JP6655495B2 - Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material - Google Patents

Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material Download PDF

Info

Publication number
JP6655495B2
JP6655495B2 JP2016148052A JP2016148052A JP6655495B2 JP 6655495 B2 JP6655495 B2 JP 6655495B2 JP 2016148052 A JP2016148052 A JP 2016148052A JP 2016148052 A JP2016148052 A JP 2016148052A JP 6655495 B2 JP6655495 B2 JP 6655495B2
Authority
JP
Japan
Prior art keywords
roadbed material
acrylic acid
expansion
water
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016148052A
Other languages
Japanese (ja)
Other versions
JP2018017022A (en
Inventor
光藤 浩之
浩之 光藤
渡辺 哲哉
哲哉 渡辺
達也 須藤
達也 須藤
岡田 和寿
和寿 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2016148052A priority Critical patent/JP6655495B2/en
Publication of JP2018017022A publication Critical patent/JP2018017022A/en
Application granted granted Critical
Publication of JP6655495B2 publication Critical patent/JP6655495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法に関する。道路や駐車場等に用いられる路盤材には、天然砕石のほかに、鉄鋼スラグや再生材料等がある。これらの路盤材にCaOやMgO等の膨張性鉱物が含まれると、それらが水分と反応してCaO水和物やMgO水和物を形成する。これらの水和物は元の鉱物に比べて単位物質量あたりの体積が大きいため、体積膨張し、路盤等の隆起や破壊を引き起こし、更には舗装に隣接した構造物等を破壊することがある。本発明は、CaOやMgO等の膨張性鉱物を含有する例えば鉄鋼スラグのような路盤材の膨張を実用上充分に抑えることができる膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法に関する。尚、本発明において、路盤材には、未舗装道路や未舗装の駐車場、広場、資材置き場などの整地等に使用される土工用材も含まれる。 The present invention, roadbed material containing Rise Zhang inhibitors, and to the expansion method of suppressing roadbeds. Roadbed materials used for roads, parking lots, and the like include, in addition to natural crushed stone, steel slag and recycled materials. When expandable minerals such as CaO and MgO are contained in these roadbed materials, they react with moisture to form CaO hydrate and MgO hydrate. Since these hydrates have a larger volume per unit mass than the original mineral, they may expand in volume, cause the roadbed to protrude or break, and even destroy structures adjacent to the pavement. . The present invention relates to a roadbed material containing an expansion inhibitor capable of sufficiently suppressing the expansion of a roadbed material such as steel slag containing expandable minerals such as CaO and MgO, and a method of suppressing the expansion of a roadbed material. About. In the present invention, the roadbed material also includes earthwork materials used for leveling of unpaved roads, unpaved parking lots, open spaces, material storage areas, and the like.

従来、鉄鋼スラグを路盤材として用いる場合、鉄鋼スラグに含まれる膨張性鉱物の水和反応を進行させる通常エージング処理や、温水又は蒸気による促進エージング処理が行なわれている。しかし、かかる通常エージング処理や促進エージング処理では実際のところ、かかる処理を行なった鉄鋼スラグを路盤材として用いたときに、路盤材の膨張を充分に抑えることができない場合が生じるという問題がある。   Conventionally, when steel slag is used as a roadbed material, a normal aging treatment for promoting a hydration reaction of expansive minerals contained in the steel slag and an accelerated aging treatment with warm water or steam have been performed. However, such a normal aging treatment and an accelerated aging treatment actually have a problem in that when the steel slag subjected to such treatment is used as a roadbed material, the expansion of the roadbed material may not be sufficiently suppressed.

前記のような問題は、CaOの水和反応は速いが、MgOの水和反応は遅いことに起因することが指摘され(例えば、非特許文献1参照)、またCaOは水中20℃において3日で水和率が100%に到達するが、MgOは水中20℃において180日で水和率が57%に留まり、MgOの水和速度はCaOの1/100程度と非常に遅いことに起因することが指摘されている(例えば、非特許文献2参照)。   It has been pointed out that such a problem is caused by the fact that the hydration reaction of CaO is fast but the hydration reaction of MgO is slow (for example, see Non-Patent Document 1). The hydration rate reaches 100% at 20 ° C., but the hydration rate of MgO stays at 57% in water at 20 ° C. for 180 days, and the hydration rate of MgO is very slow, about 1/100 of that of CaO. (For example, see Non-Patent Document 2).

