JPH0531829B2 - - Google Patents

Info

Publication number
JPH0531829B2
JPH0531829B2 JP60215397A JP21539785A JPH0531829B2 JP H0531829 B2 JPH0531829 B2 JP H0531829B2 JP 60215397 A JP60215397 A JP 60215397A JP 21539785 A JP21539785 A JP 21539785A JP H0531829 B2 JPH0531829 B2 JP H0531829B2
Authority
JP
Japan
Prior art keywords
region
sithy
gate
cathode
impurity density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60215397A
Other languages
Japanese (ja)
Other versions
JPS6276556A (en
Inventor
Hiroshi Tadano
Yoshio Nakamura
Tomoyoshi Kushida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP21539785A priority Critical patent/JPS6276556A/en
Priority to US06/912,578 priority patent/US4752818A/en
Publication of JPS6276556A publication Critical patent/JPS6276556A/en
Publication of JPH0531829B2 publication Critical patent/JPH0531829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大電流の高速スイツチングが可能
で、かつ高阻止電圧および低順方向電圧降下の特
徴を有する静電誘導サイリスタおよびその製造方
法に関し、特にスイツチング速度を向上させる構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a static induction thyristor that is capable of high-speed switching of large currents, and has the characteristics of high blocking voltage and low forward voltage drop, and a method for manufacturing the same. In particular, the present invention relates to a structure that improves switching speed.

(従来の技術) 静電誘導サイリスタ(以下SIThyと称す)は、
nチヤネル型の場合、基本的にはp+n-n+ダイオ
ード或はp+nn-n+ダイオードのカソードとなるn+
領域の近傍にp+のゲート領域をメツシユ状或い
はストライプ状に設けた構造を有する。従来の
SIThyの断面構造の例を1ユニツト分だけ第1図
に示す。第1図は、表面ゲート構造のSIThyの比
較的n-層14が薄く、かつp+アノード領域12
に隣接してn層15が薄く設けられたものの代表
例の断面図である。同じ作用をする領域は同じ記
号を用いてある。n-領域14におけるp+ゲート
13とp+ゲート13との間をチヤネルと称し、
SIThyの導通時においては、該チヤネルを荷電担
体が流れ、遮断時においては、該チヤネル内に誘
起されたポテンシヤル障壁が荷電担体の流れを阻
止する。遮断時において、ゲート13とカソード
11間に逆バイアス電圧を印加してチヤネル内に
ポテンシヤル障壁を誘起させ、荷電担体の流れを
阻止するようになされたものをノーマリイ・オン
型SIThyと称する。言いかえれば、ゲート13と
カソード11間のバイアス電圧を零にしたときに
導通状態になるものをノーマリイ・オン型SIThy
と言う。これに対し、ゲート13とカソード11
間のバイアス電圧が零であつても、チヤネル内に
ゲート13によるビルトインポテンシヤルにより
障壁が誘起されていて、電流の遮断が可能なよう
になされたものをノーマリイ・オフ型SIThyと言
う。ノーマリイ・オフ型SIThyを導通状態に導く
ためには、ゲートとカソード間に順バイアスを印
加すれば良い。ノーマリイ・オン型およびノーマ
リイ・オフ型いずれのSIThyも、ゲートとカソー
ド間のバイアス電圧を変化させるだけでアノード
電流の導通および遮断を制御することが可能であ
る。即ち、ゲートターンオフ動作が可能であるこ
とが大きな特徴である。更に、SIThyは従来の
pnpn四層構造で構成されるゲートターンオフサ
イリスタ(以下GTOと称す)に比較して、順方
向電圧降下が低い、スイツチング速度が速い、
dI/dtおよびdV/dt耐量が大きい等の特徴を有
している。このように大電力を扱えるスイツチン
グデバイスとしての従来のSIThyはGTOに較べ
て幾つかの勝れた特徴を有しているが、スイツチ
ング速度、とりわけターンオフ過程における電流
降下時間がGTOよりも格段に速いものの2〜
5μsec程度であり、高速のスイツチング速度が要
求されるパルス幅変調方式による電動機の制御や
スイツチング電源への応用には速度的に不十分で
あつた。スイツチング速度があまり速くないと制
御周波数を高くした場合、スイツチング損失が大
きくなり、装置の放熱設計が複雑かつ大型化して
しまうことになる。装置を簡単かつ小型にしよう
とすれば制御周波数を低くせざるを得ず、該周波
数が人間の可聴周波数に止まれば装置の出す騒音
が作業者に不快感を与え、また防音の処置を施こ
そうとすれば結局大型化を招くと云う矛盾を生む
ことになる。更に、トランス等インダクタンス機
器はその重量が周波数の1/2乗に反比例すると言
われており、周波数を高くすることの利点は多大
なものであるが、低損失の高速スイツチングデバ
イスの提供ができない状況にあるため、そのよう
に周波数を高くするとスイツチング損失が大きく
なり、小形軽量、低損失で高効率の装置を得るこ
とができなかつた。
(Conventional technology) A static induction thyristor (hereinafter referred to as SIThy) is
In the case of n-channel type, basically p + n - n + diode or p + nn - n + n + which becomes the cathode of the diode .
It has a structure in which p + gate regions are provided in a mesh shape or a stripe shape near the region. Traditional
An example of the cross-sectional structure of one unit of SIThy is shown in Figure 1. FIG. 1 shows that a SIThy with a surface gate structure has a relatively thin n - layer 14 and a p + anode region 12.
FIG. 2 is a cross-sectional view of a typical example in which a thin n-layer 15 is provided adjacent to. The same symbols are used for areas that have the same effect. The area between the p + gates 13 and the p + gates 13 in the n - region 14 is called a channel,
When SIThy is on, charge carriers flow through the channel, and when SIThy is off, a potential barrier induced in the channel blocks the flow of charge carriers. When cut off, a reverse bias voltage is applied between the gate 13 and the cathode 11 to induce a potential barrier within the channel, thereby blocking the flow of charge carriers, which is called a normally-on type SIThy. In other words, a normally-on type SIThy is one that becomes conductive when the bias voltage between the gate 13 and cathode 11 is reduced to zero.
Say. On the other hand, gate 13 and cathode 11
A normally-off type SIThy is one in which a barrier is induced in the channel by the built-in potential of the gate 13 and the current can be interrupted even if the bias voltage between the channels is zero. In order to bring the normally-off type SIThy into a conductive state, a forward bias can be applied between the gate and the cathode. Both normally-on type and normally-off type SIThy can control conduction and interruption of anode current simply by changing the bias voltage between the gate and cathode. That is, a major feature is that gate turn-off operation is possible. Furthermore, SIThy is a traditional
Compared to a gate turn-off thyristor (hereinafter referred to as GTO) consisting of a pnpn four-layer structure, it has a lower forward voltage drop and faster switching speed.
It has features such as high dI/dt and dV/dt tolerance. The conventional SIThy, as a switching device that can handle large amounts of power, has several superior features compared to the GTO, but its switching speed, especially the current drop time during the turn-off process, is significantly lower than the GTO. Fast one 2~
The speed was about 5 μsec, which was insufficient for application to motor control and switching power supplies using pulse width modulation methods, which require high switching speeds. If the switching speed is not very fast and the control frequency is increased, the switching loss will increase and the heat dissipation design of the device will become complicated and large. If the equipment is to be made simple and compact, the control frequency must be lowered, and if the frequency remains within the human audible range, the noise emitted by the equipment may cause discomfort to the operator, and soundproofing measures must be taken. If we try to do this, we end up creating a contradiction in that it will lead to larger sizes. Furthermore, it is said that the weight of inductance devices such as transformers is inversely proportional to the 1/2 power of the frequency, and although there are great advantages to increasing the frequency, it is not possible to provide low-loss, high-speed switching devices. Due to the current situation, increasing the frequency increases switching loss, making it impossible to obtain a compact, lightweight, low loss, and highly efficient device.

