JP4302120B2 - Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete - Google Patents

Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete Download PDF

Info

Publication number
JP4302120B2
JP4302120B2 JP2006119171A JP2006119171A JP4302120B2 JP 4302120 B2 JP4302120 B2 JP 4302120B2 JP 2006119171 A JP2006119171 A JP 2006119171A JP 2006119171 A JP2006119171 A JP 2006119171A JP 4302120 B2 JP4302120 B2 JP 4302120B2
Authority
JP
Japan
Prior art keywords
blast furnace
caking
mass
component
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006119171A
Other languages
Japanese (ja)
Other versions
JP2007290897A (en
Inventor
理 桐原
篤 山口
浩之 光藤
光男 木之下
智雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2006119171A priority Critical patent/JP4302120B2/en
Publication of JP2007290897A publication Critical patent/JP2007290897A/en
Application granted granted Critical
Publication of JP4302120B2 publication Critical patent/JP4302120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は高炉水砕スラグ又はその粒度調整物の固結防止方法及びこの固結防止方法によって得られるコンクリート用高炉水砕スラグ細骨材に関する。近年、天然砂が枯渇しつつあるなかで自然保護の観点から、天然砂の代替として高炉水砕スラグやこれを粉砕して粒度調整した粒度調整物(以下、これらを単に高炉水砕スラグ等という)がコンクリート用細骨材に使用される機会が増えている。高炉水砕スラグ等は、出荷待ちや使用待ちのために野積み状態で長期間貯蔵されたり、また船舶等で長期間輸送されることが多いが、これをそのまま長期間に亘って貯蔵したり輸送したりすると、固結して遂には岩塊のようになってしまい、前記したような天然砂の代替として使えなくなってしまうので、高炉水砕スラグ等を天然砂の代替として使用する場合には、それを長期間に亘り貯蔵や輸送してもそれが固結しないようにすることが強く要求される。本発明はかかる要求に応える高炉水砕スラグ等の固結防止方法及びこの固結防止方法によって得られるコンクリート用高炉水砕スラグ細骨材に関する。   TECHNICAL FIELD The present invention relates to a method for preventing caking of granulated blast furnace slag or a particle size adjusted product thereof, and a blast furnace granulated slag fine aggregate for concrete obtained by the caking prevention method. In recent years, natural sand has been depleted, and from the viewpoint of nature conservation, ground granulated blast furnace slag as an alternative to natural sand, and a particle size adjusted product obtained by pulverizing this to adjust the particle size (hereinafter simply referred to as granulated blast furnace slag, etc.) ) Is increasingly used for fine aggregates for concrete. Granulated blast furnace slag, etc. is stored for a long period of time in a piled state for waiting for shipment or use, and is often transported for a long period of time by ship etc. When transported, it will solidify and eventually become a rock mass, and it can no longer be used as a substitute for natural sand as described above, so when using granulated blast furnace slag as a substitute for natural sand, etc. Is strongly required to prevent it from consolidating even if it is stored or transported over a long period of time. The present invention relates to a method for preventing consolidation of blast furnace granulated slag and the like that meets such requirements, and a blast furnace granulated slag fine aggregate for concrete obtained by the method for preventing consolidation.

従来、高炉水砕スラグ等の固結防止方法として、1)脂肪族オキシカルボン酸やその塩のアルキレンオキサイド付加物(例えば特許文献1及び2参照)、2)アクリル酸系重合体(例えば特許文献3及び4参照)、3)ホスホン酸誘導体(例えば特許文献5参照)等を固結防止剤として用い、これらの固結防止剤を水で希釈した水溶液を高炉水砕スラグ等へスプレーすることが行なわれている。ところが、これら従来の固結防止方法には、相応の効果が認められるものの、長期間に亘る安定した固結防止性の要求に対して効果の発現が不充分という問題がある。高炉水砕スラグ等の品質乃至性状はその製造時の条件によって変動するが、前記のような従来法ではかかる品質乃至性状の変動によって固結防止性が影響を受け、例えば高炉水砕スラグ等からカルシウムイオン等が溶出して粒子相互間に存在する間隙水のpHが上昇し、固結性が高くなると、そのような高炉水砕スラグ等に従来法を適用しても固結防止性は充分に発揮されないのである。
特開平6−127986号公報 特開2001−58855号公報 特開2003−160364号公報 特開2004−99389号公報 特開2005−82426号公報
Conventionally, as a method for preventing caking such as granulated blast furnace slag, 1) alkylene oxide adducts of aliphatic oxycarboxylic acids and salts thereof (for example, see Patent Documents 1 and 2), 2) acrylic acid polymers (for example, Patent Documents) 3) and 4) spraying an aqueous solution obtained by diluting these anti-caking agents with water into blast furnace granulated slag, etc. using phosphonic acid derivatives (see, for example, Patent Document 5) as anti-caking agents. It is done. However, although these conventional anti-caking methods have a corresponding effect, there is a problem that the effect is insufficient for the demand for stable anti-caking properties over a long period of time. The quality or properties of blast furnace granulated slag and the like vary depending on the conditions at the time of production. However, in the conventional method as described above, the anti-caking property is affected by such quality and property fluctuations. When calcium ions are eluted and the pH of interstitial water existing between the particles rises and the caking property becomes high, the caking prevention property is sufficient even if the conventional method is applied to such blast furnace granulated slag It will not be demonstrated.
JP-A-6-127986 JP 2001-58855 A JP 2003-160364 A JP 2004-99389 A JP 2005-82426 A