Jurgen Geiseler,Ruth Schlosser,Rudiger Scheel,Klaus Koch and Dieter Janke:Steel Research 58(1987),p.210Jurgen Geiseler, Ruth Schlosser, Rudiger Scheel, Klaus Koch and Dieter Janke: Steel Research 58 (1987), p. 210 GAO Peiwei, LU Xiaolin, GENG Fei, LI Xiaoyan, HOU Jie,LIN Hui,SHI Nannan.Production of MgO−type expansive agentin dam concrete by use of industrial by−products,Build Environ,Vol.43 No.4 Page.453〜457 (2008.04)GAO Peiwei, LU Xiaolin, GENG Fei, LI Xiaoyan, HOU Jie, LIN Hui, SHI Nannan. Production of MgO-type expansive agentin dam-concrete by use of industrial by-products, Build Environ, Vol. 43 No. 4 Page. 453-457 (2008.04)

本発明が解決しようとする課題は、通常エージング処理や促進エージング処理を行なわなくても、CaOやMgO等の膨張性鉱物を含有する鉄鋼スラグのような路盤材の膨張を長時間に亘って実用上充分に抑えることができる膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法を提供する処にある。 The problem to be solved by the present invention is that the expansion of a roadbed material such as steel slag containing an expandable mineral such as CaO or MgO can be performed for a long time without performing an ordinary aging treatment or an accelerated aging treatment. It is an object of the present invention to provide a roadbed material containing an expansion inhibitor that can be sufficiently suppressed, and a method of suppressing the expansion of the roadbed material.

本発明者らは、前記の課題を解決するべく研究した結果、CaOやMgO等の膨張性鉱物を含有する鉄鋼スラグのような路盤材に用いる膨張抑制剤として、水溶性のアクリル酸系重合体が正しく好適であることを見出した。   The present inventors have studied to solve the above-described problems, and as a result, as a swelling inhibitor used for a roadbed material such as steel slag containing an swelling mineral such as CaO and MgO, a water-soluble acrylic acid-based polymer Has been found to be correct and suitable.

すなわち本発明は、膨張性鉱物を含有する路盤材において、水溶性のアクリル酸系重合体から成る膨張抑制剤が路盤材中に0.1〜4質量%含有されていることを特徴とする路盤材に係る。
また、本発明は、膨張性鉱物を含有する路盤材の膨張抑制方法であって、水溶性のアクリル酸系重合体から成る膨張抑制剤が路盤材中に0.1〜4質量%配合されることを特徴とする路盤材の膨張抑制方法に係る。
That is, the present invention provides a roadbed material containing Rise tonicity minerals, characterized in that the expansion inhibitor comprising a water-soluble acrylic acid-based polymer is contained 0.1 to 4% by mass in roadbeds Related to roadbed materials.
The present invention also relates to a method for suppressing the expansion of a roadbed material containing an expansive mineral, wherein an expansion inhibitor composed of a water-soluble acrylic polymer is incorporated in the roadbed material in an amount of 0.1 to 4% by mass. The present invention relates to a method for suppressing the expansion of a roadbed material, characterized in that:

本発明において、膨張抑制剤として用いる水溶性のアクリル酸系重合体は、アクリル酸及び/又はその塩から形成された構成単位を主構成単位とするものであるが、なかでも水溶性のアクリル酸系重合体としては、全構成単位中に下記の化1で示される構成単位Aを60モル%以上有するものが好ましく、70モル%以上有するものがより好ましい。   In the present invention, the water-soluble acrylic acid-based polymer used as a swelling inhibitor has a structural unit formed from acrylic acid and / or a salt thereof as a main structural unit. As the system polymer, a polymer having the structural unit A represented by the following chemical formula 1 in all the structural units is preferably 60 mol% or more, and more preferably a polymer having 70 mol% or more.

