JP4864806B2 - Anti-caking method and anti-caking agent for granulated blast furnace slag - Google Patents

Anti-caking method and anti-caking agent for granulated blast furnace slag Download PDF

Info

Publication number
JP4864806B2
JP4864806B2 JP2007123652A JP2007123652A JP4864806B2 JP 4864806 B2 JP4864806 B2 JP 4864806B2 JP 2007123652 A JP2007123652 A JP 2007123652A JP 2007123652 A JP2007123652 A JP 2007123652A JP 4864806 B2 JP4864806 B2 JP 4864806B2
Authority
JP
Japan
Prior art keywords
caking
aqueous solution
sorbitol
blast furnace
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007123652A
Other languages
Japanese (ja)
Other versions
JP2008280192A (en
Inventor
直樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007123652A priority Critical patent/JP4864806B2/en
Publication of JP2008280192A publication Critical patent/JP2008280192A/en
Application granted granted Critical
Publication of JP4864806B2 publication Critical patent/JP4864806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、高炉水砕スラグの固結防止方法および固結防止剤に関する。   The present invention relates to an anti-caking method and an anti-caking agent for granulated blast furnace slag.

高炉水砕スラグは、高炉から出滓した溶融スラグに高圧水を噴射し急冷凝固して、直接砂状に製造される。高炉水砕スラグの用途としては、微粉砕してセメント原料にしたり、製造されたままの粒度で土木工事用材や、また粒度・粒形調整をしてコンクリート用細骨材に利用される。粒度・粒形調整は、製造された砂粒を磨砕するなどによって行われる。   Granulated blast furnace slag is produced directly into sand by injecting high-pressure water into molten slag discharged from the blast furnace and rapidly solidifying it. Blast furnace granulated slag can be used as a raw material for cement by finely pulverizing, as well as for civil engineering materials with as-manufactured granularity, and fine aggregate for concrete by adjusting the particle size and particle shape. The particle size and particle shape are adjusted by grinding the produced sand particles.

ところで、高炉水砕スラグは、例えばコンクリート用細骨材に利用されるまでに、長期間野積みされることがあり、その際に固結するという問題がある。特に磨砕などを行って、粒度が細かくなった高炉水砕スラグは固結し易い。   By the way, there is a problem that blast furnace granulated slag is piled up for a long time before being used for fine aggregate for concrete, for example, and solidifies at that time. In particular, ground granulated blast furnace slag is easily consolidated by grinding.

固結防止技術については、従来から多数提案されてきたが、最も広く利用されているのは固結防止剤を添加する方法である。固結防止剤としては、脂肪族オキシカルボン酸やその塩(例えば、特許文献1参照)、糖アルコール類(例えば、特許文献2参照)、ソルビトール(特許文献3参照)、アクリル酸系重合体(例えば、特許文献5参照)、カルボキシル基含有ポリマーとソルビトール(特許文献6参照)、などが開示されている。   Many anti-caking techniques have been proposed in the past, but the most widely used is a method of adding an anti-caking agent. Examples of the anti-caking agent include aliphatic oxycarboxylic acids and salts thereof (see, for example, Patent Document 1), sugar alcohols (see, for example, Patent Document 2), sorbitol (see, Patent Document 3), acrylic acid polymers ( For example, Patent Document 5), carboxyl group-containing polymers and sorbitol (see Patent Document 6), and the like are disclosed.

特開昭54−130496号公報Japanese Patent Laid-Open No. 54-130596 特開昭58−104050号公報JP 58-104050 A 特開昭59−116156号公報JP 59-116156 特開2003−160364号公報JP 2003-160364 A 特開2005−82427号公報JP 2005-82427 A

従来の固結防止剤には、オキシカルボン酸やアクリル酸系重合体など、カルボキシル基をもつ物質が多く用いられている。しかしながらカルボキシル基をもつ物質単独や、これら同類物質を2種類以上含んだ場合でも長期的には必ずしも十分な効果が得られてはいなかった。近年では、長期固結防止のためにカルボキシル基をもつ高分子が開示されているが、高分子を主成分とする固結防止剤は、従来の低分子量成分からなる固結防止剤と比較して、同等質量添加した場合のスラグ粒子当たりに付着する分子数が少ないので、十分な効果が得られない。そのために多量に添加する必要があり、費用対効果に劣る。   As the conventional anti-caking agent, many substances having a carboxyl group such as oxycarboxylic acid and acrylic polymer are used. However, even when a substance having a carboxyl group alone or two or more of these similar substances are contained, a sufficient effect has not always been obtained in the long term. In recent years, polymers having carboxyl groups have been disclosed for the purpose of preventing long-term caking, but anti-caking agents composed mainly of polymers are compared with conventional anti-caking agents composed of low molecular weight components. In addition, since the number of molecules attached per slag particle when the same mass is added is small, a sufficient effect cannot be obtained. Therefore, it is necessary to add a large amount, which is inferior in cost effectiveness.

そこで本発明は、従来より長期固結防止が可能で、高分子系固結防止剤よりスラグ粒子当たりに付着する分子数を顕著に増加させることで少ない添加量でも固結防止効果が得られ、費用対効果にも優れる、高炉水砕スラグの固結防止剤及び固結防止方法を提供する。   Therefore, the present invention can prevent caking for a long period of time than before, and the caking prevention effect can be obtained even with a small addition amount by remarkably increasing the number of molecules attached per slag particle than the polymeric anti-caking agent, Provided are an anti-caking agent and an anti-caking method for granulated blast furnace slag, which are excellent in cost effectiveness.

本発明による高炉水砕スラグの固結防止剤は、ソルビトールとグルコン酸を含有する。ソルビトールまたはグルコン酸を単独で固結防止剤に用いる技術は既に知られているが、発明者等は、ソルビトール及びグルコン酸の固結防止効果を詳細に調査した結果、両物質を併用することで、著しい固結防止効果が発現できることを見いだした。   The anti-caking agent for granulated blast furnace slag according to the present invention contains sorbitol and gluconic acid. Although the technology of using sorbitol or gluconic acid alone as an anti-caking agent is already known, the inventors have investigated in detail the anti-caking effect of sorbitol and gluconic acid. It was found that a significant anti-caking effect can be exhibited.