そこで、先ず従来のSIThyのtfが何故そんなに
速くならないかを第2図を用いて説明する。第2
図は従来の代表的な表面ゲート型SIThyの断面構
造を示す図(第1図と同じ)に、等価回路図を重
ねて示したものである。SIThyが導通状態にある
時は、バイポーラモード静電誘導トランジスタ
(以下BSITと称す)Q1,pnpトランジスタQ2
よびQ3は全部導通状態になつている。今、
SIThyをターン・オフさせようとする時、ゲート
とカソード間に逆バイアスを印加する。ゲートに
逆バイアスが印加されると、チヤネル内のホール
はゲートに高速に流れ込み、チヤネル内にポテン
シヤル障壁が誘起されてカソードからの電子の注
入がなくなり、BSITQ1はカツトオフする。その
結果、カソード電流Ikはきわめて高速に遮断でき
るが、一方、アノード電流IAは次に述べる理由で
そんなに高速にはカツトオフしない。アノード電
流IAがそんなに高速でないのは、第2図に示す
pnpトランジスタQ2およびQ3が高速に遮断されず
p+アノード領域からホールの注入がある時間続
き、このホールはゲート電流IGとしてゲートに抜
けるためである。pnpトランジスタQ2およびQ3
高速に遮断されない理由は、pnpトランジスタの
ベースになるn層のポテンシヤルがpnpトランジ
スタのエミツタとなるp+アノード領域からホー
ルを注入させるのに充分な値をある時間保つこと
による。ターンオフ過程において、p+アノード
領域からホールが注入し続ける時間は、導通時に
n-領域にカソードから注入されていた電子が、
p+アノード前面即ちn層中にどれくらいの量残
り続けるかに依存する。即ち、n層を持つSIThy
では荷電担体の寿命が長い程、前記のホールの注
入は長い時間続く。
First, we will explain why the t f of the conventional SIThy is not so fast using FIG. 2. Second
The figure shows an equivalent circuit diagram superimposed on a diagram (same as Figure 1) showing the cross-sectional structure of a typical conventional surface gate type SIThy. When SIThy is conductive, bipolar mode static induction transistor (hereinafter referred to as BSIT) Q 1 and pnp transistors Q 2 and Q 3 are all conductive. now,
When trying to turn off SIThy, apply a reverse bias between the gate and cathode. When a reverse bias is applied to the gate, holes in the channel flow into the gate at high speed, inducing a potential barrier in the channel, eliminating injection of electrons from the cathode, and BSITQ 1 is cut off. As a result, the cathode current I k can be cut off very quickly, whereas the anode current I A is not cut off so quickly for the reasons described below. The reason why the anode current I A is not so fast is shown in Figure 2.
pnp transistors Q 2 and Q 3 are not turned off fast
This is because the injection of holes from the p + anode region continues for a certain period of time, and these holes escape to the gate as the gate current I G. The reason why the pnp transistors Q 2 and Q 3 are not shut off quickly is that the potential of the n layer, which is the base of the pnp transistor, maintains a value sufficient for a certain period of time to inject holes from the p + anode region, which is the emitter of the pnp transistor. It depends. In the turn-off process, the time during which holes continue to be injected from the p + anode region is
The electrons injected from the cathode into the n -region are
It depends on how much remains in front of the p + anode, ie in the n layer. That is, SIThy with n layers
The longer the lifetime of the charge carrier, the longer the hole injection continues.