化1において、
M:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン
In Chemical Formula 1,
M: hydrogen atom, alkali metal, alkaline earth metal, ammonium or organic amine

構成単位Aを形成することとなる単量体としては、1)アクリル酸、2)アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸リチウム等のアクリル酸アルカリ金属塩、3)アクリル酸カルシウム、アクリル酸マグネシウム等のアクリル酸アルカリ土類金属塩、4)アクリル酸アンモニウム塩、5)アクリル酸トリエタノールアミン、アクリル酸ジエタノールアミン等のアクリル酸有機アミン塩が挙げられる。構成単位Aには、単量体としてアクリル酸を用いて重合した後、アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミンで中和して得られるアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、有機アミン塩が含まれる。なかでも構成単位Aを形成することとなる単量体としては、アクリル酸及び/又はアクリル酸ナトリウムが好ましい。   Examples of the monomer that forms the structural unit A include 1) acrylic acid, 2) alkali metal acrylates such as sodium acrylate, potassium acrylate, and lithium acrylate; 3) calcium acrylate and magnesium acrylate And the like. 4) Ammonium acrylate, 5) Triethanolamine acrylate, and organic amine salts of acrylate such as diethanolamine acrylate. In the structural unit A, an alkali metal salt, an alkaline earth metal salt, and an ammonium salt obtained by polymerizing using acrylic acid as a monomer, and then neutralizing the monomer with an alkali metal, an alkaline earth metal, ammonium or an organic amine. , Organic amine salts. Above all, acrylic acid and / or sodium acrylate are preferable as the monomer that forms the structural unit A.

前記の水溶性のアクリル酸系重合体は、構成単位A以外に、他の構成単位を有することができる。かかる他の構成単位を形成することとなる単量体としては、メタクリル酸、メタクリル酸の塩、クロトン酸、クロトン酸の塩、マレイン酸、マレイン酸の塩、無水マレイン酸、フマル酸、フマル酸の塩、アクリル酸アルキル、メタクリル酸アルキル、アクリル酸ヒドロキシアルキル、メタクリル酸ヒドロキシアルキル、アクリルアミド、アリルスルホン酸、アリルスルホン酸の塩、メタリルスルホン酸、メタリルスルホン酸の塩、スチレンスルホン酸、スチレンスルホン酸の塩、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸の塩、スチレン、酢酸ビニル、エチレン、イソプレン及びイソアミレン等から選ばれる一つ又は二つ以上が挙げられる。なかでも、他の構成単位を形成することとなる単量体としては、マレイン酸、マレイン酸の塩、無水マレイン酸、メタクリル酸、メタクリル酸の塩が好ましい。   The water-soluble acrylic acid-based polymer may have other structural units in addition to the structural unit A. Monomers that form such other structural units include methacrylic acid, methacrylic acid salts, crotonic acid, crotonic acid salts, maleic acid, maleic acid salts, maleic anhydride, fumaric acid, and fumaric acid. Salt, alkyl acrylate, alkyl methacrylate, hydroxyalkyl acrylate, hydroxyalkyl methacrylate, acrylamide, allylsulfonic acid, salt of allylsulfonic acid, methallylsulfonic acid, salt of methallylsulfonic acid, styrenesulfonic acid, styrene One or more selected from sulfonic acid salts, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid salts, styrene, vinyl acetate, ethylene, isoprene, isoamylene and the like. No. Of these, maleic acid, a salt of maleic acid, maleic anhydride, methacrylic acid, and a salt of methacrylic acid are preferable as the monomer that forms another structural unit.

前記の水溶性のアクリル酸系重合体は、その質量平均分子量が特に制限されるというものではないが、質量平均分子量が3000〜20000000のものが好ましく、10000〜10000000のものがより好ましい。   The weight-average molecular weight of the water-soluble acrylic polymer is not particularly limited, but is preferably 3000 to 200,000,000, more preferably 10,000 to 10000000.

前記の水溶性のアクリル酸系重合体それ自体は、公知の方法で合成できる。これには例えば、特開平5−117306号公報に記載の方法が挙げられる。より具体的には、ステンレス製圧力反応容器に、まずアクリル酸水溶液と水酸化ナトリウム水溶液とを加えてアクリル酸を部分中和し、次に窒素雰囲気下に過硫酸塩を加えた後、加温下に重合反応を行うことにより合成できる。   The water-soluble acrylic acid-based polymer itself can be synthesized by a known method. For example, a method described in JP-A-5-117306 can be mentioned. More specifically, an acrylic acid aqueous solution and a sodium hydroxide aqueous solution are first added to a stainless steel pressure reaction vessel to partially neutralize acrylic acid, and then a persulfate is added under a nitrogen atmosphere, followed by heating. It can be synthesized by performing a polymerization reaction below.