高炉水砕スラグの固結は、高炉水砕スラグからCaが溶出しpHが上昇することによって起こることが知られている。そこでソルビトール水溶液、グルコン酸水溶液、グルコン酸と水酸化ナトリウムを混合した水溶液のそれぞれに、水酸化カルシウム水溶液を添加することによって固結の模擬試験を行ったところ、図1の模式図に示すようなpH変化を観察した。なお、図1において、「S」はソルビトール水溶液の場合、「G」はグルコン酸水溶液の場合、「GN」はグルコン酸と水酸化ナトリウムの混合水溶液の場合を示している。その結果、グルコン酸にはpH緩衝効果のあることが分かったが、ソルビトールには同様な効果は全く見られなかった。また、グルコン酸と水酸化ナトリウムを混合した水溶液では、グルコン酸水溶液には劣るものの、ソルビトール水溶液よりはpH緩衝効果があった。一方、両物質とも固結防止効果のあることを確認したが、ソルビトールは効果のバラツキが大きかった。   It is known that consolidation of granulated blast furnace slag occurs when Ca is eluted from the granulated blast furnace slag and pH is increased. Therefore, a simulation test of caking was performed by adding a calcium hydroxide aqueous solution to each of an aqueous solution of sorbitol, an aqueous solution of gluconic acid, and an aqueous solution in which gluconic acid and sodium hydroxide were mixed. As shown in the schematic diagram of FIG. A change in pH was observed. In FIG. 1, “S” indicates a sorbitol aqueous solution, “G” indicates a gluconic acid aqueous solution, and “GN” indicates a mixed aqueous solution of gluconic acid and sodium hydroxide. As a result, gluconic acid was found to have a pH buffering effect, but sorbitol did not show any similar effect. In addition, the aqueous solution in which gluconic acid and sodium hydroxide are mixed is inferior to the aqueous gluconic acid solution, but has a pH buffering effect than the aqueous sorbitol solution. On the other hand, both substances were confirmed to have an anti-caking effect, but sorbitol had a large variation in effects.

そこで、ソルビトールにグルコン酸を所定の比率で加えたところ、効果のバラツキが小さくなると共に、ソルビトール又はグルコン酸単独以上の固結防止効果があることを知見し、本発明を成すに至った。   Therefore, when gluconic acid was added to sorbitol at a predetermined ratio, the effect variation was reduced, and it was found that there was an anti-caking effect more than sorbitol or gluconic acid alone, and the present invention was achieved.

即ち、本発明の課題解決手段は以下の通りである。
(1) 高炉水砕スラグに、ソルビトールとグルコン酸の両方を水溶液として添加する固結防止方法であって、前記ソルビトールと前記グルコン酸の合計の添加量に対するソルビトールの添加量が50〜95質量%であることを特徴とする、高炉水砕スラグの固結防止方法。
(2) 前記ソルビトールと前記グルコン酸の合計の添加量が、前記高炉水砕スラグ100質量部に対して、0.01〜0.1質量部であることを特徴とする、(1)に記載の高炉水砕スラグの固結防止方法。
(3) 前記高炉水砕スラグに、前記ソルビトールと前記グルコン酸の両方を含む水溶液を添加する、又は、前記ソルビトールと前記グルコン酸と水酸化ナトリウム若しくは水酸化カリウムの少なくともいずれか一方とが混合された水溶液を添加することを特徴とする、(1)又は(2)に記載の高炉水砕スラグの固結防止方法。
(4) 前記高炉水砕スラグに、前記ソルビトールの水溶液を添加した後に、前記グルコン酸の水溶液又は前記グルコン酸と前記水酸化ナトリウム若しくは水酸化カリウムとが混合された水溶液を添加することを特徴とする、(1)〜(3)のいずれか1項に記載の高炉水砕スラグの固結防止方法。
(5) ソルビトールとグルコン酸の合計量に対するソルビトールの量が50〜95質量%の水溶液であることを特徴とする、高炉水砕スラグの固結防止剤。
(6) 前記水溶液中に、更に水酸化ナトリウム又は水酸化カリウムが含まれていることを特徴とする、(5)に記載の高炉水砕スラグの固結防止剤。
That is, the problem solving means of the present invention is as follows.
(1) An anti-caking method of adding both sorbitol and gluconic acid as an aqueous solution to granulated blast furnace slag, wherein the amount of sorbitol added relative to the total amount of sorbitol and gluconic acid is 50 to 95% by mass A method for preventing caking of granulated blast furnace slag, characterized in that
(2) The total addition amount of the sorbitol and the gluconic acid is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the granulated blast furnace slag. To prevent caking of granulated blast furnace slag.
(3) An aqueous solution containing both the sorbitol and the gluconic acid is added to the granulated blast furnace slag, or the sorbitol, the gluconic acid, and at least one of sodium hydroxide or potassium hydroxide are mixed. A method for preventing caking of granulated blast furnace slag according to (1) or (2), wherein an aqueous solution is added.
(4) After adding the aqueous solution of sorbitol to the granulated blast furnace slag, an aqueous solution of the gluconic acid or an aqueous solution in which the gluconic acid and the sodium hydroxide or potassium hydroxide are mixed is added. The method of preventing consolidation of blast furnace granulated slag according to any one of (1) to (3).
(5) An anti-caking agent for granulated blast furnace slag, characterized in that the amount of sorbitol relative to the total amount of sorbitol and gluconic acid is an aqueous solution of 50 to 95% by mass.
(6) The anti-caking agent for granulated blast furnace slag according to (5), wherein the aqueous solution further contains sodium hydroxide or potassium hydroxide.

本発明の固結防止方法及び固結防止剤の適用により、固結防止期間を従来より延長することができ、長期間保管しておいても問題なく高炉水砕スラグを利用できる。   By applying the anti-caking method and anti-caking agent of the present invention, the anti-caking period can be extended compared to the prior art, and blast furnace granulated slag can be used without problems even if stored for a long time.