(発明の目的) 本発明の目的は、上記の事情に鑑み高速スイツ
チングを可能ならしめる構造のSIThyを提供する
ことにある。
(Object of the Invention) In view of the above-mentioned circumstances, an object of the present invention is to provide a SIThy having a structure that enables high-speed switching.

(発明の構成) 本発明は、低不純物密度領域と、該低不純物密
度領域と同導電型の高不純物密度のカソード領域
と、該カソード領域の近傍に形成されたカソード
領域と反対導電型のゲート領域と、前記低不純物
密度領域を挟んで前記カソード領域に対向し、そ
のカソード領域と反対導電型の高不純物密度のア
ノード領域と、前記低不純物密度領域と前記アノ
ード領域の間に設けられ、該アノード領域と反対
導電型の比較的不純物密度の高い薄層領域と、前
記薄層領域の中に形成された荷電担体寿命が比較
的短い領域とを有することを特徴とする高速静電
誘導サイリスタである。
(Structure of the Invention) The present invention includes a low impurity density region, a high impurity density cathode region having the same conductivity type as the low impurity density region, and a gate having a conductivity type opposite to the cathode region formed near the cathode region. a high impurity density anode region which faces the cathode region with the low impurity density region in between and has an opposite conductivity type to the cathode region, and is provided between the low impurity density region and the anode region; A high-speed electrostatic induction thyristor comprising a thin layer region having a relatively high impurity density and having a conductivity type opposite to that of the anode region, and a region formed in the thin layer region and having a relatively short charge carrier life. be.

(発明の作用および効果) 以下、本発明を実施例により詳細に説明する。(Operation and effect of the invention) Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は、本発明の構造と効果を説明するため
の、表面ゲート構造のnチヤネルSIThyの実施例
の断面構造の図である。第3図はn-層が比較的
薄く、p+アノード32の前面に隣接して比較的
不純物密度の高いn層の薄層領域35を設けたも
のでアノード電流阻止時に、アノードに印加され
ている最大阻止電圧によつて、p+ゲート33と
p+アノード32との間の電界分布が、p+ゲート
33とn-層34との接合付近で最大電界となる
四辺形状をなし、比較的不純物密度の高いn層3
5が中性領域として残つているようにした構造の
SIThyである。第3図には同じ作用を持つ領域に
は同じ記号を用いてある。第3図の構造のSIThy
のアノード側の接合は、1×1018乃至1×1019cm
-3の不純物密度を有するp形シリコン基板に不純
物密度を制御した連続気相エピタキシヤル成長を
行なつて容易に得られる。p+アノード32と対
向する面に形成されるn+カソード領域31およ
びp+ゲート領域33は、n+カソード領域31に
対してはリン或いはヒ素、p+ゲート領域33に
対してはボロンを選択拡散して得られる。第3図
の構造において本発明による特徴はn層35の中
に、荷電担体寿命の短い領域36を設けたことで
ある。例えば該領域36は陽子線照射によりその
エネルギーを制御することによりn層35内の所
望の位置に設けることが可能であり、荷電担体寿
命の減少の程度は、陽子線の照射量と照射後のア
ニール工程によつて選択することが可能である。
このような荷電担体寿命を減少させた領域36を
所望の位置に設けた最大の効果の一つは、前述の
従来のSIThyのターンオフ過程の説明における第
2図の等価回路のpnpトランジスタQ2およびQ3
ベース(n層)に蓄積されている荷電担体の消滅
を促進し、Q2およびQ3が高速にカツトオフする
ことである。即ち、SIThyの電流降下時間tfがき
わめて高速になることである。更に、本発明の効
果の一つは、該領域36をn層35の或る位置に
局在させることにより、n+カソード領域31お
よびp+ゲート領域33の近傍は元の荷電担体寿
命が保存されており、デバイスの動作および特性
に支障を来さないことである。該照射はシリコン
ウエーハ上に従来のSIThyを形成する全ての工程
が完了してからでも良いし、アルミニウム等の電
極配線を施す前であつても良い。
FIG. 3 is a cross-sectional view of an embodiment of an n-channel SIThy with a surface gate structure for explaining the structure and effects of the present invention. In FIG. 3, the n - layer is relatively thin, and a thin layer region 35 of the n layer with relatively high impurity density is provided adjacent to the front surface of the p + anode 32. By the maximum blocking voltage, p + gate 33 and
The electric field distribution between the p + anode 32 has a quadrilateral shape with the maximum electric field near the junction between the p + gate 33 and the n - layer 34, and the n layer 3 has a relatively high impurity density.
The structure is such that 5 remains as a neutral region.
It's SIThy. In FIG. 3, the same symbols are used for areas having the same effect. SIThy of the structure shown in Figure 3
The anode side junction of 1×10 18 to 1×10 19 cm
It can be easily obtained by continuous vapor phase epitaxial growth with controlled impurity density on a p-type silicon substrate having an impurity density of -3 . For the n + cathode region 31 and p + gate region 33 formed on the surface facing the p+ anode 32, phosphorus or arsenic is selected for the n + cathode region 31, and boron is selected for the p + gate region 33 . Obtained by diffusion. A feature of the structure of FIG. 3 according to the present invention is that a region 36 having a short charge carrier life is provided in the n-layer 35. For example, the region 36 can be provided at a desired position within the n-layer 35 by controlling its energy through proton beam irradiation, and the degree of decrease in charge carrier life depends on the amount of proton beam irradiation and the post-irradiation This can be selected depending on the annealing process.
One of the greatest effects of providing the region 36 at a desired position, which reduces the charge carrier lifetime, is that the pnp transistors Q 2 and 2 of the equivalent circuit of FIG. This promotes the disappearance of the charge carriers accumulated in the base (n-layer) of Q 3 and rapidly cuts off Q 2 and Q 3 . That is, the current fall time t f of SIThy becomes extremely fast. Furthermore, one of the effects of the present invention is that by localizing the region 36 at a certain position in the n layer 35, the original charge carrier lifetime is preserved in the vicinity of the n + cathode region 31 and the p + gate region 33. and shall not interfere with the operation or characteristics of the device. The irradiation may be performed after all the steps of forming the conventional SIThy on the silicon wafer have been completed, or may be performed before the electrode wiring of aluminum or the like is provided.