路盤材の膨張抑制剤として用いる水溶性のアクリル酸系重合体は、膨張性鉱物を含有する路盤材、例えば鉄鋼スラグの質量に対して0.1〜4質量%となるように用いる。また、0.5〜3質量%となるように用いるのが好ましい。水溶性のアクリル酸系重合体は、単独で使用しても、あるいは必要に応じ2種類以上を併用しても構わない。また水溶性のアクリル酸系重合体の本来的機能を損なわない限り、水不溶性の高吸水性樹脂、オキシカルボン酸やその塩、単糖類、多糖類、消泡剤、起泡剤、ポゾラン物質、水硬性物質等と併用しても構わない。水溶性のアクリル酸系重合体は、膨張性鉱物を含有する路盤材にそのまま添加しても、又は水に溶解してから添加してもよく、双方を併用してもよい。膨張性鉱物を含有する路盤材は、既に施工されている膨張性鉱物を含有する路盤材を取出し、これに水溶性のアクリル酸系重合体を加えた後に、再度路盤材として用いてもよい。以上説明したような水溶性のアクリル酸系重合体の市販品としては、日本触媒社製の商品名でアクアリックLやアクアリックH、東亞合成社製の商品名でアロンやジュリマー等が挙げられる。   The water-soluble acrylic acid-based polymer used as the expansion inhibitor of the roadbed material is used in an amount of 0.1 to 4% by mass with respect to the mass of the roadbed material containing expandable minerals, for example, steel slag. Moreover, it is preferable to use it so that it may become 0.5 to 3 mass%. The water-soluble acrylic polymer may be used alone or in combination of two or more as needed. In addition, as long as the original function of the water-soluble acrylic acid polymer is not impaired, a water-insoluble superabsorbent resin, oxycarboxylic acid or a salt thereof, a monosaccharide, a polysaccharide, an antifoaming agent, a foaming agent, a pozzolanic substance, It may be used in combination with a hydraulic substance or the like. The water-soluble acrylic acid-based polymer may be added as it is to the roadbed material containing the expandable mineral, or may be added after being dissolved in water, or both may be used in combination. The roadbed material containing the expansible mineral may be used again as a roadbed material after removing the roadbed material containing the expansive mineral that has already been applied, adding a water-soluble acrylic acid-based polymer thereto. Commercial products of the water-soluble acrylic polymer as described above include Aqualic L and Aquaric H under the trade name of Nippon Shokubai Co., Ltd., and Aaron and Julimer under the trade name of Toagosei Co., Ltd. .

本発明の膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法は、時間のかかる通常エージング処理や、コストのかかる促進エージング処理をわざわざ行なわなくても、膨張性鉱物を含有する鉄鋼スラグのような路盤材の膨張を長期間に亘って実用上充分に抑えることができるという効果がある。 It roadbed material containing Rise Zhang inhibitor of the present invention, and a method of expansion suppressing roadbed material, such or normal aging time, without purposely performed accelerated aging process costly steel containing intumescent mineral There is an effect that expansion of a roadbed material such as slag can be sufficiently suppressed in practical use for a long period of time.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれら実施例に限定されるものではない。尚、以下の実施例及び比較例において、部は質量部を、また%は質量%を意味する。   Hereinafter, examples and the like will be described in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, parts mean parts by mass, and% means mass%.

試験区分1(アクリル酸系重合体の合成)
・アクリル酸系重合体(P−1)の合成
反応容器に、アクリル酸72g、3−メルカプトプロピオン酸3.5g及び水742gを仕込んで混合し、濃度30%の水酸化ナトリウム水溶液66gを撹拌しながら加えて中和した。雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、濃度20%の過硫酸ナトリウム水溶液10gを滴下して重合を開始し、4時間重合反応を行なって、アクリル酸系重合体(P−1)の10%水溶液を得た。このアクリル酸系重合体(P−1)の質量平均分子量は4200であった。
Test Category 1 (Synthesis of acrylic acid polymer)
-Synthesis of acrylic acid polymer (P-1) In a reaction vessel, 72 g of acrylic acid, 3.5 g of 3-mercaptopropionic acid and 742 g of water were charged and mixed, and 66 g of a 30% aqueous sodium hydroxide solution was stirred. And neutralized. After the atmosphere was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, and 10 g of a 20% aqueous sodium persulfate solution was added dropwise to initiate polymerization. A 10% aqueous solution of the polymer (P-1) was obtained. The weight average molecular weight of this acrylic acid polymer (P-1) was 4,200.