また、本発明の固結防止方法及び固結防止剤は、従来のカルボキシル基を有する高分子のみを主成分とする固結防止方法や固結防止剤と比較して、同等質量添加した場合のスラグ粒子当たりに付着する分子数を顕著に増加させることで少ない添加量でも十分な固結防止効果を得ることができる。従って、固結防止剤を多量に添加する必要がなく、費用対効果に優れる。   Further, the anti-caking method and anti-caking agent of the present invention are compared with the conventional anti-caking method and anti-caking agent mainly composed of a polymer having a carboxyl group, and when the same mass is added. By significantly increasing the number of molecules attached per slag particle, a sufficient anti-caking effect can be obtained even with a small addition amount. Therefore, it is not necessary to add a large amount of anti-caking agent, and it is excellent in cost effectiveness.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明の高炉水砕スラグの固結防止方法及び固結防止剤は、ソルビトールとグルコン酸の両方を水溶液として高炉水砕スラグに添加し、且つ、両者の比率を所定の範囲にすることで、顕著な効果を発揮するものである。本発明の固結防止剤とは、溶質としてソルビトールとグルコン酸の両方を含有し、溶質のソルビトールと溶質のグルコン酸の合計量に対して溶質のソルビトールを所定の割合で含んでいる水溶液である。ソルビトール水溶液とグルコン酸水溶液を別々に添加する固結防止方法に用いる場合には、それぞれの水溶液を、固結防止用水溶液と呼ぶこととする。   The anti-caking method and anti-caking agent of the blast furnace granulated slag of the present invention are added to the blast furnace granulated slag as an aqueous solution of both sorbitol and gluconic acid, and by making the ratio of both within a predetermined range, It shows a remarkable effect. The anti-caking agent of the present invention is an aqueous solution containing both sorbitol and gluconic acid as solutes, and containing solute sorbitol in a predetermined ratio with respect to the total amount of solute sorbitol and solute gluconic acid. . When used in the anti-caking method in which an aqueous sorbitol solution and an aqueous gluconic acid solution are added separately, each aqueous solution will be referred to as an anti-caking aqueous solution.

本発明において高炉水砕スラグの固結防止に用いるソルビトールやグルコン酸には、例えば、製造用原料グルコースの未反応物などが少量残留している場合でも、本発明の方法に用いる固結防止用水溶液や本発明の固結防止剤中にソルビトールとグルコン酸とアルカリ金属水酸化物以外の成分が少量であれば(条件にもよるが、例えば、5質量%未満)本発明の効果は得られる。   In the present invention, the sorbitol and gluconic acid used for preventing consolidation of granulated blast furnace slag, for example, for the prevention of consolidation used in the method of the present invention, even when a small amount of unreacted material such as glucose for production remains. If there are a small amount of components other than sorbitol, gluconic acid and alkali metal hydroxide in the aqueous solution or the anti-caking agent of the present invention (depending on conditions, for example, less than 5% by mass), the effects of the present invention can be obtained. .

ソルビトールやグルコン酸の含有量は、例えば高速液体クロマトグラフ法で分析できる。   The content of sorbitol and gluconic acid can be analyzed by, for example, high performance liquid chromatography.

本発明の固結防止に用いるグルコン酸の水溶液は酸性を示す(50質量%水溶液でpHは1.2程度)。高炉水砕スラグの固結は徐々にpHが上昇して起こることから、固結防止用水溶液や固結防止剤が酸性であることは、固結防止に対して好ましい。固結防止用水溶液や固結防止剤を添加する時の高炉水砕スラグのpHが既に高いものほど、例えば製造後経過時間の長いものほど、酸性の固結防止用水溶液や固結防止剤を用いるとより効果的である。しかし高炉水砕スラグのpHが10.5程度未満である場合は、必ずしも固結防止用水溶液や固結防止剤が酸性でなくてもよい。   The aqueous solution of gluconic acid used for the anti-caking of the present invention is acidic (50% by mass aqueous solution and pH is about 1.2). Since consolidation of blast furnace granulated slag occurs with a gradual increase in pH, it is preferable for the prevention of consolidation that the aqueous solution for anti-caking and the anti-caking agent are acidic. The higher the pH of the granulated blast furnace slag when adding the anti-caking aqueous solution or anti-caking agent, for example, the longer the post-production elapsed time, the more the acidic anti-caking aqueous solution or anti-caking agent is added. It is more effective when used. However, when the pH of the granulated blast furnace slag is less than about 10.5, the anti-caking aqueous solution or anti-caking agent may not necessarily be acidic.

また、固結防止用水溶液や固結防止剤が中性に近いほど、取り扱い上の問題は少ない。   In addition, the closer the neutralization aqueous solution and anti-caking agent are to neutrality, the fewer the handling problems.

そこで本発明では、アルカリ金属水酸化物を加えて、pHを調整したものを用いることも可能である。アルカリ金属水酸化物としては、例えば、水酸化ナトリウムや水酸化カリウムがあるが、コストの点において水酸化ナトリウムが好ましい。   Therefore, in the present invention, it is also possible to use a material whose pH is adjusted by adding an alkali metal hydroxide. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide, and sodium hydroxide is preferable in terms of cost.

アルカリ金属水酸化物の添加量は、高炉水砕スラグに添加する、グルコン酸とアルカリ金属化合物との混合水溶液、又はソルビトールとグルコン酸とアルカリ金属化合物との混合水溶液において、pHが8.5程度まで可能である。   The addition amount of the alkali metal hydroxide has a pH of about 8.5 in a mixed aqueous solution of gluconic acid and an alkali metal compound or a mixed aqueous solution of sorbitol, gluconic acid and an alkali metal compound, which is added to the granulated blast furnace slag. Is possible.