荷電担体寿命を減少させる従来技術としては、
金または同様な重金属を拡散することが行なわれ
ているが、金の拡散処理には困難な問題が存在す
る。それは、シリコン中の金が非常に速い速度で
拡散し、金を拡散した領域を任意の場所に限定す
ることが困難であり、大概はシリコンウエーハ全
域に及ぶことである。金がn+カソード領域およ
びp+ゲート領域の近傍に及べば、該近傍の荷電
担体寿命を減じることとなり、デバイスの順方向
電圧降下の増大、およびゲート感度の低下を招
く。更には、静電誘導サイリスタとしての必要条
件を満たさなくなる。即ち、n+カソード領域お
よびp+ゲート領域近傍で構成されているBSITの
ゲート接地電流増幅率αBSITの低下を招き、αBSIT
p+アノード、n-層およびp+ゲートで構成される
pnpトランジスタのベース接地電流増幅率αpop
の和αBSIT+αpopが1より小さくなりラツチアツプ
しなくなる。αBSIT+αpop<1の条件下でも高速ス
イツチングは可能であるが、順方向電圧降下は増
大するし、またこのようなデバイスを導通状態に
保つためにはゲート電流をかなり流し込まなくて
はならない。本発明のSIThyは、荷電担体寿命の
減少した領域が電流降下時間tfの改善に有効な位
置にのみ局在しているためゲート感度が高く、順
方向電圧降下の増加も必要最小限に抑えることが
でき、低損失かつ高効率の高速スイツチングデバ
イスとなる。
Conventional techniques for reducing charge carrier lifetime include:
Diffusion of gold or similar heavy metals has been attempted, but difficult problems exist in the gold diffusion process. The reason is that gold in silicon diffuses at a very high rate, and it is difficult to limit the region where gold is diffused to an arbitrary location, which generally covers the entire silicon wafer. Gold in the vicinity of the n + cathode and p + gate regions reduces the charge carrier lifetime in the vicinity, leading to increased forward voltage drop and decreased gate sensitivity of the device. Furthermore, it no longer satisfies the requirements for an electrostatic induction thyristor. In other words, the gate ground current amplification factor α BSIT of BSIT configured near the n + cathode region and the p + gate region decreases, and α BSIT and
Consists of p + anode, n - layer and p + gate
The sum α BSIT + α pop of the common base current amplification factor α pop of the pnp transistor becomes smaller than 1 and no longer latches. Fast switching is possible under the condition α BSITpop <1, but the forward voltage drop increases and such devices require significant gate current to remain conductive. The SIThy of the present invention has high gate sensitivity because the region with reduced charge carrier lifetime is localized only in a position effective for improving the current drop time t f , and the increase in forward voltage drop is also minimized. This results in a high-speed switching device with low loss and high efficiency.