・アクリル酸系重合体(P−2)の合成
アクリル酸系重合体(P−1)の場合と同様にして、表1に記載したアクリル酸系重合体(P−2)の10%水溶液を得た。このアクリル酸系重合体(P−2)の質量平均分子量は27000であった。
-Synthesis of acrylic acid polymer (P-2) In the same manner as in the case of acrylic acid polymer (P-1), a 10% aqueous solution of acrylic acid polymer (P-2) described in Table 1 was used. Obtained. The weight average molecular weight of this acrylic acid polymer (P-2) was 27000.

・アクリル酸系重合体(P−3)の合成
反応容器に、無水マレイン酸49g及び水303gを仕込んで混合し、雰囲気を窒素置換した後、反応系の温度を90℃に保ち、アクリル酸84gとイオン交換水140gの混合液及び濃度20%の過硫酸ナトリウム水溶液20gを4時間かけて滴下して重合反応を行なった後、濃度30%の水酸化ナトリウム水溶液19gを添加し、イオン交換水にて10%水溶液となるよう希釈して、アクリル酸系重合体(P−3)の10%水溶液を得た。このアクリル酸系重合体(P−3)の質量平均分子量は36000であった。
・ Synthesis of acrylic acid polymer (P-3) In a reaction vessel, 49 g of maleic anhydride and 303 g of water were charged and mixed. After the atmosphere was replaced with nitrogen, the temperature of the reaction system was maintained at 90 ° C., and 84 g of acrylic acid was added. And a 20% aqueous sodium persulfate solution (20 g) was added dropwise over 4 hours to carry out the polymerization reaction. After that, 19 g of a 30% aqueous sodium hydroxide solution was added, and the mixture was added to the ion exchange water. Then, the mixture was diluted to a 10% aqueous solution to obtain a 10% aqueous solution of an acrylic acid polymer (P-3). The weight average molecular weight of this acrylic acid polymer (P-3) was 36,000.

・アクリル酸系重合体(P−4)の合成
反応容器に、イオン交換水260gを仕込み、撹拌しながら雰囲気を窒素置換し、反応系の温度を60℃に保った。次にアクリル酸35g、ポリプロピレングリコール0.3g、アセトン14g及び重合開始剤として2,2−アゾビス(2,4−ジメチルバレロニトリル)0.01gを添加した。白濁による反応が始まってからアクリル酸120g及びアセトン36gの混合液156gと前記の重合開始剤0.05gを分割して添加した。全量仕込みが終わった後、更に60℃の温度下で2時間熟成して、重合体の懸濁液を得た。この懸濁液を濾過し、濾別した固形分を乾燥した後、水酸化ナトリウムでpH6に調整したイオン交換水水溶液を加えて、アクリル酸系重合体(P−4)の10%水溶液を得た。このアクリル酸系重合体(P−4)の質量平均分子量は300000であった。
-Synthesis of acrylic acid polymer (P-4) Into a reaction vessel, 260 g of ion-exchanged water was charged, the atmosphere was replaced with nitrogen while stirring, and the temperature of the reaction system was maintained at 60C. Next, 35 g of acrylic acid, 0.3 g of polypropylene glycol, 14 g of acetone, and 0.01 g of 2,2-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator were added. After the reaction due to cloudiness started, 156 g of a mixed solution of 120 g of acrylic acid and 36 g of acetone and 0.05 g of the above-mentioned polymerization initiator were added in portions. After completion of the charging, the mixture was further aged at 60 ° C. for 2 hours to obtain a polymer suspension. This suspension was filtered, and the solid content separated by filtration was dried. Then, an aqueous solution of ion-exchanged water adjusted to pH 6 with sodium hydroxide was added to obtain a 10% aqueous solution of an acrylic acid polymer (P-4). Was. The weight average molecular weight of this acrylic acid polymer (P-4) was 300,000.