本発明でスラグに添加する固結防止成分中のソルビトール含有量は、50〜95質量%である。この場合の含有量は、ソルビトールとグルコン酸の合計を100質量%と定義する。原料中の不可避的残留成分や、グルコン酸の中和に用いるアルカリ金属水酸化物を含有量に含めないとする。本発明においては、ソルビトールの含有量が50質量%未満であると、防止効果が急速に低下する。また、ソルビトールの含有量が95質量%を越えると、ソルビトール単独と同様に効果のバラツキが大きく固結防止効果が安定しない。   The sorbitol content in the anti-caking component added to the slag in the present invention is 50 to 95% by mass. Content in this case defines the sum total of sorbitol and gluconic acid as 100 mass%. Suppose that unavoidable residual components in the raw material and alkali metal hydroxide used for neutralization of gluconic acid are not included in the content. In the present invention, when the sorbitol content is less than 50% by mass, the prevention effect is rapidly reduced. On the other hand, when the content of sorbitol exceeds 95% by mass, the effect variation is large as in the case of sorbitol alone, and the anti-caking effect is not stable.

本発明では固結防止用水溶液や固結防止剤を、水溶液中の溶質であるソルビトールとグルコン酸の正味質量として、高炉水砕スラグ(乾燥質量換算)100質量部に対して0.01〜0.1質量部添加する。この場合の0.01〜0.1質量部は、溶質のソルビトールと溶質のグルコン酸の合計量とする。原料製造中の不可避的残留成分や、グルコン酸の中和に用いるアルカリ金属水酸化物、及び水溶液の水分は添加量に含めない。本発明に用いる合計添加量が0.01質量部未満であると、十分な固結防止効果が得られない。一方、添加量の上限は特に規定しないが、ソルビトールとグルコン酸を添加した高炉水砕スラグをコンクリート用細骨材に利用する場合などは、ソルビトールとグルコン酸の合計添加量が0.1質量部を越えると、コンクリート品質に影響する場合があるため、0.1質量部以下であることが好ましい。   In the present invention, an anti-caking aqueous solution or an anti-caking agent is used in an amount of 0.01 to 0 with respect to 100 parts by mass of granulated blast furnace slag (in terms of dry mass) as the net mass of sorbitol and gluconic acid as solutes in the aqueous solution. Add 1 part by weight. In this case, 0.01 to 0.1 part by mass is the total amount of solute sorbitol and solute gluconic acid. Inevitable residual components during raw material production, alkali metal hydroxides used for neutralization of gluconic acid, and water in aqueous solutions are not included in the added amount. When the total addition amount used in the present invention is less than 0.01 parts by mass, a sufficient anti-caking effect cannot be obtained. On the other hand, the upper limit of the addition amount is not particularly specified, but when using blast furnace granulated slag added with sorbitol and gluconic acid for fine aggregate for concrete, the total addition amount of sorbitol and gluconic acid is 0.1 parts by mass. If it exceeds 1, it may affect the concrete quality, so it is preferably 0.1 parts by mass or less.

本発明における固結防止剤の高炉水砕スラグへの添加方法は、ソルビトールとグルコン酸を混合、又は更にアルカリ金属水酸化物を混合して水溶液とし、例えば0.5〜10質量%の濃度に希釈して、スラグに散布する。希釈濃度は、固結防止剤がスラグに均一にかつ上記含有量添加できれば、0.5〜10質量%に特定されるものではない。   In the present invention, the anti-caking agent is added to granulated blast furnace slag by mixing sorbitol and gluconic acid, or further mixing an alkali metal hydroxide to form an aqueous solution, for example, at a concentration of 0.5 to 10% by mass. Dilute and apply to slag. The dilution concentration is not limited to 0.5 to 10% by mass as long as the anti-caking agent can be added to the slag uniformly and the above content.

本発明ではまた、高炉水砕スラグにソルビトール水溶液を添加した後、グルコン酸水溶液、又はグルコン酸とアルカリ金属水酸化物を混合した水溶液を添加することも可能である。   Moreover, in this invention, after adding sorbitol aqueous solution to blast furnace granulated slag, it is also possible to add gluconic acid aqueous solution or the aqueous solution which mixed gluconic acid and the alkali metal hydroxide.

ソルビトールとグルコン酸を予め混合、又は更にアルカリ金属水酸化物を予め混合した水溶液(本発明の固結防止剤)を添加する方法が、最も確実に固結防止効果を得る方法であるが、これらの成分を別々に固結防止用水溶液として添加しても、両方共にほぼ均一に分散して添加できれば、ほぼ同等の効果が得られる。別々に添加する場合は、ソルビトール水溶液を添加した後、グルコン酸水溶液、又はグルコン酸とアルカリ金属水酸化物を混合した水溶液を添加することが好ましい。   A method of adding an aqueous solution (an anti-caking agent of the present invention) in which sorbitol and gluconic acid are mixed in advance, or further mixed with an alkali metal hydroxide in advance (the anti-caking agent of the present invention) is the method for obtaining the most effective anti-caking effect. Even if these components are separately added as an anti-caking aqueous solution, if both can be dispersed almost uniformly, substantially the same effect can be obtained. When adding separately, after adding sorbitol aqueous solution, it is preferable to add gluconic acid aqueous solution or the aqueous solution which mixed gluconic acid and the alkali metal hydroxide.

ソルビトールはスラグ表面に十分付着することで固結防止効果を発現するが、グルコン酸はpH緩衝効果も発揮して固結を防止するので、必ずしもスラグ表面に直接付着している必要はなくスラグ表面に存在する水分中に含有されていれば良い。そこで、最初にソルビトール水溶液を添加してソルビトールをスラグに付着させた後、グルコン酸水溶液、又はグルコン酸とアルカリ金属水酸化物を混合した水溶液を添加しても、予め混合した場合とほぼ同等の固結防止効果が得られる。   Sorbitol exhibits sufficient anti-caking effect by adhering to the slag surface, but gluconic acid also exerts a pH buffering effect to prevent caking, so it is not always necessary to adhere directly to the slag surface. As long as it is contained in the water present in the water. Therefore, after first adding an aqueous sorbitol solution to adhere sorbitol to the slag, adding an aqueous gluconic acid solution or an aqueous solution in which gluconic acid and an alkali metal hydroxide are mixed is almost equivalent to the case of mixing in advance. A caking prevention effect is obtained.