本発明が解決しようとする課題は、高炉水砕スラグ等の品質乃至性状の変動に影響されることなく、長期間に亘り安定して高炉水砕スラグ等の固結を充分に防止できる固結防止方法を提供する処にあり、またかかる固結防止方法によって得られるコンクリート用高炉水砕スラグ細骨材を提供する処にある。   The problem to be solved by the present invention is a consolidation that can sufficiently prevent consolidation of blast furnace granulated slag and the like stably over a long period of time without being affected by variations in quality or properties of blast furnace granulated slag or the like. It is in the place which provides the prevention method, and is in the place which provides the blast furnace granulated slag fine aggregate for concrete obtained by this consolidation prevention method.

しかして本発明者らは、前記の課題を解決するべく研究した結果、高炉水砕スラグ等に特定の2成分系から成る固結防止剤を所定量となるよう用いることが正しく好適であることを見出した。   Therefore, as a result of researches to solve the above-mentioned problems, the present inventors correctly use a specific two-component anti-caking agent for blast furnace granulated slag and the like so as to have a predetermined amount. I found.

すなわち本発明は、高炉水砕スラグ等の固結防止方法であって、高炉水砕スラグ等100質量部当たり、下記のA成分を30〜99質量%及び下記のB成分を70〜1質量%含有しており且つ双方を合計で100質量%となるよう含有して成る固結防止剤を0.002〜0.5質量部の割合となるよう用いることを特徴とする固結防止方法に係る。また本発明は、かかる固結防止方法によって得られるコンクリート用高炉水砕スラグ細骨材に係る。   That is, the present invention is a method for preventing caking of blast furnace granulated slag and the like, and per 100 parts by mass of blast furnace granulated slag, etc. The anti-caking method characterized by using the anti-caking agent which contains and contains both so that it may become 100 mass% in total in the ratio of 0.002-0.5 mass part . Moreover, this invention relates to the blast furnace granulated slag fine aggregate for concrete obtained by this caking prevention method.

A成分:質量平均分子量1000〜100000のアクリル酸系重合体及びそのアルカリ金属塩から選ばれる少なくとも一つ   Component A: at least one selected from an acrylic acid polymer having a mass average molecular weight of 1,000 to 100,000 and an alkali metal salt thereof

B成分:リン酸、リン酸ナトリウム、リン酸一水素ナトリウム、リン酸二水素ナトリウム、トリポリリン酸及びトリポリリン酸ナトリウムから選ばれる少なくとも一つ   Component B: at least one selected from phosphoric acid, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, tripolyphosphoric acid and sodium tripolyphosphate

本発明の固結防止方法で用いる固結防止剤に供するA成分は、質量平均分子量が1000〜100000、好ましくは3000〜50000のアクリル酸系重合体及びそのアルカリ金属塩から選ばれる少なくとも一つである。アクリル酸系重合体のアルカリ金属塩としては、アクリル酸系重合体のナトリウム塩、カリウム塩、リチウム塩等が挙げられるが、工業的見地からナトリウム塩が好ましい。本発明において、質量平均分子量はGPC法によるポリエチレングリコール換算の質量平均分子量を意味し、またアクリル酸系重合体のアルカリ金属塩はアクリル酸系重合体を例えばアルカリ金属水酸化物を用いて完全中和したものだけではなく、部分中和したものも含むことを意味する。   The component A used in the anti-caking agent used in the anti-caking method of the present invention is at least one selected from acrylic acid polymers having a mass average molecular weight of 1,000 to 100,000, preferably 3000 to 50,000, and alkali metal salts thereof. is there. Examples of the alkali metal salt of the acrylic acid polymer include sodium salt, potassium salt, lithium salt and the like of the acrylic acid polymer, and sodium salt is preferable from an industrial viewpoint. In the present invention, the weight average molecular weight means the weight average molecular weight in terms of polyethylene glycol according to the GPC method, and the alkali metal salt of the acrylic acid polymer is completely contained in the acrylic acid polymer using, for example, an alkali metal hydroxide. It means that not only the sum but also the partially neutralized one is included.