(実施例) 次に、本発明による実施例のSIThyについて述
べる。先ず、第1図に示すような従来画のSIThy
を製作した。不純物密度が約5×1018cm-3、厚さ
が350μmのp形基板(これはp+アノードとなる)
に最初約2×1016cm-3のn形層を約15μmエピタ
キシヤル成長させ、次に連続して約1×1014cm-3
のn-形層を約35μmエピタキシヤル成長させる。
このようにして得られたシリコンウエーハに、
n-層側表面から選択拡散を重ね、拡散深さ3.5μm
のp+ゲート領域および拡散深さ0.5μmのn+カソー
ド領域を形成した。その後、厚さ5μmのアルミ
ニウム電極配線を施した。p+ゲートとp+ゲート
の間のチヤネルは、その幅が1.5μmになつてい
る。尚、チツプサイズは7×10mm2である。このよ
うに製作した従来型のSIThyの特性は第4図のよ
うであつた。第4図aは、縦軸がアノード電流
IA、および横軸がアノード、カソード電圧VAK
示すところのSIThyの静特性である。ゲート、カ
ソード間電圧VGKが零のとき、SIThyはOFF、
VGKが約0.8Vのとき(ゲートに電流を流し込んだ
とき)ONであり、典型的なノーマリイ・オフ型
SIThyのスイツチ特性を示している。アノード電
流IAが50Aのとき、順方向電圧降下は約1Vである
ことが分かる。また、該SIThyの最大順方向阻止
電圧は500Vであつた。
(Example) Next, SIThy of an example according to the present invention will be described. First, let's look at the conventional image SIThy as shown in Figure 1.
was produced. A p-type substrate with an impurity density of approximately 5×10 18 cm -3 and a thickness of 350 μm (this will be the p + anode)
First, an n-type layer of about 2×10 16 cm -3 was epitaxially grown to a thickness of about 15 μm, and then about 1×10 14 cm -3 was continuously grown.
An n -type layer of about 35 μm is epitaxially grown.
The silicon wafer obtained in this way has
Repeated selective diffusion from the n - layer side surface, diffusion depth 3.5μm
A p + gate region with a diffusion depth of 0.5 μm and an n + cathode region with a diffusion depth of 0.5 μm were formed. Thereafter, aluminum electrode wiring with a thickness of 5 μm was applied. The channel between the p + gates has a width of 1.5 μm. Note that the chip size is 7 x 10 mm2 . The characteristics of the conventional SIThy manufactured in this way are as shown in Figure 4. In Figure 4a, the vertical axis is the anode current
This is the static characteristic of SIThy where I A and the horizontal axis indicate the anode and cathode voltages V AK . When the gate-cathode voltage V GK is zero, SIThy is OFF,
It is ON when V GK is about 0.8V (when current flows into the gate), which is a typical normally-off type.
It shows the switch characteristics of SIThy. It can be seen that when the anode current I A is 50 A, the forward voltage drop is about 1 V. Further, the maximum forward blocking voltage of the SIThy was 500V.

第4図bは、縦軸がゲート電流IGおよびアノー
ド電流IAを示し、横軸が時間を示すところの従来
のSIThyのスイツチング波形である。ゲート電流
IGを、SIThyをターンオンさせたいタイミングに
ゲートにパルス的に流し込み、ターンオフさせた
いタイミングにパルス的にゲートから引き抜くよ
うにして測定した。典型的なラツチアツプ動作が
この図に示されている訳である。アノード電流IA
の立上り時間trは20nsecと超高速であるが、降下
時間tfは5μsecと遅いことが分る。更に、ターン
オフ過程に1μsecのストレージ時間tstgも観察され
ている。
FIG. 4b shows a conventional SIThy switching waveform in which the vertical axis represents the gate current I G and the anode current I A , and the horizontal axis represents time. gate current
Measurements were made by injecting IG into the gate in pulses at the desired timing to turn on SIThy, and pulling it out from the gate in pulses at the timing to turn off SIThy. A typical latch-up operation is shown in this diagram. Anode current I A
It can be seen that the rise time t r is extremely fast at 20 nsec, but the fall time t f is slow at 5 μsec. Furthermore, a storage time t stg of 1 μsec has been observed during the turn-off process.

このような特性を有する従来型のSIThyのアル
ミニウム電極形成後のウエーハに対してカソード
を形成した方の面から陽子線を2MeVのエネルギ
ーで約1×1013陽子粒/cm2の照射量だけ照射し、
第3図に示したような本発明の構造のSIThyを製
作した。2MeVのエネルギーを持つ陽子線はウエ
ーハ表面から約45μmの深さまで透過する。放射
線の照射による結晶格子への損傷の度合は、放射
線の透過深度近傍が通常経路の領域より甚しく大
きい。従つて、荷電担体寿命を減少させた領域は
本実施例の場合、表面より約45μmの深さの近傍
に局在していることになる。
With conventional SIThy, which has these characteristics, a wafer after forming an aluminum electrode is irradiated with a proton beam from the side on which the cathode is formed, with an energy of 2 MeV and a dose of approximately 1 x 10 13 proton particles/cm 2 death,
A SIThy having the structure of the present invention as shown in FIG. 3 was manufactured. A proton beam with an energy of 2 MeV penetrates to a depth of approximately 45 μm from the wafer surface. The degree of damage to the crystal lattice due to radiation irradiation is significantly greater in the vicinity of the radiation penetration depth than in the normal path region. Therefore, in this example, the region where the charge carrier lifetime is reduced is localized at a depth of approximately 45 μm from the surface.

第5図に本発明の構造のSIThyの特性を示す。
aはアノード電流IA対アノード、カソード間電圧
VAKの、ゲート電流IGをパラメータとした特性で
あり、bはゲート電流IGとアノード電流IA対時間
のスイツチング波形である。静特性を見ると、ゲ
ート電流IGの幾つかのパラメータに対してもブレ
ークオーバし、サイリスタ動作をしていることが
分る。但し、順方向電圧降下は、アノード電流IA
が50Aのとき、2Vと増加している。スイツチン
グ波形を見ると、本発明の効果が、とりわけター
ンオフ過程において顕著に見られる。即ち、電流
降下時間tfが、50nsecになつている。これらの値
は従来型のSIThyの電流降下時間tfの値の100倍
の速度が達成されていることを表わしている。特
に、蓄積時間tstgに関しては、殆ど読み取れない
程度の小さな値となつているし、立上り時間tr
は、若干遅くはなるものの50nsecと超高速であ
る。前記順方向電圧降下Vpo(IA=50Aのとき)と
降下時間tfの関係をグラフにして示したものが、
第6図である。
FIG. 5 shows the characteristics of SIThy of the structure of the present invention.
a is anode current I A vs. voltage between anode and cathode
This is a characteristic of V AK using gate current I G as a parameter, and b is a switching waveform of gate current I G and anode current I A versus time. Looking at the static characteristics, it can be seen that there is a breakover with respect to some parameters of the gate current I G , and it is operating as a thyristor. However, the forward voltage drop is the anode current I A
When is 50A, it increases to 2V. Looking at the switching waveform, the effects of the present invention are particularly noticeable in the turn-off process. That is, the current fall time t f is 50 nsec. These values represent that a speed 100 times faster than the current fall time t f value of the conventional SIThy has been achieved. In particular, the accumulation time t stg is so small that it is almost unreadable, and the rise time t r
Although it is slightly slower, it is extremely fast at 50nsec. The graph showing the relationship between the forward voltage drop V po (when I A = 50 A) and the drop time t f is as follows:
FIG.