固結防止用水溶液や固結防止剤を高炉スラグにできるだけ均一に分散させるために、本発明では固結防止用水溶液や固結防止剤における溶質成分濃度を調整する。すなわち、高炉スラグに添加した水溶液が流出してしまうと、必用な添加量が確保できないので、流出しない程度に、本発明では高炉スラグに対して水溶液を1〜10質量部添加する。従って、添加する水溶液は、ソルビトールとグルコン酸の合計の濃度が0.1〜10質量%になるよう調製した水溶液とすれば良い。   In order to disperse the anti-caking aqueous solution and the anti-caking agent as uniformly as possible in the blast furnace slag, in the present invention, the concentration of solute components in the anti-caking aqueous solution and the anti-caking agent is adjusted. That is, if the aqueous solution added to the blast furnace slag flows out, a necessary addition amount cannot be secured. Therefore, in the present invention, 1 to 10 parts by mass of the aqueous solution is added to the blast furnace slag to such an extent that the aqueous solution does not flow out. Therefore, the aqueous solution to be added may be an aqueous solution prepared so that the total concentration of sorbitol and gluconic acid is 0.1 to 10% by mass.

以下に、本発明の実施例及び比較例を示し、その結果を表1に示す。表1で「固結防止成分含有量(質量%)」として記載されている数値は、固結防止剤や固結防止用水溶液の溶質として添加する成分の合計含有量を100としたときの各溶質成分の質量割合である。   Below, the Example and comparative example of this invention are shown, and the result is shown in Table 1. In Table 1, the numerical values described as “anti-caking component content (mass%)” are the values when the total content of the components added as the solute of the caking preventing agent and the caking preventing aqueous solution is 100. It is the mass ratio of the solute component.

Figure 0004864806
Figure 0004864806

実施例(実施例8を除く)及び比較例に使用したソルビトールは市販の含有量50〜70質量%の水溶液を用い、グルコン酸は市販の含有量48〜52質量%の水溶液を用いて、両水溶液を適正量混合して、各固結防止成分が所定の割合となるように混合してから使用した。また、NaOHを添加した固結防止用水溶液又は固結防止剤を用いる場合は、固結防止用水溶液又は固結防止剤を調整する時に、グルコン酸と当量のNaOHを加えて所定の含有量になるようにした。この場合、表1にはグルコン酸Naと記載する。   The sorbitol used in the examples (excluding Example 8) and the comparative example uses a commercially available aqueous solution with a content of 50 to 70% by mass, and gluconic acid uses a commercially available aqueous solution with a content of 48 to 52% by mass. A proper amount of the aqueous solution was mixed, and each anti-caking component was mixed at a predetermined ratio before use. In addition, when using an anti-caking aqueous solution or an anti-caking agent to which NaOH has been added, when adjusting the aqueous caking preventing solution or anti-caking agent, NaOH equivalent to gluconic acid is added to a predetermined content. It was made to become. In this case, Table 1 describes it as Na gluconate.

比較例として単独使用したソルビトールおよびグルコン酸は、実施例で用いたものと同じである。また、比較例では、固結防止成分として、カルボン酸を有する高分子であるポリアクリル酸Naを使用し、質量平均分子量が約8000で含有量が約45質量%の水溶液を原液として、正味成分量が表1の成分に示す質量%になるよう混合して、固結防止用の水溶液を調製した。   The sorbitol and gluconic acid used alone as comparative examples are the same as those used in the examples. In the comparative example, polyacrylic acid Na, which is a polymer having a carboxylic acid, is used as an anti-caking component, and an aqueous solution having a mass average molecular weight of about 8000 and a content of about 45% by mass is used as a stock solution. An aqueous solution for preventing caking was prepared by mixing so that the amount was mass% shown in the components of Table 1.

本発明を適用する高炉水砕スラグは、製造時点で含水しており、製造後にヤードに移しても、少なくとも数質量%前後、多くは10質量%程度の水分を含んだものである。このスラグに直接固結防止用水溶液や固結防止剤を適用する試験が好ましいが、固結を確認するまでに長時間を必要とすることから、本実施例では、固結を促進させるため硫酸カルシウムを添加した高炉水砕スラグ微粉末を用いて固結加速試験を行った。より固結し易いスラグを用いているので、実際に適用するスラグに対しても十分効果はある。   The granulated blast furnace slag to which the present invention is applied is water-containing at the time of production, and even if it is transferred to the yard after production, it contains water of at least about several mass%, most of which is about 10 mass%. A test in which an aqueous solution or an anti-caking agent is directly applied to the slag is preferable, but since it takes a long time to confirm caking, in this embodiment, sulfuric acid is used to promote caking. A consolidation acceleration test was performed using ground granulated blast furnace slag powder with added calcium. Since slag that is more easily consolidated is used, there is a sufficient effect on the slag that is actually applied.

そこで、本実施例では以下の方法で固結防止効果を評価した。先ず高炉水砕スラグ微粉末100質量部に対し14質量部の水を添加して、スラグと水を十分馴染ませた。これは、前記のように実際に適用するスラグが最初から含水していることを模擬するためである。   Therefore, in this example, the anti-caking effect was evaluated by the following method. First, 14 parts by mass of water was added to 100 parts by mass of ground granulated blast furnace slag, and the slag and water were sufficiently mixed. This is for simulating that the slag actually applied contains water from the beginning as described above.