・アクリル酸系重合体(P−5)の合成
アクリル酸系重合体(P−4)の場合と同様にして、表1に記載したアクリル酸系重合体(P−5)を合成し、水酸化ナトリウムにて中和を行ない、乾燥してアクリル酸系重合体(P−5)を得た。このアクリル酸系重合体(P−5)の質量平均分子量は5000000であった。以上で合成したアクリル酸系重合体の内容を表1にまとめて示した。
-Synthesis of acrylic acid polymer (P-5) In the same manner as in the case of acrylic acid polymer (P-4), acrylic acid polymer (P-5) shown in Table 1 was synthesized, and water was synthesized. The mixture was neutralized with sodium oxide and dried to obtain an acrylic acid polymer (P-5). The weight average molecular weight of this acrylic acid polymer (P-5) was 5,000,000. Table 1 summarizes the contents of the acrylic acid polymers synthesized as described above.

試験区分2(評価その1:10日における水浸膨張比)
試験に供した路盤材としての鉄鋼スラグの組成はCaOが36〜39%、MgOが3.5〜5.7%で、クラッシャラン鉄鋼スラグのCS−40に粒度調整したもの。これをJIS A 5015にしたがって80℃で10日間(80℃での保持時間は1日6時間)における水浸膨張比を測定した。結果を表2にまとめて示した。各比較例及び実施例に供した鉄鋼スラグは下記の通りである。
比較例1:エージングを行なっていない鉄鋼スラグ。
比較例2:通常(大気)エージングを8ヶ月行なった鉄鋼スラグ。
比較例3:促進エージングである蒸気エージングを48時間行なった鉄鋼スラグ。
実施例1:エージングを行なっていない鉄鋼スラグに、膨張抑制剤として試験区分1で合成したアクリル酸系重合体(P−1)の10%水溶液をアクリル酸系重合体(P−1)として0.5%となるよう添加した。
実施例2〜6:膨張抑制剤の種類や添加量を表2記載のように変えて実施例1と同様に行なった。
Test Category 2 (Evaluation Part 1:10 Water Immersion Expansion Ratio)
The composition of the steel slag as the roadbed material subjected to the test was 36 to 39% of CaO and 3.5 to 5.7% of MgO, and the grain size was adjusted to crusher-run steel slag CS-40. According to JIS A 5015, the water immersion expansion ratio was measured at 80 ° C. for 10 days (retention time at 80 ° C. is 6 hours a day). The results are summarized in Table 2. The steel slag used for each comparative example and example is as follows.
Comparative Example 1: Steel slag not aged.
Comparative Example 2: Steel slag subjected to normal (atmospheric) aging for 8 months.
Comparative Example 3: Steel slag subjected to steam aging, which is accelerated aging, for 48 hours.
Example 1 A 10% aqueous solution of an acrylic acid polymer (P-1) synthesized in Test Category 1 was used as an acrylic acid polymer (P-1) in an unaged steel slag as an expansion inhibitor. 0.5%.
Examples 2 to 6: The same procedures were performed as in Example 1 except that the type and amount of the expansion inhibitor were changed as shown in Table 2.

表2において、
P−1〜P−5:試験区分1で合成したアクリル酸系重合体
添加量:アクリル酸系重合体としての添加量
In Table 2,
P-1 to P-5: Acrylic acid polymer synthesized in test category 1 Addition amount: Addition amount as acrylic acid polymer

表2の結果からも明らかなように、MgOの含有量が少ない鉄鋼スラグの場合でも、エージングを行なわなければ、水浸膨張比は2.5%に達するが、通常エージングや促進エージングを行なうことにより、JISの基準を満足する水浸膨張比となることがわかる。また膨張抑制剤として水溶性のアクリル酸系重合体を用いる本発明によれば、わざわざエージングを行なわなくても、JISの基準を満足する水浸膨張比となることがわかる。   As is clear from the results in Table 2, even in the case of iron and steel slag having a low content of MgO, the immersion expansion ratio reaches 2.5% if aging is not performed, but normal aging or accelerated aging is required. It can be seen from the result that the water immersion expansion ratio satisfies the JIS standard. Further, according to the present invention in which a water-soluble acrylic acid polymer is used as the expansion inhibitor, the water immersion expansion ratio satisfies the JIS standard without aging.