またアクリル酸系重合体は、アクリル酸を単独重合して得られるポリアクリル酸の他に、アクリル酸と共重合可能な他のビニル単量体を10モル%未満の範囲でアクリル酸と共重合して得られる共重合体をも含むことを意味する。ここで共重合可能なビニル単量体の具体例としては、メタクリル酸又はその塩、アクリルアミド、メタクリル酸ヒドロキシエチルエステル、アクリル酸メチルエステル、(メタ)アリルスルホン酸塩等の水溶性のビニル単量体が挙げられる。以上説明したアクリル酸系重合体やそのアルカリ金属塩は、いずれも公知の方法で合成できる。   In addition to polyacrylic acid obtained by homopolymerizing acrylic acid, acrylic acid polymer is copolymerized with acrylic acid in a range of less than 10 mol% of other vinyl monomers copolymerizable with acrylic acid. It means that the copolymer obtained by doing is also included. Specific examples of the copolymerizable vinyl monomer include methacrylic acid or a salt thereof, acrylamide, methacrylic acid hydroxyethyl ester, acrylic acid methyl ester, (meth) allyl sulfonate, and the like. The body is mentioned. Any of the acrylic acid polymers and alkali metal salts thereof described above can be synthesized by known methods.

本発明の固結防止方法で用いる固結防止剤に供するB成分は、リン酸、リン酸ナトリウム、リン酸一水素ナトリウム、リン酸二水素ナトリウム、トリポリリン酸及びトリポリリン酸ナトリウムから選ばれる少なくとも一つであるが、工業的見地からリン酸及びトリポリリン酸ナトリウムが好ましい。なかでも、A成分としてアクリル酸系重合体を用いる場合にはB成分としてトリポリリン酸ナトリウムを用いるのが好ましく、またA成分としてアクリル酸系重合体のアルカリ金属塩を用いる場合にはB成分としてリン酸を用いるのが好ましい。   The component B used for the anti-caking agent used in the anti-caking method of the present invention is at least one selected from phosphoric acid, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, tripolyphosphoric acid and sodium tripolyphosphate. However, phosphoric acid and sodium tripolyphosphate are preferred from an industrial standpoint. In particular, when an acrylic acid polymer is used as the A component, sodium tripolyphosphate is preferably used as the B component, and when an alkali metal salt of an acrylic acid polymer is used as the A component, phosphorus is used as the B component. It is preferable to use an acid.

本発明の固結防止方法で用いる固結防止剤は、前記したA成分を30〜99質量%及びB成分を70〜1質量%、好ましくは前記したA成分を40〜97質量%及びB成分を60〜3質量%含有しており、且つ双方を合計で100質量%となるよう含有して成るものである。A成分及びB成分の含有割合は、以上のような含有割合の範囲内にて、高炉水砕スラグ等の品質乃至性状との関係で適宜に選択するのが好ましい。   The anti-caking agent used in the anti-caking method of the present invention comprises 30 to 99% by mass of the A component and 70 to 1% by mass of the B component, preferably 40 to 97% by mass of the A component and B component. In an amount of 60 to 3 mass%, and the total content of both is 100 mass%. The content ratios of the A component and the B component are preferably selected as appropriate in relation to the quality and properties of the blast furnace granulated slag and the like within the range of the content ratio as described above.

本発明の固結防止方法で用いる固結防止剤としては、濃度1質量%の水溶液のpHが4〜10となるものが好ましく、5〜9となるものがより好ましい。濃度1質量%の水溶液のpHがかかる数値範囲となるものが、高炉水砕スラグ等の品質乃至性状の変動に影響されることなく、より優れた固結防止効果を発揮する。   As the anti-caking agent used in the anti-caking method of the present invention, an aqueous solution having a concentration of 1% by mass is preferably 4 to 10, more preferably 5 to 9. Those having a numerical value range in which the pH of an aqueous solution having a concentration of 1% by mass exhibits a more excellent anti-caking effect without being affected by variations in quality or properties such as granulated blast furnace slag.

本発明の固結防止方法は、高炉水砕スラグ等100質量部当たり、以上説明したような固結防止剤を0.002〜0.5質量部の割合、好ましくは0.005〜0.1質量部の割合となるように用いる。   In the anti-caking method of the present invention, the anti-caking agent as described above is in a proportion of 0.002 to 0.5 parts by mass, preferably 0.005 to 0.1 per 100 parts by mass of blast furnace granulated slag and the like. It uses so that it may become a ratio of mass part.

