JPS60207376A - High-speed electrostatic induction thyristor and manufacture thereof - Google Patents
High-speed electrostatic induction thyristor and manufacture thereofInfo
- Publication number
- JPS60207376A JPS60207376A JP6441984A JP6441984A JPS60207376A JP S60207376 A JPS60207376 A JP S60207376A JP 6441984 A JP6441984 A JP 6441984A JP 6441984 A JP6441984 A JP 6441984A JP S60207376 A JPS60207376 A JP S60207376A
- Authority
- JP
- Japan
- Prior art keywords
- region
- impurity density
- anode
- cathode
- charge carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006698 induction Effects 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000012535 impurity Substances 0.000 claims abstract description 42
- 239000002800 charge carrier Substances 0.000 claims abstract description 36
- 238000000137 annealing Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 5
- 230000007547 defect Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 16
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 38
- 238000010586 diagram Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000005036 potential barrier Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/167—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/30—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
- H01L29/32—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、大電流の高速スイッチングが可能で、かつ高
阻止電圧および低順方向電圧降下の特徴を有する静電誘
導サイリスタおよびその製造方法に関し、特にスイッチ
ング速度を向上させる構造およびその形成方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a static induction thyristor that is capable of high-speed switching of large currents, and has the characteristics of high blocking voltage and low forward voltage drop, and a method for manufacturing the same, particularly for improving switching speed. Concerning structures and methods of forming them.
静電誘導サイリスタ(以下sI’rhyと称す)は、n
チャネル型の場合、基本的にはpnn ダイオード或い
はp+n n n+ダイオードのカソードとなる討領域
の近傍にp+のゲート頭切をメツシー状或いはストライ
プ状に設けた構造を有する。従来のsi’rhyの断面
構造の例を1ユニット分だけ第1図に示す。A static induction thyristor (hereinafter referred to as sI'rhy) is a n
In the case of a channel type, basically, it has a structure in which a p+ gate head is provided in a mesh shape or a stripe shape near a diode region which becomes a cathode of a pnn diode or a p+n n n+ diode. An example of the cross-sectional structure of a conventional si'rhy for one unit is shown in FIG.
第1図(、)は、表面ダート構造のsi’rhyの比較
的n一層14の厚いものの代表例の断面図である。第1
図(b)は、表面ダート構造の5IThyの比較的n一
層】4が薄く、かつp+アノード領域12に隣接してn
層15が薄く設けられたものの代表例の断面図である。FIG. 1(,) is a cross-sectional view of a typical example of a relatively thick si'rhy layer 14 having a surface dart structure. 1st
Figure (b) shows that 5IThy with a surface dart structure has a relatively thin layer [4] and is adjacent to the p+ anode region 12.
FIG. 3 is a cross-sectional view of a typical example in which a thin layer 15 is provided.
同じ作用をする領域は同じ記号を用いである。n−領域
14におけるp ゲート13とp ゲート13、の間を
チャネルと称し、5IThyの導通時においては、該チ
ャネルを荷電担体が流れ、遮断時においては、該チャネ
ル内に誘起されたポテンシャル障壁が荷電担体の流れを
阻止する。遮断時において、デート13とカソード11
間に逆バイアス電圧を印加してチャネル内にポテンシャ
ル障壁を誘起させ、荷電担体の流れを阻止するようにな
されたものをノーマリイ・オン型5IThyと称する。The same symbols are used for areas that have the same effect. The space between the p gates 13 and the p gates 13 in the n-region 14 is called a channel, and when 5IThy is on, charge carriers flow through the channel, and when it is off, a potential barrier induced in the channel flows through the channel. Block the flow of charge carriers. When shutting off, date 13 and cathode 11
A device in which a reverse bias voltage is applied between the two channels to induce a potential barrier in the channel to block the flow of charge carriers is called a normally-on type 5IThy.
