluation of anti-caking property 2)
A 20% aqueous solution of the anti-caking agent prepared in Test Category 4 was further diluted with water to prepare aqueous solutions having the working concentrations shown in Table 3. Blast furnace granulated slag is crushed with a crusher, and sprayed with an aqueous solution of the concentration used for the crushed material as an anti-caking agent in the amount shown in Table 3, then sieved through a screen and 5mm blast furnace granulated slag 80 tons of granulated blast furnace slag adjusted to fine aggregate particle size was obtained. The obtained granulated blast furnace slag with added anti-caking agent was piled up in the shape of a hill with a height of 3m outdoors for 14 weeks, and intruded by the following method at the time indicated in Table 3 during the field loading period. The resistance coefficient was obtained and the anti-caking property was evaluated. Here, when the penetration resistance coefficient is 0.45 or less, it is determined that there is no problem due to consolidation. The results are summarized in Table 3.
・ Penetration resistance coefficient Blast furnace slag aggregate The penetration resistance measuring instrument described in the concrete construction guidelines was penetrated into the pile of fields, and the penetration resistance coefficient was calculated by the following formula (Concrete Library No. 76 blast furnace slag aggregate) Concrete construction guideline P.21 Japan Society of Civil Engineers 1993).
Penetration resistance coefficient = 100cm of spring load at the time of penetration (kgf) / penetration length 100 (cm), or penetration resistance coefficient = spring length of maximum load 20kgf / spring length of maximum load 20kgf (cm)
[0051]
Test category 8 (water retention evaluation 2)
In test section 7, at the same time when the penetration resistance coefficient is obtained, a water retention evaluation sample is taken from the piled granulated blast furnace slag, and the anti-caking agent after centrifugal dehydration is added under the same conditions as in test section 5. The water content ratio (%) of the granulated blast furnace slag was measured. The results are summarized in Table 3.
[0052]
[Table 3]
Figure 0003914123
[0053]
Test category 9 (Preparation and evaluation of hydraulic cement composition)
Under the mixing conditions shown in Table 4, hydraulic cement compositions (concrete) of each example were prepared as follows. Portland cement (specific gravity 3.16, brain value 3300), Oikawa water sand (specific gravity 2.63) as fine aggregate and 50 liter pan-type forced kneading mixer and left unattended in the field for 8 weeks in test section 7 The tested blast furnace granulated slag and coarse aggregate (Okazaki crushed stone, specific gravity 2.68) were sequentially added and air-kneaded for 15 seconds. Next, in each example, an AE water reducing agent (trade name Tupol EX20 manufactured by Takemoto Yushi Co., Ltd.) is mixed with water so that the target slump falls within the range of 18 ± 1 cm so that the amount is 0.2% by weight based on the cement weight. Added and kneaded for 2 minutes. At this time, an air amount adjusting agent (trade name AE200 manufactured by Takemoto Yushi Co., Ltd.) was added so that the target air amount was 4 to 5%.
[0054]
[Table 4]
Figure 0003914123
[0055]
About the hydraulic cement composition (concrete) of each prepared example, the physical property was measured as follows. The results are summarized in Table 5.
Slump: Measured according to JIS-A1101.
Air amount: Measured according to JIS-A1128.
Compressive strength: measured in accordance with JIS-A1108.
Bleeding rate: The amount of bleeding was measured according to JIS-A1123, and the bleeding rate was determined using the following equation.
Bleeding rate (%) = (maximum bleeding amount / total water amount in sample) × 100
In Table 5, the smaller the numerical value of the bleeding rate (%), the smaller the bleeding.
[0056]
[Table 5]
Figure 0003914123
[0057]
In Table 5,
Comparative Example 24: A blast furnace slag fine aggregate not added with an anti-caking agent was used instead of a blast furnace slag fine aggregate added with an anti-caking agent, and an anti-caking agent (M-1) was 0.18 kg. It was added when preparing a hydraulic cement composition (concrete) at a ratio of / m 3 .
Comparative Example 25: A blast furnace slag fine aggregate not added with an anti-caking agent was used instead of a blast furnace slag fine aggregate added with an anti-caking agent, and an anti-caking agent (M-6) was added at 0.18 kg. It was added when preparing a hydraulic cement composition (concrete) at a ratio of / m 3 .
[0058]
【The invention's effect】
As is apparent, the present invention described above can sufficiently prevent consolidation of blast furnace granulated slag, etc. over a long period of time, and at the same time as at least part of the fine aggregate among the aggregates. In the hydraulic cement composition using blast furnace granulated slag or the like, there is an effect that the occurrence of bleeding is suppressed and the physical properties of the obtained cured product are not adversely affected.

Claims (10)