高炉水砕スラグ等に固結防止剤を用いる方法それ自体は特に制限されないが、通常は固結防止剤を水で希釈して水溶液となし、好ましくは濃度1.5〜15質量%の水溶液となし、かかる水溶液を、高炉水砕スラグ等100質量部当たり、固結防止剤として0.002〜0.5質量部の割合、好ましくは0.005〜0.1質量部の割合となるようスプレーして用いる。   The method of using an anti-caking agent in blast furnace granulated slag itself is not particularly limited, but usually an anti-caking agent is diluted with water to form an aqueous solution, preferably an aqueous solution having a concentration of 1.5 to 15% by mass. None, such an aqueous solution is sprayed at a rate of 0.002 to 0.5 parts by mass, preferably 0.005 to 0.1 parts by mass as an anti-caking agent per 100 parts by mass of granulated blast furnace slag, etc. And use.

また本発明の固結防止方法の対象となる高炉水砕スラグ等それ自体も、例えばその品質や性状等が特に制限されるというものではないが、本発明の固結防止方法は、粒子相互間に存在する間隙水のpHが11以上となるようなpHの高いすなわち固結性の高い高炉水砕スラグ等に対しても、長期間に亘り安定してその固結を充分に防止する。   Further, the granulated blast furnace slag as a target of the anti-caking method of the present invention itself is not particularly limited, for example, in quality or properties, but the anti-caking method of the present invention is used between particles. Even in the case of blast furnace granulated slag having a high pH such that the pH of interstitial water is 11 or more, that is, a highly solidified blast furnace granulated slag, the solidification is sufficiently prevented for a long period of time.

本発明の固結防止方法を実施するに際しては合目的的に他の添加剤を併用することができる。かかる他の添加剤としては、防腐剤、防錆剤、酸化防止剤等が挙げられる。   In carrying out the anti-caking method of the present invention, other additives can be used in combination for the purpose. Examples of such other additives include antiseptics, rust inhibitors, and antioxidants.

本発明のコンクリート用高炉水砕スラグ細骨材は、以上説明したような本発明の固結防止方法によって得られるものであり、言い替えれば高炉水砕スラグ等に前記したような特定の2成分系から成る固結防止剤を所定量となるよう用いたものである。   The blast furnace granulated slag fine aggregate for concrete of the present invention is obtained by the caking prevention method of the present invention as described above. In other words, a specific two-component system as described above for blast furnace granulated slag and the like. The anti-caking agent consisting of is used in a predetermined amount.

以上説明した本発明の固結防止方法によると、高炉水砕スラグ等の品質乃至性状の変動に影響されることなく、長期間に亘り安定して高炉水砕スラグ等の固結を充分に防止できる。またかくして固結を防止した高炉水砕スラグ等をコンクリート用細骨材の一部として用いたとき、コンクリートの諸物性に何ら悪影響を与えることがない。   According to the anti-caking method of the present invention described above, the caking of granulated blast furnace slag and the like can be sufficiently prevented stably for a long period of time without being affected by variations in quality and properties of the blast furnace granulated slag and the like. it can. Moreover, when blast furnace granulated slag or the like thus prevented from being consolidated is used as a part of the fine aggregate for concrete, there is no adverse effect on the physical properties of the concrete.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、部は質量部を、また%は質量%を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated, “part” means “part by mass” and “%” means “% by mass”.

試験区分1(A成分として用いるアクリル酸系重合体及びそのアルカリ金属塩の合成)
・アクリル酸系重合体(a−1)の合成
反応容器にアクリル酸72g、3−メルカプトプロピオン酸3.5g及び水687.5gを仕込んで混合し、雰囲気を窒素置換した後、窒素雰囲気下に、反応系の温度を温水浴にて60℃に保ち、濃度20%の過硫酸ナトリウム水溶液8gを滴下して重合を開始し、4時間重合反応を行なって、アクリル酸系重合体(a−1)の10%水溶液を得た。このアクリル酸系重合体(a−1)の質量平均分子量は7300であった。
Test Category 1 (Synthesis of acrylic acid polymer and alkali metal salt used as component A)
Synthesis of acrylic acid polymer (a-1) 72 g of acrylic acid, 3.5 g of 3-mercaptopropionic acid and 687.5 g of water were charged and mixed in a reaction vessel, and the atmosphere was replaced with nitrogen, and then the atmosphere was changed to nitrogen. The temperature of the reaction system is kept at 60 ° C. in a warm water bath, 8 g of 20% sodium persulfate aqueous solution is added dropwise to initiate the polymerization, the polymerization reaction is carried out for 4 hours, and the acrylic acid polymer (a-1 ) Was obtained. The acrylic acid polymer (a-1) had a mass average molecular weight of 7,300.

・アクリル酸系重合体(a−2)の合成
アクリル酸系重合体(a−1)と同様にして、表1に記載したアクリル酸系重合体(a−2)の10%水溶液を得た。
Synthesis of acrylic acid polymer (a-2) A 10% aqueous solution of acrylic acid polymer (a-2) described in Table 1 was obtained in the same manner as acrylic acid polymer (a-1). .