言い換えれば、ケゝ−ト13とカソード11間のバイア
ス電圧を零にしたときに導通状態になるものをノーマリ
イ・オン型sr’rhyと言う。これに対し、ゲート1
3とカソード11間のバイアス電圧が零であっても、チ
ャネル内にダート拡散によりビルトインポテンシャルに
よる障壁が誘起されていて、電流の遮断が可能なように
なされたものをノーマリイ・オフ型5IThyと云う。In other words, a device that becomes conductive when the bias voltage between the gate 13 and the cathode 11 is made zero is called a normally-on type sr'rhy. On the other hand, gate 1
Even if the bias voltage between 3 and the cathode 11 is zero, a built-in potential barrier is induced in the channel by dirt diffusion, and the current can be blocked. This is called a normally-off type 5I Thy. .
ノーマリイ・オフ型sI’rhyを導通状態に導くため
には、デートとカソード間に順バイアスを印加すれば良
い。ノーマリイ・オン型およびノーマリイ・オフ型いず
れの5IThyも、ケ中−トかカソード間のバイアス電
圧を変化させるだけでアノード電流の導通および遮断を
制御するこ(5)
とが可能である。即ち、ケ8−トターンオフ動作が可能
であることが大きな特徴である。更に、5IThyは従
来のpnpn四層構造で構成されるケ9−トターンサイ
リスタ(以下GTOと称す)に比較して、順方向電圧降
下が低い、スイッチング速度が速い、dI/dtおよび
av/dt耐量が大きい等の特徴を有している。このよ
うに大電力を扱えるスイッチングデバイスとしての従来
の5IThyはGTOに較べて幾つかの勝れた特徴を有
しているが、スイッチング速度、とりわけターンオフ過
程における電流降下時間がGTOよりも格段に速いもの
の2〜5μ8ee程度であり、高速のスイッチング速度
が要求される・ぐルス幅変調方式による電動機の制御や
スイッチング電源への応用には速度的に不十分であった
。In order to bring the normally-off type sI'rhy into a conductive state, it is sufficient to apply a forward bias between the date and the cathode. In both the normally-on type and normally-off type 5IThy, it is possible to control conduction and interruption of the anode current by simply changing the bias voltage between the center and the cathode (5). That is, a major feature is that it is possible to perform a turn-off operation. Furthermore, 5IThy has a lower forward voltage drop, faster switching speed, dI/dt and av/dt compared to the conventional 9-to-turn thyristor (hereinafter referred to as GTO) composed of a pnpn four-layer structure. It has characteristics such as high tolerance. As a switching device that can handle large amounts of power, the conventional 5IThy has several superior features compared to the GTO, but its switching speed, especially the current drop time during the turn-off process, is much faster than the GTO. However, it was about 2 to 5 μ8 ee, which was insufficient in terms of speed for application to motor control and switching power supplies using the pulse width modulation method, which requires high switching speed.
スイッチング速度があまり速くないと制御周波数を高く
した場合、スイッチング損失が大きくなり、装置の放熱
設計が複雑かつ大型化してしまうことになる。装置を簡
単かつ小型にしようとすれば制御周波数を低くせざるを
得す、該周波数が人間の可聴周波数に止まれば装置の出
す騒音が作業者に(6)
に不快感を与え、また防音の処置を施こそうとすれば結
局大型化を招くと云う矛盾を生むことになる。更に、ト
ランス等インダクタンス機器はその重畳が周波数の自乗
に反比例する°と言われており、周波数を高くすること
の利点は多大なものであるが、低損失の高速スイッチン
グデバイスの提供ができ彦い状況にあるため、そのよう
に周波数を高くするとスイッチング損失が大きくなり、
小形軽量、無損失の高効率の装置を得ることができなか
った。If the switching speed is not very fast and the control frequency is increased, the switching loss will increase and the heat dissipation design of the device will become complicated and large. If the equipment is to be made simple and compact, the control frequency must be lowered.If the frequency remains within the human audible range, the noise emitted by the equipment will cause discomfort to the worker (6), and soundproofing will be required. Attempting to take measures would create a contradiction in that the size would eventually increase. Furthermore, it is said that the superposition of inductance devices such as transformers is inversely proportional to the square of the frequency, and while there are many advantages to increasing the frequency, it is difficult to provide high-speed switching devices with low loss. Due to the current situation, increasing the frequency like that increases switching loss,
It was not possible to obtain a compact, lightweight, lossless, and highly efficient device.