第6図の中にn+層中に部分的に荷電担体寿命
の短い領域を設けた従来型のSIThyの値も示して
あるが、該図に見られるように本発明において
は、全体的に荷電担体寿命を減少させた場合や、
n-層に部分的に荷電担体寿命の短い領域を設け
た場合よりも高速でかつ順方向電圧降下の小さい
静電誘導サイリスタが製作し得、本発明の効果は
歴然である。
Figure 6 also shows the SIThy value of the conventional type in which a region with a short charge carrier lifetime is partially provided in the n + layer, but as can be seen in the figure, in the present invention, the overall When the charge carrier lifetime is reduced,
It is possible to produce an electrostatic induction thyristor that is faster and has a smaller forward voltage drop than when regions with short charge carrier lifetimes are partially provided in the n - layer, and the effects of the present invention are obvious.

これまで本発明の構成とそれによる効果を説明
するのに好適な実施例について述べたが、陽子線
のエネルギー、照射量は、前記実施例における値
に限らないことは勿論である。例えば、順方向阻
止電圧が高くなるように設計、製作されるSIThy
は低不純物密度層(n-層)が、100μm程度にな
る。このようなSIThyのn領域に荷電担体寿命の
減少した領域をカソードの形成される表面から陽
子線を照射して形成する場合には、前記実施例よ
り相当高いエネルギーが必要である。また、アノ
ード側表面から陽子線を照射する場合は、p+
ノード領域の厚さを勘案して照射エネルギーを設
定する。所望の位置に荷電担体寿命の減少した領
域を形成するための陽子線のエネルギーの設定
は、例えば1977年Pergamon Press社発行のH.
H.AndersenおよびJ.F.Ziegler著の
「HYDROGEN stopping Powers and Ranges
in All Elements」の中の「RANGE OF
HYDROGEN IONS IN SI〔14〕」および
「RANGE OF HYDROGEN IONS IN AL
〔13〕」のグラフを参照することにより決定でき
る。本発明の構造のSIThyに適用する適当な陽子
線の照射量は、厳密にはSIThyの構造、とりわけ
低不純物密度領域の厚さ、不純物密度等や、得よ
うとするSIThyの電気的特性に依存するが、本発
明においては1×1011乃至1×1014陽子粒/cm2
範囲で照射を実施した。
Up to now, preferred embodiments have been described for explaining the configuration of the present invention and its effects, but it goes without saying that the energy and irradiation amount of the proton beam are not limited to the values in the embodiments. For example, SIThy is designed and manufactured to have a high forward blocking voltage.
The low impurity density layer (n - layer) is about 100 μm. When forming a region with a reduced charge carrier lifetime in the n region of SIThy by irradiating a proton beam from the surface where the cathode is formed, considerably higher energy is required than in the previous embodiment. Furthermore, when irradiating the proton beam from the anode side surface, the irradiation energy is set in consideration of the thickness of the p + anode region. Setting the energy of a proton beam to form a region of reduced charge carrier lifetime at a desired location is described, for example, in H.
“HYDROGEN stopping Powers and Ranges” by H. Andersen and JF Ziegler
``RANGE OF'' in ``in All Elements''
HYDROGEN IONS IN SI [14]” and “RANGE OF HYDROGEN IONS IN AL
This can be determined by referring to the graph in [13]. The appropriate proton beam irradiation dose to be applied to the SIThy structure of the present invention strictly depends on the structure of the SIThy, especially the thickness of the low impurity density region, impurity density, etc., and the electrical characteristics of the SIThy to be obtained. However, in the present invention, irradiation was performed in the range of 1×10 11 to 1×10 14 proton particles/cm 2 .

これまで荷電担体寿命を減少させる方法として
陽子線の照射の例を示したが、これ以外にも例え
ば、SIThy製作段階のn形層エピタキシヤル成長
後にArなどのイオンを表面側から照射し、その
後、n形層をさらに成長させその上にn-層を成
長させることによつてあるいはn-層をAr照射後
に成長させることによつてもn形層中に荷電担体
寿命の減少した領域を形成することができる。
又、荷電担体寿命は、不純物密度が高くなるほど
短くなるから、n形層中に高密度の不純物を有す
る比較的厚さの薄いn+層を形成することによつ
ても前記陽子線照射の例と同様の効果がある。
So far, we have shown an example of proton beam irradiation as a method for reducing charge carrier lifetime, but there are also other methods, such as irradiation with ions such as Ar from the surface side after the epitaxial growth of the n-type layer in the SIThy fabrication stage, and then , by further growing the n-type layer and growing the n -layer on top of it, or also by growing the n -layer after Ar irradiation, forming a region with reduced charge carrier lifetime in the n-type layer. can do.
Furthermore, since the charge carrier lifetime becomes shorter as the impurity density increases, forming a relatively thin n + layer with a high density of impurities in the n-type layer can also improve the proton beam irradiation example. has the same effect.