アクリル酸系重合体のアルカリ金属塩(a−3)の合成
反応容器にアクリル酸72g、3−メルカプトプロピオン酸3.5g及び水742gを仕込んで混合し、濃度30%の水酸化ナトリウム水溶液66gをかき混ぜながら加えて中和した。雰囲気を窒素置換した後、窒素雰囲気下に、反応系の温度を温水浴にて60℃に保ち、濃度20%の過硫酸ナトリウム水溶液10gを滴下して重合を開始し、4時間重合反応を行なってアクリル酸系重合体のアルカリ金属塩(a−3)の10%水溶液を得た。このアクリル酸系重合体のアルカリ金属塩(a−3)の中和度は0.5、質量平均分子量は4200であった。
Synthesis of alkali metal salt of acrylic acid polymer (a-3) A reaction vessel was charged with 72 g of acrylic acid, 3.5 g of 3-mercaptopropionic acid and 742 g of water and mixed, and 66 g of 30% aqueous sodium hydroxide solution was added. The mixture was neutralized by stirring. After substituting the atmosphere with nitrogen, the temperature of the reaction system was kept at 60 ° C. in a warm water bath under a nitrogen atmosphere, and 10 g of 20% sodium persulfate aqueous solution was added dropwise to initiate polymerization, and the polymerization reaction was carried out for 4 hours. Thus, a 10% aqueous solution of an alkali metal salt of an acrylic acid polymer (a-3) was obtained. The degree of neutralization of the alkali metal salt (a-3) of this acrylic acid polymer was 0.5, and the mass average molecular weight was 4,200.

・アクリル酸系重合体のアルカリ金属塩(a−4)〜(a−6)の合成
アクリル酸系重合体のアルカリ金属塩(a−3)と同様にして、表1に記載したアクリル酸系重合体のアルカリ金属塩(a−4)〜(a−6)の10%水溶液を得た。
Synthesis of alkali metal salts (a-4) to (a-6) of acrylic acid polymer The acrylic acid system described in Table 1 in the same manner as the alkali metal salt (a-3) of acrylic acid polymer A 10% aqueous solution of polymer alkali metal salts (a-4) to (a-6) was obtained.

Figure 0004302120
Figure 0004302120

表1において、
中和度:化学量論的にアルカリ金属水酸化物により中和されているアクリル酸系重合体のカルボキシル基のモル数/アクリル酸系重合体の全カルボキシル基のモル数
In Table 1,
Degree of neutralization: moles of carboxyl groups of acrylic acid polymer stoichiometrically neutralized with alkali metal hydroxide / moles of all carboxyl groups of acrylic acid polymer

試験区分2(固結防止剤の調製)
・固結防止剤(P−1)の10%水溶液の調製
A成分として試験区分1で合成したアクリル酸系重合体(a−1)の10%水溶液80部、B成分としてトリポリリン酸ナトリウムの10%水溶液20部を混合して固結防止剤(P−1)の10%水溶液を調製した。固結防止剤(P−1)を水で希釈した固形分濃度1%の水溶液のpHを測定したところ、4.3であった。
Test Category 2 (Preparation of anti-caking agent)
Preparation of 10% aqueous solution of anti-caking agent (P-1) 80 parts of 10% aqueous solution of acrylic acid polymer (a-1) synthesized in test category 1 as component A, 10 of sodium tripolyphosphate as component B A 20% aqueous solution was mixed to prepare a 10% aqueous solution of an anti-caking agent (P-1). The pH of the aqueous solution having a solid content concentration of 1% obtained by diluting the anti-caking agent (P-1) with water was 4.3.

・固結防止剤(P−2)〜(P−13)及び(R−1)〜(R−19)の10%水溶液の調製
固結防止剤(P−1)と同様にして、固結防止剤(P−2)〜(P−13)及び(R−1)〜(R−19)の10%水溶液を調製した。以上で調製した各固結防止剤の内容を表2にまとめて示した。















-Preparation of 10% aqueous solution of anti-caking agents (P-2) to (P-13) and (R-1) to (R-19), caking in the same manner as the anti-caking agent (P-1) 10% aqueous solutions of inhibitors (P-2) to (P-13) and (R-1) to (R-19) were prepared. Table 2 summarizes the contents of the anti-caking agents prepared above.