試験区分3(評価その2:10日と90日における水浸膨張比)
試験に供した路盤材としての鉄鋼スラグの組成はCaOが40〜43%、MgOが12〜18%で、クラッシャラン鉄鋼スラグのCS−40に粒度調整したもの。これをJISA5015にしたがって80℃で1日6時間保持の10日間における水浸膨張比に加え、80℃で90日間連続保持したときの水浸膨張比を測定した。結果を表3にまとめて示した。各比較例及び実施例に供した鉄鋼スラグは次の通りである。
比較例4:通常(大気)エージングを8ヶ月行なった鉄鋼スラグ。
実施例7〜12:エージングを行なっていない鉄鋼スラグに、膨張抑制剤として試験区分1で合成した水溶液のアクリル酸系の重合体を表2記載のように添加した。
Test Category 3 (Evaluation 2: Water immersion expansion ratio at 10 days and 90 days)
The composition of the steel slag as the roadbed material subjected to the test was CaO of 40 to 43%, MgO of 12 to 18%, and the grain size was adjusted to crusher-run steel slag CS-40. This was added to the water immersion swelling ratio at 10 days of holding at 80 ° C. for 6 hours a day according to JISA5015, and the water immersion swelling ratio of continuously holding at 80 ° C. for 90 days was measured. The results are summarized in Table 3. The steel slag used for each comparative example and example is as follows.
Comparative Example 4: Steel slag subjected to normal (atmospheric) aging for 8 months.
Examples 7 to 12: To an unaged steel slag, an acrylic acid-based polymer in an aqueous solution synthesized in Test Category 1 was added as an expansion inhibitor as shown in Table 2.

表3において、
A−1〜A−5:試験区分1で合成したアクリル酸系重合体
添加量:アクリル酸系重合体としての添加量
In Table 3,
A-1 to A-5: Acrylic acid polymer synthesized in test category 1 Addition amount: Addition amount as acrylic acid polymer

表3の結果からも明らかなように、MgOの含有量が多い鉄鋼スラグの場合でも、通常エージングを行なうことにより、80℃で10日間の水浸膨張比(80℃±3℃で6時間保持した後に養生装置内で放冷するという操作を1日1回行ない、これを10日間繰り返した場合の水浸膨張比)が基準の1.5%以下を達成できている。しかし、80℃で90日間連続保持したときの水浸膨張比を測定すると、10%を超える値となっていて、MgOの含有量の多い鉄鋼スラグの場合、通常エージングでは長期間に亘る充分な膨張抑制効果は期待できない。これに対して各実施例では、MgOの含有量が多い鉄鋼スラグの場合に、わざわざ通常エージングを行なわなくても、80℃で10日間の水浸膨張比はすべて0.1〜0.2%となっていて、また膨張抑制剤の種類や添加量によっては80℃で90日間連続保持したときの水浸膨張比を1%未満に抑制できている。   As is clear from the results in Table 3, even in the case of steel slag containing a large amount of MgO, the water immersion expansion ratio at 80 ° C. for 10 days (retained for 6 hours at 80 ° C. ± 3 ° C.) by performing normal aging. After that, an operation of allowing to cool in the curing device is performed once a day, and this operation is repeated for 10 days to achieve a water immersion expansion ratio of 1.5% or less of the standard. However, when the water immersion expansion ratio measured at 80 ° C. for 90 days is more than 10%, in the case of steel slag containing a large amount of MgO, sufficient aging for a long period of time is usually sufficient for steel slag containing a large amount of MgO. The expansion suppression effect cannot be expected. On the other hand, in each of the examples, in the case of steel slag having a high MgO content, the water immersion expansion ratio at 80 ° C. for 10 days was 0.1 to 0.2%, even if ordinary aging was not performed. Depending on the type and amount of the expansion inhibitor, the water immersion expansion ratio when continuously maintained at 80 ° C. for 90 days can be suppressed to less than 1%.