第7図は、n形層中に1×1919cm-3の不純物密
度を有するn+層を形成したSIThyの断面図であり
n+層の形成はASをイオン注入することによつて
実施している。又その厚さは約5μm程度である。
Figure 7 is a cross-sectional view of SIThy in which an n + layer with an impurity density of 1 × 19 19 cm -3 is formed in the n - type layer.
The n + layer is formed by ion-implanting AS . Moreover, its thickness is about 5 μm.

第8図a及びbは前記構造のSIThyの静特性及
びスイツチング特性を示しており、陽子線の場合
と同様にtfが非常に改善され高速でかつ電圧降下
の小さいSIThyが製作できている。この電圧降下
Vpoとtfの関係は前記第6図中に示しているが、
陽子線照射と同様な効果を有することは歴然であ
る。
Figures 8a and 8b show the static characteristics and switching characteristics of the SIThy with the above structure, and as in the case of the proton beam, a SIThy with greatly improved t f and high speed and small voltage drop can be fabricated. This voltage drop
The relationship between V po and t f is shown in Figure 6 above,
It is obvious that it has the same effect as proton beam irradiation.

以上、本発明の構成とそれによる効果を幾つか
の実施例により具体的に説明したが、本発明の主
旨および範囲から逸脱することなく、細部におい
て種々の変更をなし得ることは言うまでもない。
例えば、説明に用いた実施例は表面ゲート構造の
nチヤネル型SIThyであるが、埋込ゲート構造に
も、MOSゲート構造にも、またpチヤネル型の
SIThyにも適用できるのは勿論である。
Although the configuration of the present invention and its effects have been specifically explained above using several examples, it goes without saying that various changes can be made in details without departing from the spirit and scope of the present invention.
For example, the embodiment used in the explanation is an n-channel type SIThy with a surface gate structure, but it can also be used with a buried gate structure, a MOS gate structure, and a p-channel type SIThy.
Of course, it can also be applied to SIThy.

本発明により、低損失で高速に大電流のスイツ
チングが可能なSIThyが、簡単な工程で、かつ低
コストで実現できることになり、その工業的価値
はきわめて大きい。
According to the present invention, a SIThy capable of high-speed, high-current switching with low loss can be realized with a simple process and at low cost, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の表面ゲート構造SIThyの1ユニ
ツト分の断面構造を示す図である。第2図は
SIThyの1ユニツト分の断面構造を示す図に等価
回路図を重ねて示した図である。第3図は本発明
のSIThyの構造の一実施例を示す図である。第4
図は従来のSIThyの電気的特性を示す図であり、
aはIA対VAK特性、bはIGおよびIAのスイツチン
グ波形である。第5図は本発明の実施例のSIThy
の電気的特性を示す図であり、aはIA対VAK
性、bはIGおよびIAのスイツチング波形を示す。
第6図は本発明の前記実施例のSIThyの降下時間
tfと順方向電圧降下Vpoの関係をプロツトした図
である。第7図は本発明の他の実施例のSIThyの
構造を示す図である。第8図は第7図の実施例の
電気的特性を示す図であり、aはIA対VAK特性、
bはIGおよびIAのスイツチング波形を示す。 11,21,31,71……n+カソード領域、
12,22,32,72……p+アノード領域、
13,23,33,73……p+ゲート領域、1
4,24,34,74……低不純物密度n-領域、
35,75……n薄層領域、36,76……荷電
担体寿命を減少させた領域。
FIG. 1 is a diagram showing a cross-sectional structure of one unit of a conventional surface gate structure SIThy. Figure 2 is
It is a diagram showing an equivalent circuit diagram superimposed on a diagram showing the cross-sectional structure of one unit of SIThy. FIG. 3 is a diagram showing an embodiment of the structure of SIThy of the present invention. Fourth
The figure shows the electrical characteristics of the conventional SIThy.
a is the I A vs. V AK characteristic, and b is the switching waveform of I G and I A. FIG. 5 shows SIThy of an embodiment of the present invention.
FIG. 3 is a diagram showing the electrical characteristics of the circuit, in which a shows the I A vs. V AK characteristic, and b shows the switching waveforms of I G and I A.
Figure 6 shows the falling time of SIThy in the embodiment of the present invention.
FIG. 3 is a diagram plotting the relationship between t f and forward voltage drop V po . FIG. 7 is a diagram showing the structure of SIThy according to another embodiment of the present invention. FIG. 8 is a diagram showing the electrical characteristics of the embodiment shown in FIG. 7, where a is the I A vs. V AK characteristic;
b shows switching waveforms of I G and I A. 11, 21, 31, 71...n + cathode region,
12, 22, 32, 72...p + anode region,
13, 23, 33, 73...p + gate region, 1
4, 24, 34, 74...low impurity density n - region,
35, 75...n thin layer region, 36, 76... region with reduced charge carrier lifetime.