その後、表1の固結防止成分の組成(質量%)となるように、固結防止剤または固結防止用水溶液のそれぞれを、スラグに対して溶質成分の合計質量が表に記載のスラグへの添加量(スラグ100質量部に対する)になるように希釈して、スラグ(乾燥質量換算)に対して6質量部添加して、スラグと固結防止成分を十分馴染ませた。例えば含有量が約50質量%のグルコン酸水溶液を用い、グルコン酸をスラグに対して0.03質量部添加する場合は、該グルコン酸水溶液を100倍希釈した固結防止用水溶液をスラグ100質量部に対して6質量部添加する。また、ソルビトール:グルコン酸=50:50質量%の固結防止剤をスラグに0.03質量部添加する場合は、ソルビトール含有量が50質量%の水溶液とグルコン酸含有量が50質量%の水溶液を当量混合して200倍希釈した水溶液を、スラグ100質量部に対して6質量部添加する。   Thereafter, the anti-caking agent or the caking-preventing aqueous solution is added to the slag with the total mass of the solute component relative to the slag so that the composition (mass%) of the anti-caking component shown in Table 1 is obtained. It was diluted so that it would be an added amount (based on 100 parts by mass of slag), and 6 parts by mass was added to the slag (in terms of dry mass), so that the slag and the anti-caking component were sufficiently acclimated. For example, when using a gluconic acid aqueous solution having a content of about 50% by mass and adding 0.03 parts by mass of gluconic acid to slag, 100% by mass of the anti-caking aqueous solution obtained by diluting the gluconic acid aqueous solution 100 times 6 parts by mass is added to parts. When 0.03 parts by mass of a sorbitol: gluconic acid = 50: 50 mass% anti-caking agent is added to the slag, an aqueous solution having a sorbitol content of 50 mass% and an aqueous solution having a gluconic acid content of 50 mass% 6 parts by mass of an aqueous solution diluted 200 times by equivalent mixing with respect to 100 parts by mass of slag.

また固結防止成分を含まない水を同様な方法で添加した比較材も調製した(比較例8)。   Moreover, the comparative material which added the water which does not contain a caking prevention component by the same method was also prepared (Comparative Example 8).

従って、スラグに対する水分量は、実施例と比較例全てにおいて合計約20質量部とした。固結防止用水溶液や固結防止剤を希釈した水溶液を添加する場合、厳密な水分添加量は6質量部未満となるが、水溶液中の固結防止成分濃度は約1質量%程度としたので、全水分量は何れの例も約20質量%でほぼ同一と考えて差し支えない。   Therefore, the total amount of water relative to the slag was about 20 parts by mass in all of the examples and comparative examples. When adding an aqueous solution for anti-caking or an aqueous solution diluted with an anti-caking agent, the exact amount of water added is less than 6 parts by mass, but the concentration of the anti-caking component in the aqueous solution is about 1% by mass. In all cases, the total water content is about 20% by mass and can be considered to be almost the same.

次いで、固結防止用水溶液や固結防止剤を添加したスラグ微粉末を金型に充填し、φ20×20mm程度に圧縮成形して固結評価試験体を作成した。試験体が乾燥しないよう密封した後、常温で養生し、5日毎に試験体の圧縮強度を測定した。固結防止用水溶液や固結防止剤を含まない比較材の10日強度を100とした強度比を活性度指数として、各固結防止用水溶液や固結防止剤の各養生期間における強度を表1に示す。比較材の養生10日以降の強度は、殆ど変化がなく、本固結評価試験条件における最大強度であり、活性度指数100とした。また強度比が4程度以下、即ち圧縮強度が成形直後強度と殆ど同等であった場合は、固結していないとして、活性度指数を0として表した。   Next, a slag fine powder to which an aqueous solution for anti-caking or an anti-caking agent was added was filled in a mold, and compression molded to about φ20 × 20 mm to prepare a caking test specimen. After sealing the specimen so that it did not dry, it was cured at room temperature and the compressive strength of the specimen was measured every 5 days. The strength ratio of each anti-caking solution and anti-caking agent in the curing period is expressed as an activity index, with the strength ratio of the comparison material containing no anti-caking agent and anti-caking agent as 10 days. It is shown in 1. The strength of the comparative material after 10 days was almost unchanged, and was the maximum strength under the consolidation evaluation test conditions. Further, when the strength ratio was about 4 or less, that is, when the compressive strength was almost equal to the strength immediately after molding, the activity index was expressed as 0 because it was not consolidated.

実施例1は、ソルビトールとグルコン酸が50質量%となる固結防止剤を、スラグ100質量部に対し0.017質量部添加した。養生10日目までは成形時の強度と変わりなく、まだ固結していなかった。15日目では、最大強度の約30%程度の強度を示し、10〜15日の間に顕著な固結が始まったと推定した。20日目にはほぼ最大強度に達し、完全に固結した。   In Example 1, 0.017 parts by mass of an anti-caking agent containing 50% by mass of sorbitol and gluconic acid was added to 100 parts by mass of slag. Up to the 10th day of curing, the strength was not different from that at the time of molding and was not yet consolidated. On the 15th day, it showed an intensity of about 30% of the maximum intensity, and it was estimated that remarkable consolidation started within 10 to 15 days. On day 20, the maximum strength was reached and it was completely consolidated.

実施例2は、ソルビトール/グルコン酸が質量比80/20となる固結防止剤を、スラグ100質量部に対し0.017質量部添加した。実施例1と同様、養生10日目では成形時の強度と変わりなく、まだ固結していなかった。15日目では、最大強度の約21%程度の強度を示し、10〜15日の間に顕著な固結が始まったと推定した。しかし20日目の強度は、最大強度の約93%程度でまだ完全な固結には至っておらず、顕著な固結の開始時期は、実施例1よりは遅く、より固結防止効果に優れていると判断した。   In Example 2, 0.017 parts by mass of an anti-caking agent having a mass ratio of sorbitol / gluconic acid of 80/20 was added to 100 parts by mass of slag. As in Example 1, on the 10th day of curing, the strength at the time of molding was not changed, and it was not yet consolidated. On the 15th day, it showed an intensity of about 21% of the maximum intensity, and it was estimated that remarkable consolidation started within 10 to 15 days. However, the strength on the 20th day is about 93% of the maximum strength and has not yet been fully consolidated, and the start time of significant consolidation is later than in Example 1 and is more effective in preventing consolidation. It was judged that.