Figure 0004302120
Figure 0004302120

表2において、
pH:固形分濃度1%の水溶液のpH
a−1〜a−6:表1記載のアクリル酸系重合体又はそのアルカリ金属塩
b−1:トリポリリン酸ナトリウム
b−2:リン酸
b−3:リン酸ナトリウム
b−4:トリポリリン酸
b−5:リン酸二水素ナトリウム
b−6:リン酸一水素ナトリウム
c−1:硫酸ナトリウム
c−2:塩化ナトリウム
c−3:硝酸ナトリウム
d−1:硫酸
In Table 2,
pH: pH of an aqueous solution having a solid content concentration of 1%
a-1 to a-6: Acrylic acid polymer or alkali metal salt thereof listed in Table 1 b-1: sodium tripolyphosphate b-2: phosphoric acid b-3: sodium phosphate b-4: tripolyphosphoric acid b- 5: Sodium dihydrogen phosphate b-6: Sodium monohydrogen phosphate c-1: Sodium sulfate c-2: Sodium chloride c-3: Sodium nitrate d-1: Sulfuric acid

試験区分3
実施例1〜15及び比較例1〜24(固結防止方法及びその評価)
バットに高炉水砕スラグ細骨材{JFEミネラル社製の福山産高炉水砕スラグをJIS−A5011(コンクリート用スラグ骨材)に準じて5mm高炉水砕スラグ細骨材の粒度分布に調整したもので、間隙水のpH値が標準(pH値9.5〜11未満のもの)よりも高いもの(pH値11.7のもの)}を広げ、試験区分2で調製した固結防止剤の10%水溶液を表3記載の添加量となるようスプレーし、ハンドスコップで混合した。更に可傾式ミキサーで5分間混合した後、含水率10%となるように水を加え、再び可傾式ミキサーで5分間混合して、高炉水砕スラグ細骨材に固結防止剤を付着させた。このようにして固結防止剤を付着させた高炉水砕スラグ細骨材を内径100mmの円筒状容器に高さ125mmまで充填し、これに高炉水砕スラグの貯蔵高さ10mに相当する0.15MPaの圧力を載荷して供試体とした。供試体は、水分の蒸発を防ぐため容器を密封し、80℃の恒温室で最長16週間まで促進養生した。所定期間養生後、供試体を脱枠し、粒度測定を行なった。粒度測定は、目開き5mm篩を用いて行ない、篩を通過しないで篩上に残存したものの質量を測定し、供試体中におけるその割合を求めた(表3中の5mm篩上割合)。結果を表3にまとめて示した。表3において、5mm篩上割合(%)の数値が低いほど、高炉水砕スラグ細骨材の固結が防止されていることを意味する。
































Test category 3
Examples 1 to 15 and Comparative Examples 1 to 24 (caking prevention method and evaluation thereof)
Blast furnace granulated slag fine aggregate {Fukuyama blast furnace granulated slag made by JFE Mineral Co., Ltd. adjusted to the particle size distribution of 5mm blast furnace granulated slag fine aggregate according to JIS-A5011 (concrete slag aggregate) The pH value of the pore water is higher than that of the standard (having a pH value of less than 9.5 to 11) (having a pH value of 11.7)}. % Aqueous solution was sprayed so as to have the addition amount shown in Table 3, and mixed with a hand scoop. Further, after mixing for 5 minutes with a tilting mixer, add water so that the water content becomes 10%, and again mix with a tilting mixer for 5 minutes to attach an anti-caking agent to the granulated blast furnace slag fine aggregate. I let you. The blast furnace granulated slag fine aggregate to which the anti-caking agent is adhered in this way is filled in a cylindrical container having an inner diameter of 100 mm to a height of 125 mm, which corresponds to a storage height of 10 m for the blast furnace granulated slag. A specimen was loaded with a pressure of 15 MPa. The specimen was sealed in a container in order to prevent evaporation of moisture, and was accelerated and cured for up to 16 weeks in a constant temperature room at 80 ° C. After curing for a predetermined period, the specimen was removed and the particle size was measured. The particle size was measured using a sieve having a mesh opening of 5 mm, the mass of the material remaining on the sieve without passing through the sieve was measured, and the ratio in the specimen was obtained (the ratio of 5 mm sieve in Table 3). The results are summarized in Table 3. In Table 3, it means that the consolidation of a blast-furnace granulated slag fine aggregate is prevented, so that the numerical value (%) on a 5 mm sieve is low.
































Figure 0004302120
Figure 0004302120

表3において、
添加量:高炉水砕スラグ細骨材100質量部当たりの固結防止剤(固形分)の添加質量部
R−20:グルコン酸ナトリウム
In Table 3,
Addition amount: part by mass of anti-caking agent (solid content) per 100 parts by mass of granulated blast furnace slag fine aggregate R-20: sodium gluconate