Claims (1)

【特許請求の範囲】[Claims] 1 低不純物密度領域34と、該低不純物密度領
域34と同導電型の高不純物密度のカソード領域
31と、該カソード領域31の近傍に形成された
カソード領域31と反対導電型のゲート領域33
と、前記低不純物密度領域34を挟んで前記カソ
ード領域31に対向し、そのカソード領域31と
反対導電型の高不純物密度のアノード領域32
と、前記低不純物密度領域34と前記アノード領
域32の間に設けられ、該アノード領域32と反
対導電型の比較的不純物密度の高い薄層領域35
と、前記薄層領域35の中に形成された荷電担体
寿命が比較的短い領域36とを有することを特徴
とする高速静電誘導サイリスタ。
1. A low impurity density region 34, a high impurity density cathode region 31 of the same conductivity type as the low impurity density region 34, and a gate region 33 of the opposite conductivity type to the cathode region 31 formed near the cathode region 31.
and an anode region 32 having a high impurity density and opposite to the cathode region 31 with the low impurity density region 34 in between, and having a conductivity type opposite to that of the cathode region 31.
and a thin layer region 35 with relatively high impurity density, which is provided between the low impurity density region 34 and the anode region 32 and has a conductivity type opposite to that of the anode region 32.
and a region 36 formed in the thin layer region 35 and having a relatively short charge carrier lifetime.
JP21539785A 1985-09-28 1985-09-28 High-speed electrostatic induction thyristor Granted JPS6276556A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21539785A JPS6276556A (en) 1985-09-28 1985-09-28 High-speed electrostatic induction thyristor
US06/912,578 US4752818A (en) 1985-09-28 1986-09-26 Semiconductor device with multiple recombination center layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21539785A JPS6276556A (en) 1985-09-28 1985-09-28 High-speed electrostatic induction thyristor

Publications (2)

Publication Number Publication Date
JPS6276556A JPS6276556A (en) 1987-04-08
JPH0531829B2 true JPH0531829B2 (en) 1993-05-13

Family

ID=16671642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21539785A Granted JPS6276556A (en) 1985-09-28 1985-09-28 High-speed electrostatic induction thyristor

Country Status (1)

Country Link
JP (1) JPS6276556A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722198B2 (en) * 1987-07-15 1995-03-08 富士電機株式会社 Insulated gate type bipolar transistor
JPH0671078B2 (en) * 1988-04-23 1994-09-07 松下電工株式会社 Semiconductor device
JP2617497B2 (en) * 1987-12-18 1997-06-04 松下電工株式会社 Semiconductor device
GB2213988B (en) * 1987-12-18 1992-02-05 Matsushita Electric Works Ltd Semiconductor device
JP2526653B2 (en) * 1989-01-25 1996-08-21 富士電機株式会社 Conductivity modulation type MOSFET
US5182626A (en) * 1989-09-20 1993-01-26 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113686A (en) * 1976-03-17 1977-09-22 Westinghouse Electric Corp Method of producing semiconductor device
JPS5522840A (en) * 1978-08-07 1980-02-18 Hitachi Ltd Semiconductor switching element and manufacturing method thereof
JPS5739577A (en) * 1980-06-27 1982-03-04 Westinghouse Electric Corp Method of reducing reverse recovery charge for thyristor
JPS6074443A (en) * 1983-07-01 1985-04-26 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト P-n junction semiconductor element and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113686A (en) * 1976-03-17 1977-09-22 Westinghouse Electric Corp Method of producing semiconductor device
JPS5522840A (en) * 1978-08-07 1980-02-18 Hitachi Ltd Semiconductor switching element and manufacturing method thereof
JPS5739577A (en) * 1980-06-27 1982-03-04 Westinghouse Electric Corp Method of reducing reverse recovery charge for thyristor
JPS6074443A (en) * 1983-07-01 1985-04-26 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト P-n junction semiconductor element and method of producing same

Also Published As

Publication number Publication date
JPS6276556A (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US5572048A (en) Voltage-driven type semiconductor device
US7749876B2 (en) Method for the production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone
US7485920B2 (en) Process to create buried heavy metal at selected depth
JP5365009B2 (en) Semiconductor device and manufacturing method thereof
US5554862A (en) Power semiconductor device
JP6237915B2 (en) Semiconductor device and manufacturing method of semiconductor device
US5914503A (en) Insulated gate thyristor
KR940008261B1 (en) Power semiconductor device
EP0430237A1 (en) Bipolar device in which carrier lifetime is controlled
JP3413021B2 (en) Semiconductor device
US6252259B1 (en) Semiconductor switching device having different carrier lifetimes between a first portion serving as a main current path and the remaining portion of the device
JP2008227414A (en) Semiconductor device and method of manufacturing same
US4238761A (en) Integrated gate assisted turn-off, amplifying gate thyristor with narrow lipped turn-off diode
EP0752724A2 (en) Method of forming an alloyed drain field effect transistor and device formed
JP3519173B2 (en) Lateral semiconductor device and manufacturing method thereof
Bellone et al. High-voltage bipolar mode JFET with normally off characteristics
JPH0531829B2 (en)
JP3952452B2 (en) Manufacturing method of semiconductor device
US4040170A (en) Integrated gate assisted turn-off, amplifying gate thyristor, and a method for making the same
US5397716A (en) Method of forming an insulated gate semiconductor device
JP3329642B2 (en) Semiconductor device
JP5359567B2 (en) Semiconductor device and manufacturing method thereof
JPS60207376A (en) High-speed electrostatic induction thyristor and manufacture thereof
JP2001102392A (en) Semiconductor device and power conversion device using the same
JP2003264288A (en) Semiconductor device