実施例3は、ソルビトール含有量が95質量%であり、実施例1、2に比較してソルビトールの含有量が高いほど固結防止効果に優れていた。実施例4は、実施例3のグルコン酸に当量のNaOHを添加した固結防止剤を用いた。実施例3よりは若干固結防止効果が低下したものの、実施例2相当の性能が発現していた。   In Example 3, the sorbitol content was 95% by mass, and the higher the sorbitol content compared to Examples 1 and 2, the better the anti-caking effect. In Example 4, an anti-caking agent obtained by adding an equivalent amount of NaOH to the gluconic acid of Example 3 was used. Although the anti-caking effect was slightly lower than in Example 3, the performance corresponding to Example 2 was exhibited.

実施例5は、実施例3と同一の固結防止剤を、スラグ100質量部に対して0.01質量部添加した例である。実施例3より固結防止期間は若干短くなったが、問題ない固結防止性能を示した。実施例6は、実施例3と同一の固結防止剤を、スラグ100質量部に対して0.09質量部添加した。20日間の試験期間内では固結は観察されなかった。一方で固結防止剤コストは、実施例3の数倍である。   Example 5 is an example in which 0.01 parts by mass of the same anti-caking agent as Example 3 was added to 100 parts by mass of slag. Although the anti-caking period was slightly shorter than that in Example 3, the anti-caking performance was satisfactory. In Example 6, 0.09 parts by mass of the same anti-caking agent as in Example 3 was added to 100 parts by mass of slag. No consolidation was observed within the 20 day test period. On the other hand, the anti-caking agent cost is several times that of Example 3.

実施例7は、実施例3と同一の固結防止剤を、スラグ100質量部に対して0.005質量部添加した例である。添加量が実施例5の0.01質量部より少ないと十分な固結防止ができない場合があった。この時の試料は、高炉水砕スラグ微粉末100質量部に対し14質量部の水を添加した後、固結防止剤を添加するまでの時間が長かった。高炉水砕スラグは、水と接触した製造直後からCaが溶出しpHの上昇は始まり、ある時間経過した後に固結に至る。従って水と接触してからの経過時間の長いスラグほど固結し易い状態にある。実施例7は固結性の高まっているスラグを模擬した例である。   Example 7 is an example in which 0.005 parts by mass of the same anti-caking agent as Example 3 was added to 100 parts by mass of slag. When the amount added was less than 0.01 parts by mass of Example 5, there was a case where sufficient caking prevention could not be performed. The sample at this time took a long time to add an anti-caking agent after adding 14 parts by mass of water to 100 parts by mass of ground granulated blast furnace slag powder. In granulated blast furnace slag, Ca elutes immediately after production when it comes into contact with water, the pH starts to rise, and solidifies after a certain period of time. Therefore, the longer the slag has elapsed since contact with water, the easier it is to consolidate. Example 7 is an example simulating slag having increased caking properties.

実施例8は、実施例1と同じ固結成分添加量において、ソルビトール水溶液を添加した後、グルコン酸とアルカリ金属水酸化物を混合した水溶液を添加した例である。実施例1とほぼ同じ固結防止効果が得られ、この場合は事前の成分混合調整が不要となった。   Example 8 is an example in which an aqueous solution obtained by mixing gluconic acid and an alkali metal hydroxide was added after adding an aqueous sorbitol solution in the same amount of addition of the solidified component as in Example 1. Almost the same anti-caking effect as in Example 1 was obtained, and in this case, prior component mixing adjustment became unnecessary.

比較例1〜5は、実施例で用いた固結防止剤の成分を単独で用いた例である。いずれも養生10日目までには固結が始まっていると推定され、実施例に劣った。   Comparative Examples 1 to 5 are examples in which the components of the anti-caking agent used in the examples were used alone. In any case, it was estimated that consolidation had started by the 10th day of curing, which was inferior to the examples.

比較例1、2はソルビトール単独使用例で実験条件は同じである。比較例1は最も効果があった場合で、比較例2は最も効果がなかった場合であり、固結防止効果が安定していなかった。比較例5はポリアクリル酸Naを単独で用いたが、本発明の試験の中では最も固結防止効果が低かった。更に固結防止剤コストは、概ね実施例の2倍である。比較例6は比較例5においてポリアクリル酸Naの20%をソルビトールに置換した場合であり、比較例5よりは若干固結開始時間が遅くなったと思われるが、実施例ほどの固結防止効果は得られなかった。   Comparative Examples 1 and 2 are examples in which sorbitol is used alone, and the experimental conditions are the same. The comparative example 1 was the case where the effect was the most effective, and the comparative example 2 was the case where the effect was the least effective, and the caking prevention effect was not stable. In Comparative Example 5, polyacrylic acid Na was used alone, but the anti-caking effect was the lowest among the tests of the present invention. Furthermore, the cost of the anti-caking agent is approximately twice that of the example. Comparative Example 6 is a case where 20% of polyacrylic acid Na was replaced with sorbitol in Comparative Example 5, and it seems that the solidification start time was slightly delayed as compared with Comparative Example 5. Was not obtained.

比較例7は、ソルビトール/グルコン酸が質量比40/60の固結防止剤である。養生10日目までには固結が始まらなかったが、15日目までの間に固結防止効果が急激に低下した。ソルビトールの含有量が50質量%未満であると、実施例1〜3ほどの効果が得られなかった。   Comparative Example 7 is an anti-caking agent having a sorbitol / gluconic acid mass ratio of 40/60. Although the caking did not start by the 10th day of curing, the caking prevention effect decreased sharply by the 15th day. When the content of sorbitol was less than 50% by mass, the effects as in Examples 1 to 3 were not obtained.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

ソルビトール水溶液、グルコン酸水溶液、グルコン酸と水酸化ナトリウムの混合水溶液のそれぞれに水酸化カルシウム水溶液を添加したときのpH変化の模式図である。It is a schematic diagram of pH change when a calcium hydroxide aqueous solution is added to each of a sorbitol aqueous solution, a gluconic acid aqueous solution, and a mixed aqueous solution of gluconic acid and sodium hydroxide.