Claims (2)

膨張性鉱物を含有する路盤材において、
水溶性のアクリル酸系重合体から成る膨張抑制剤が路盤材中に0.1〜4質量%含有されていることを特徴とする路盤材。
In roadbed materials containing expansive minerals,
A roadbed material comprising a roadbed material containing 0.1 to 4% by mass of an expansion inhibitor made of a water-soluble acrylic acid polymer.
膨張性鉱物を含有する路盤材の膨張抑制方法であって、
水溶性のアクリル酸系重合体から成る膨張抑制剤が路盤材中に0.1〜4質量%配合されることを特徴とする路盤材の膨張抑制方法。
A method for suppressing the expansion of a roadbed material containing an expandable mineral,
A method for suppressing the expansion of a roadbed material, wherein an expansion inhibitor comprising a water-soluble acrylic acid polymer is incorporated in the roadbed material in an amount of 0.1 to 4% by mass.
JP2016148052A 2016-07-28 2016-07-28 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material Active JP6655495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148052A JP6655495B2 (en) 2016-07-28 2016-07-28 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148052A JP6655495B2 (en) 2016-07-28 2016-07-28 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Publications (2)

Publication Number Publication Date
JP2018017022A JP2018017022A (en) 2018-02-01
JP6655495B2 true JP6655495B2 (en) 2020-02-26

Family

ID=61081451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148052A Active JP6655495B2 (en) 2016-07-28 2016-07-28 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Country Status (1)

Country Link
JP (1) JP6655495B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212088B2 (en) * 2001-09-07 2009-01-21 Jfeミネラル株式会社 Method of preventing caking of granulated blast furnace slag or its particle size adjusted product
US6689204B2 (en) * 2002-02-15 2004-02-10 Clearwater International, L.L.C. Roadbed stabilization
JP4159419B2 (en) * 2003-05-14 2008-10-01 Jfeミネラル株式会社 Earthwork materials
JP4302119B2 (en) * 2006-04-24 2009-07-22 Jfeミネラル株式会社 Anti-caking agent of granulated blast furnace slag or its particle size
JP4302120B2 (en) * 2006-04-24 2009-07-22 Jfeミネラル株式会社 Method for preventing consolidation of granulated blast furnace slag or its grain size adjusted blast furnace granulated slag fine aggregate for concrete
JP5254057B2 (en) * 2008-08-19 2013-08-07 Jfeスチール株式会社 Repair method for roadbeds, etc. to prevent uplift and destruction due to expansion
JP2012057349A (en) * 2010-09-08 2012-03-22 Kankyo Kogaku Kk Civil engineering structure, construction method of civil engineering structure, and civil engineering structure unit

Also Published As

Publication number Publication date
JP2018017022A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
AU2011335173B2 (en) Powdered accelerator
CA2689446C (en) Polymer-modified building material dry mixes
RU2541564C9 (en) Mixtures containing oligomeric or polymeric compounds, production and use thereof
RU2701654C2 (en) Inorganic binder composition comprising copolymer
JP6255690B2 (en) Scale prevention method and magnesium hydroxide scale inhibitor for reverse osmosis membrane
AU2008264082A1 (en) Dry construction material mixtures based on calcium sulfate
JP2602048B2 (en) Cement additives and compositions
JP6655495B2 (en) Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material
KR102381094B1 (en) Process for making cationic polymers with reduced halide content
JP6647979B2 (en) Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material
EP2855391B1 (en) Pulverulent accelerator
JP6364299B2 (en) Scale inhibitor for geothermal power generation
JP4277124B2 (en) Drilling mud additive and drilling mud using the same
JP2004244625A (en) Agent for treating wet soil and method for granulating wet soil
JPH101343A (en) Cement additive composition and cement blend
US9914137B1 (en) Selective flocculation of impurities from silicates and clays
JP6186228B2 (en) Method for producing cement dispersant
JPH0966300A (en) Flocculation treatment agent for cement-containing waste sludge
JP2005154522A (en) Method of granulation of water-containing soil and granular soil
KR20160058162A (en) Method for producing vinylamine (co)polymer
JP4932647B2 (en) Expandable aggregate and self-disintegrating concrete
JP4267931B2 (en) Hydrous soil treatment agent and granulated method of hydrous soil
JP2003183065A (en) Concrete for greening
JP2006077165A (en) Treating agent for water-containing soil and method for producing the same and method for granulating water-containing soil
HU181775B (en) Method for solidifying and making water-resistant rocks by early high-strength flexible hydrogels

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250