高炉水砕スラグ又はその粒度調整物の固結防止剤であって、下記のA成分及びB成分から成ることを特徴とする固結防止剤。
A成分:全構成単位中に、下記の式1で示される構成単位を90モル%以上有するアクリル酸系重合体から選ばれる一つ又は二つ以上
【式1】
Figure 0003914123
(式1において、
M:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン)
B成分:グルコン酸、グルコン酸の塩、グルコン酸のエチレンオキサイド付加物、グルコン酸のエチレンオキサイド付加物の塩及びグルコン酸の塩のエチレンオキサイド付加物から選ばれる一つ又は二つ以上
An anti-caking agent for granulated blast furnace slag or a particle size adjusted product thereof, comprising the following components A and B:
Component A: One or two or more selected from acrylic acid polymers having 90 mol% or more of the structural unit represented by the following formula 1 in all the structural units
Figure 0003914123
(In Equation 1,
M: hydrogen atom, alkali metal, alkaline earth metal, ammonium or organic amine)
Component B: one or more selected from gluconic acid, a salt of gluconic acid, an ethylene oxide adduct of gluconic acid, a salt of an ethylene oxide adduct of gluconic acid and an ethylene oxide adduct of a gluconic acid salt
A成分を15〜98重量%及びB成分を2〜85重量%(合計100重量%)含有する請求項1記載の固結防止剤。The anti-caking agent according to claim 1, comprising 15 to 98% by weight of component A and 2 to 85% by weight (total 100% by weight) of component B. A成分を30〜90重量%及びB成分を10〜70重量%(合計100重量%)含有する請求項1記載の固結防止剤。The anti-caking agent according to claim 1, comprising 30 to 90% by weight of component A and 10 to 70% by weight of component B (100% by weight in total). A成分のアクリル酸系重合体が数平均分子量1000〜1000000のものである請求項1〜3のいずれか一つの項記載の固結防止剤。The anti-caking agent according to any one of claims 1 to 3, wherein the acrylic polymer of component A has a number average molecular weight of 1,000 to 1,000,000. A成分のアクリル酸系重合体がポリアクリル酸ナトリウムである請求項1〜4のいずれか一つの項記載の固結防止剤。The anti-caking agent according to any one of claims 1 to 4, wherein the acrylic polymer of component A is sodium polyacrylate. B成分がグルコン酸のエチレンオキサイド付加物のナトリウム塩及びグルコン酸ナトリウムのエチレンオキサイド付加物から選ばれる一つ又は二つ以上である請求項1〜5のいずれか一つの項記載の固結防止剤。The anti-caking agent according to any one of claims 1 to 5, wherein the component B is one or more selected from a sodium salt of an ethylene oxide adduct of gluconic acid and an ethylene oxide adduct of sodium gluconate. . グルコン酸のエチレンオキサイド付加物のナトリウム塩がグルコン酸1モル当たりエチレンオキサイドを1〜20モルの割合で付加したもののナトリウム塩であり、またグルコン酸ナトリウムのエチレンオキサイド付加物がグルコン酸ナトリウム1モル当たりエチレンオキサイドを1〜20モルの割合で付加したものである請求項6記載の固結防止剤。Sodium salt of ethylene oxide adduct of gluconic acid is a sodium salt of ethylene oxide added at a ratio of 1 to 20 mol per mol of gluconic acid, and ethylene oxide adduct of sodium gluconate per mol of sodium gluconate The anti-caking agent according to claim 6, wherein ethylene oxide is added at a ratio of 1 to 20 mol. 高炉水砕スラグ又はその粒度調整物の固結防止方法であって、高炉水砕スラグ又はその粒度調整物100重量部当たり請求項1〜7のいずれか一つの項記載の固結防止剤を0.002〜0.3重量部の割合となるよう用いることを特徴とする固結防止方法。A method for preventing caking of granulated blast furnace slag or a particle size-adjusted product thereof, wherein the anti-caking agent according to any one of claims 1 to 7 per 100 parts by weight of granulated blast furnace slag or an adjusted particle size thereof is 0. A method for preventing caking, which is used in a ratio of 0.002 to 0.3 parts by weight. 固結防止剤の0.5〜10重量%水性液を用いる請求項8記載の固結防止方法。9. The anti-caking method according to claim 8, wherein 0.5 to 10% by weight of an aqueous anti-caking agent is used. 請求項8又は9記載の固結防止方法によって得られる水硬性セメント組成物用細骨材。The fine aggregate for hydraulic cement compositions obtained by the caking prevention method according to claim 8 or 9.
JP2002265224A 2002-09-11 2002-09-11 Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition Expired - Lifetime JP3914123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265224A JP3914123B2 (en) 2002-09-11 2002-09-11 Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265224A JP3914123B2 (en) 2002-09-11 2002-09-11 Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition

Publications (2)

Publication Number Publication Date
JP2004099389A JP2004099389A (en) 2004-04-02
JP3914123B2 true JP3914123B2 (en) 2007-05-16

Family

ID=32264422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265224A Expired - Lifetime JP3914123B2 (en) 2002-09-11 2002-09-11 Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition

Country Status (1)

Country Link
JP (1) JP3914123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137621A (en) * 2004-11-10 2006-06-01 Nippon Shokubai Co Ltd Anti-solidifying agent for steel slag
JP4864806B2 (en) * 2007-05-08 2012-02-01 新日本製鐵株式会社 Anti-caking method and anti-caking agent for granulated blast furnace slag

Also Published As

Publication number Publication date
JP2004099389A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US7531584B2 (en) Providing freezing and thawing resistance to cementitious compositions
US6648962B2 (en) Micro-granulose particulates
US4897119A (en) Aqueous dispersion of ground slag
AU2002336384A1 (en) Micro-granulose particulates
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
WO2008000326A2 (en) Anti-caking agent
JP3914123B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition
JP4212088B2 (en) Method of preventing caking of granulated blast furnace slag or its particle size adjusted product
JP3559204B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
JP4836261B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size
JP4263033B2 (en) Aggregate for hydraulic cement composition and hydraulic cement composition
JP3483117B2 (en) Quick setting material, spray material, and quick setting spray concrete
JP2558577B2 (en) How to improve frost resistance of concrete
JP4302120B2 (en) Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete
JP4263039B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
JP4302119B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size
JPH05319889A (en) Hydraulic cement composition
JP2003306357A (en) Anti-solidifying agent and anti-solidifying method for granulated blast furnace slag or its particle size- regulated material
JP2897476B2 (en) Aqueous soil conditioner
CN111285632A (en) Concrete pumping agent for high-alkali areas and preparation method thereof
JP4514131B2 (en) Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
WO2022196727A1 (en) Method for improving ground
JP2529785C (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Ref document number: 3914123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term