Claims (6)

高炉水砕スラグに、ソルビトールとグルコン酸の両方を水溶液として添加する固結防止方法であって、
前記ソルビトールと前記グルコン酸の合計の添加量に対するソルビトールの添加量が50〜95質量%であることを特徴とする、高炉水砕スラグの固結防止方法。
An anti-caking method of adding both sorbitol and gluconic acid as an aqueous solution to granulated blast furnace slag,
The method for preventing consolidation of granulated blast furnace slag, wherein the amount of sorbitol added relative to the total amount of sorbitol and gluconic acid is 50 to 95% by mass.
前記ソルビトールと前記グルコン酸の合計の添加量が、前記高炉水砕スラグ100質量部に対して、0.01〜0.1質量部であることを特徴とする、請求項1に記載の高炉水砕スラグの固結防止方法。   2. The blast furnace water according to claim 1, wherein a total addition amount of the sorbitol and the gluconic acid is 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the granulated blast furnace slag. A method for preventing caking of slag. 前記高炉水砕スラグに、前記ソルビトールと前記グルコン酸の両方を含む水溶液を添加する、又は、前記ソルビトールと前記グルコン酸と水酸化ナトリウム若しくは水酸化カリウムの少なくともいずれか一方とが混合された水溶液を添加することを特徴とする、請求項1又は2に記載の高炉水砕スラグの固結防止方法。   An aqueous solution containing both the sorbitol and the gluconic acid is added to the granulated blast furnace slag, or an aqueous solution in which the sorbitol, the gluconic acid, and at least one of sodium hydroxide or potassium hydroxide is mixed. The method for preventing caking of granulated blast furnace slag according to claim 1 or 2, characterized in that it is added. 前記高炉水砕スラグに、前記ソルビトールの水溶液を添加した後に、前記グルコン酸の水溶液又は前記グルコン酸と前記水酸化ナトリウム若しくは水酸化カリウムとが混合された水溶液を添加することを特徴とする、請求項1〜3のいずれか1項に記載の高炉水砕スラグの固結防止方法。   The blast furnace granulated slag is added with an aqueous solution of the sorbitol, and then an aqueous solution of the gluconic acid or an aqueous solution in which the gluconic acid and the sodium hydroxide or potassium hydroxide are mixed is added. Item 4. A method for preventing consolidation of granulated blast furnace slag according to any one of items 1 to 3. ソルビトールとグルコン酸の合計量に対するソルビトールの量が50〜95質量%の水溶液であることを特徴とする、高炉水砕スラグの固結防止剤。   An anti-caking agent for granulated blast furnace slag, characterized in that the amount of sorbitol relative to the total amount of sorbitol and gluconic acid is an aqueous solution of 50 to 95% by mass. 前記水溶液中に、更に水酸化ナトリウム又は水酸化カリウムが含まれていることを特徴とする、請求項5に記載の高炉水砕スラグの固結防止剤。   The anti-caking agent for granulated blast furnace slag according to claim 5, wherein sodium hydroxide or potassium hydroxide is further contained in the aqueous solution.
JP2007123652A 2007-05-08 2007-05-08 Anti-caking method and anti-caking agent for granulated blast furnace slag Active JP4864806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123652A JP4864806B2 (en) 2007-05-08 2007-05-08 Anti-caking method and anti-caking agent for granulated blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123652A JP4864806B2 (en) 2007-05-08 2007-05-08 Anti-caking method and anti-caking agent for granulated blast furnace slag

Publications (2)

Publication Number Publication Date
JP2008280192A JP2008280192A (en) 2008-11-20
JP4864806B2 true JP4864806B2 (en) 2012-02-01

Family

ID=40141322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123652A Active JP4864806B2 (en) 2007-05-08 2007-05-08 Anti-caking method and anti-caking agent for granulated blast furnace slag

Country Status (1)

Country Link
JP (1) JP4864806B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127986A (en) * 1992-10-15 1994-05-10 Taiho Ind Co Ltd Solidification preventive method of water crushed granulated slag
JP3559204B2 (en) * 1999-08-18 2004-08-25 鋼管鉱業株式会社 Anti-caking agent and anti-caking method for granulated blast furnace slag or its particle size adjusted product
JP3914123B2 (en) * 2002-09-11 2007-05-16 Jfeミネラル株式会社 Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition
JP3834736B2 (en) * 2003-09-05 2006-10-18 第一工業製薬株式会社 Anti-caking agent for granulated blast furnace slag

Also Published As

Publication number Publication date
JP2008280192A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
AU2015341918B2 (en) Method for producing granulated materials from cement compositions
KR102279214B1 (en) Admixture Composition for General Strength High Flowing Concrete
WO2014016010A9 (en) Flame-retardant product and use thereof
BRPI0415566A (en) solidification matrix binder
JP4864806B2 (en) Anti-caking method and anti-caking agent for granulated blast furnace slag
JP2008280214A (en) Method for producing cement-based solidifying material
JP2016169494A (en) Manufacturing method of recycled civil engineering material, and recycled civil engineering material
JP5259094B6 (en) Hydrated hardened body excellent in neutralization resistance with rebar
EP2164817A1 (en) Unshaped refractory material, a process for producing an earth-moist, unshaped refractory material, and use of the unshaped refractory material
JP5666328B2 (en) Solidification method for radioactive waste
JP2847337B2 (en) Ground injection liquid
JP5870613B2 (en) Steelmaking slag hydrated hardened body and method for producing the same
JP4338419B2 (en) Dust control solidification material for ground improvement and manufacturing method thereof
KR101629945B1 (en) Composition of saving cement and curing method of high strength thereby
JP6497864B2 (en) Ground improvement composition and method for producing ground improvement composition
JPH11246257A (en) Vegetable fiber cement molding and production thereof
CN107135652A (en) The cement without grand defect with improved moisture-proof
CN111925139A (en) Cement for clear water concrete and preparation method thereof
JP2007290905A (en) Anti-solidifying agent for granulated blast furnace slag, granulated blast furnace slag, and anti-solidifying method
JP2016117040A (en) Solidification material and solidification method of superfine powder inclusion
JPH07324188A (en) Grout for the ground and method for grouting the ground
JP2009203101A5 (en)
EP2062986B1 (en) Anticaking agent for iron and steel slag
JP2013028488A (en) Production method of steelmaking slag granule
JP3101949B2 (en) Ground injection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4864806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350