試験区分4
実施例16〜28及び比較例25〜36(コンクリート用高炉水砕スラグ細骨材の製造及びその評価)
表4に記載の配合番号1の条件で、各例のコンクリートを次のように調製した。50Lのパン型強制練りミキサーに、普通ポルトランドセメント(密度3.16、ブレーン値3300)、細骨材として大井川水系砂(密度2.63)及び試験区分3と同様に固結防止剤をその添加量が0.03となるようにスプレーして混合した高炉水砕スラグ(JFEミネラル社製の福山産高炉水砕スラグ、密度2.74)の2種類並びに粗骨材(岡崎産砕石、密度2.68)を順次投入して15秒間空練りした。次いで各例いずれも目標スランプが18±1cmの範囲内となるよう、セメントに対し0.8%量の高性能AE減水剤(竹本油脂社製の商品名チューポールHP−11)を練り混ぜ水と共に投入して2分間練り混ぜた。この際、目標空気量が4〜5%となるようにAE剤(竹本油脂社製の商品名AE−300)を加えた。かくして調製した各例のコンクリートについて次の方法で評価した。結果を表5にまとめて示した。
Test category 4
Examples 16 to 28 and Comparative Examples 25 to 36 (Manufacture and evaluation of blast furnace granulated slag fine aggregate for concrete)
The concrete of each example was prepared as follows on the conditions of the mixing | blending number 1 of Table 4. Add 50L pan-type forced kneading mixer with normal Portland cement (density 3.16, brane value 3300), Oikawa water sand (density 2.63) as fine aggregate and anti-caking agent as in test category 3 Two types of blast furnace granulated slag (Fukuyama blast furnace granulated slag manufactured by JFE Mineral Co., Ltd., density 2.74) and coarse aggregate (Okazaki crushed stone, density 2) mixed by spraying so that the amount is 0.03 .68) were sequentially added and kneaded for 15 seconds. Then, in each example, 0.8% amount of high-performance AE water reducing agent (trade name Tupol HP-11 manufactured by Takemoto Yushi Co., Ltd.) is mixed with the cement so that the target slump is within the range of 18 ± 1 cm. And kneaded for 2 minutes. At this time, an AE agent (trade name AE-300 manufactured by Takemoto Yushi Co., Ltd.) was added so that the target air amount was 4 to 5%. The concrete of each example thus prepared was evaluated by the following method. The results are summarized in Table 5.

スランプ:JIS−A1101に準拠して測定した。
空気量:JIS−A1128に準拠して測定した。
圧縮強度:JIS−A1108に準拠して測定した。
凝結時間:JIS−A6204に準拠して測定した。
Slump: Measured according to JIS-A1101.
Air amount: Measured according to JIS-A1128.
Compressive strength: measured in accordance with JIS-A1108.
Setting time: Measured according to JIS-A6204.

Figure 0004302120
Figure 0004302120

表4において、
*1:固結防止剤をスプレーして混合したコンクリート用高炉水砕スラグ細骨材





















In Table 4,
* 1: Blast furnace granulated slag fine aggregate for concrete mixed by spraying anti-caking agent





















Figure 0004302120
Figure 0004302120

表5において、
固結防止剤の種類:表2に記載の固結防止剤
*2:固結防止剤を添加しないもの
*3:表4の配合番号2で練り混ぜたコンクリートであって、高炉水砕スラグを混入していないコンクリート
In Table 5,
Type of anti-caking agent: Anti-caking agent listed in Table 2 * 2: No anti-caking agent added * 3: Concrete kneaded with compound No. 2 in Table 4, and granulated blast furnace slag Unmixed concrete

Claims (9)

高炉水砕スラグ又はその粒度調整物の固結防止方法であって、高炉水砕スラグ又はその粒度調整物100質量部当たり、下記のA成分を30〜99質量%及び下記のB成分を70〜1質量%含有しており且つ双方を合計で100質量%となるよう含有して成る固結防止剤を0.002〜0.5質量部の割合となるよう用いることを特徴とする固結防止方法。
A成分:質量平均分子量1000〜100000のアクリル酸系重合体及びそのアルカリ金属塩から選ばれる少なくとも一つ
B成分:リン酸、リン酸ナトリウム、リン酸一水素ナトリウム、リン酸二水素ナトリウム、トリポリリン酸及びトリポリリン酸ナトリウムから選ばれる少なくとも一つ
A method for preventing caking of granulated blast furnace slag or its particle size-adjusted product, comprising 30 to 99% by mass of the following A component and 70 to 70% of the following B component per 100 parts by mass of granulated blast furnace slag or its granulated product: An anti-caking agent comprising 1% by mass of an anti-caking agent containing 100% by mass of both in a total amount of 0.002 to 0.5 parts by mass Method.
Component A: at least one selected from acrylic acid polymers having a mass average molecular weight of 1000 to 100,000 and alkali metal salts thereof Component B: phosphoric acid, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, tripolyphosphoric acid And at least one selected from sodium tripolyphosphate
固結防止剤を水で希釈して水溶液となし、この水溶液を、高炉水砕スラグ又はその粒度調整物100質量部当たり、固結防止剤として0.005〜0.1質量部の割合となるようスプレーする請求項1記載の固結防止方法。   The anti-caking agent is diluted with water to form an aqueous solution, and this aqueous solution has a ratio of 0.005 to 0.1 parts by mass as an anti-caking agent per 100 parts by mass of granulated blast furnace slag or its particle size adjusted product. 2. The caking prevention method according to claim 1, wherein spraying is performed. 固結防止剤が濃度1質量%の水溶液のpHが4〜10となるものである請求項1又は2記載の固結防止方法。   The anti-caking method according to claim 1 or 2, wherein the anti-caking agent has a pH of 4 to 10 in an aqueous solution having a concentration of 1% by mass. A成分が質量平均分子量3000〜50000のアクリル酸系重合体及びそのアルカリ金属塩から選ばれる少なくとも一つである請求項1〜3のいずれか一つの項記載の固結防止方法。   The anti-caking method according to any one of claims 1 to 3, wherein the component A is at least one selected from an acrylic acid polymer having a mass average molecular weight of 3000 to 50000 and an alkali metal salt thereof. A成分がアクリル酸系重合体のアルカリ金属塩であり、B成分がリン酸である請求項1〜4のいずれか一つの項記載の固結防止方法。   The anti-caking method according to any one of claims 1 to 4, wherein the component A is an alkali metal salt of an acrylic acid polymer and the component B is phosphoric acid. アクリル酸系重合体のアルカリ金属塩がアクリル酸系重合体のナトリウム塩である請求項1〜5のいずれか一つの項記載の固結防止方法。   The caking prevention method according to any one of claims 1 to 5, wherein the alkali metal salt of the acrylic acid polymer is a sodium salt of an acrylic acid polymer. A成分がアクリル酸系重合体であり、B成分がトリポリリン酸ナトリウムである請求項1〜4のいずれか一つの項記載の固結防止方法。   The anti-caking method according to any one of claims 1 to 4, wherein the component A is an acrylic acid polymer and the component B is sodium tripolyphosphate. 高炉水砕スラグ又はその粒度調整物が間隙水のpHが11以上のものである請求項1〜7のいずれか一つの項記載の固結防止方法。   8. The caking prevention method according to any one of claims 1 to 7, wherein the granulated blast furnace slag or the particle size adjusted product thereof has a pore water pH of 11 or more. 請求項1〜8のいずれか一つの項記載の固結防止方法によって得られるコンクリート用高炉水砕スラグ細骨材。
A blast furnace granulated slag fine aggregate for concrete obtained by the consolidation prevention method according to any one of claims 1 to 8.
JP2006119171A 2006-04-24 2006-04-24 Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete Active JP4302120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119171A JP4302120B2 (en) 2006-04-24 2006-04-24 Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119171A JP4302120B2 (en) 2006-04-24 2006-04-24 Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete

Publications (2)

Publication Number Publication Date
JP2007290897A JP2007290897A (en) 2007-11-08
JP4302120B2 true JP4302120B2 (en) 2009-07-22

Family

ID=38761907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119171A Active JP4302120B2 (en) 2006-04-24 2006-04-24 Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete

Country Status (1)

Country Link
JP (1) JP4302120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655495B2 (en) * 2016-07-28 2020-02-26 Jfeミネラル株式会社 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Also Published As

Publication number Publication date
JP2007290897A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
EP1423344B1 (en) Process for making MICRO-GRANULOSE PARTICULATES and composition comprising said MICRO-GRANULOSE PARTICULATES
JP5545678B2 (en) Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
AU2002336384A1 (en) Micro-granulose particulates
RU2652196C2 (en) Plaster gypsum dry construction mixture
JP4302120B2 (en) Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete
JP4302119B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size
JP4212088B2 (en) Method of preventing caking of granulated blast furnace slag or its particle size adjusted product
CN105452188A (en) Air entraining agent for mineral binder compositions
JP5590702B2 (en) Slurry composition for ground improvement using blast furnace slag composition and method for preparing soil cement slurry using the same
JP3505694B2 (en) Heavy concrete
JPH1017355A (en) High slump concrete and its production
JP6497864B2 (en) Ground improvement composition and method for producing ground improvement composition
JP2021155331A (en) Wet type spray construction method
JP3914123B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size adjustment method, anti-caking method, and fine aggregate for hydraulic cement composition
CN112500092A (en) High-efficiency temperature-control artificial sand concrete and preparation method thereof
JP4836261B2 (en) Anti-caking agent of granulated blast furnace slag or its particle size
JPS5860648A (en) Anhydrous gypsum composition
RU2163578C1 (en) Self-leveling building mixture
JP2000264710A (en) Casting composition for section
JP4263033B2 (en) Aggregate for hydraulic cement composition and hydraulic cement composition
JPH08119709A (en) Water-hardening composition, hardened article and its production
JP5819557B1 (en) CB liquid and its pressure feeding method
JPH05319889A (en) Hydraulic cement composition
JP2001253741A (en) Additive for concrete
JPH08109378A (en) Ground solidifying material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250