そこで、先ず従来の5IThyのtfが何故そんなに速
くならないかを第2図を用いて説明する。第2図は従来
の代表的な表面ゲート型5IThyの断面構造を示す図
(第1図(b)と同じ)に、等価回路図を重ねて示した
ものである。5ITbyが導通状態にある時は、バイポ
ーラモード静電誘導トランジスタ(以下BSITと称す
)]+ 、pnp )ランノスタQ2およびQ3は全部
導通状態になっている。今、5IThyをターン・オフ
させようとする時、r−)とカソード間に逆バイアスを
印加する。ダートに逆バイアスが印加されると、チャネ
ル内のホールはダートに高速に流れ込み、チャネル内に
ポテンシャル障壁が誘起されてカソードからの電子の注
入がなくなり、BSITQ、はカットオフする。その結
果、カソード電流■□はきわめて高速に遮断できるが、
一方、アノード電流■いは次に述べる理由でそんなに高
速にはカットオフしない。アノード電流■□がそんなに
高速でないのは、第2図に示すpnpトランジスタQ2
およびQ3が高速に遮断されずp+アノード領域からホ
ールの注入がある時間続き、このホールはダート電流■
。とじてダートに抜けるためである。pnp )ランノ
スタQ2およびQ3が高速に遮断されない理由は、pn
p )ランジスタのペースになるn一層のポテンシャル
がpnp )ランノスタのエミッタとなるp+アノード
領域からホールを注入させるのに十分な値をある時間保
つことによる。ターンオフ過程において、p+アノード
領域からホールが注入し続ける時間は、導通時にn−領
域にカソードから注入されていた電子が、p+アノード
前面にどれくらいの量残り続けるかに依存する。即ち、
同じ厚さのn一層を持つsr’rhyでは荷電担体の寿
命が長い程、前記のホールの注入は長い時間続く。また
、荷電担体の寿命が同じn一層を持つ5IThyでは、
n一層の厚さが薄い程、前記のホールの注入は長い時間
続く。Therefore, first, using FIG. 2, we will explain why the tf of the conventional 5IThy is not so fast. FIG. 2 is a diagram showing the cross-sectional structure of a typical conventional surface gate type 5IThy (same as FIG. 1(b)), with an equivalent circuit diagram superimposed thereon. When 5ITby is in a conductive state, bipolar mode static induction transistors (hereinafter referred to as BSIT) ] + , pnp ) lannostars Q2 and Q3 are all in a conductive state. Now, when trying to turn off 5IThy, apply a reverse bias between r-) and the cathode. When a reverse bias is applied to the dart, holes in the channel flow into the dart at high speed, a potential barrier is induced in the channel, injection of electrons from the cathode is eliminated, and BSITQ is cut off. As a result, the cathode current ■□ can be cut off extremely quickly, but
On the other hand, the anode current does not cut off so quickly for the following reasons. The reason why the anode current ■□ is not so fast is the pnp transistor Q2 shown in Figure 2.
And Q3 is not cut off quickly and continues for a period of time when holes are injected from the p+ anode region, and this hole causes a dirt current ■
. This is because it closes and exits into dirt. pnp) The reason why Lannostar Q2 and Q3 are not shut off at high speed is because pn
p) The potential of the n layer, which becomes the pace of the transistor, is maintained for a certain period of time at a value sufficient to inject holes from the p+ anode region, which becomes the emitter of the transistor. In the turn-off process, the time during which holes continue to be injected from the p+ anode region depends on how much electrons, which were injected from the cathode into the n- region during conduction, remain in the front surface of the p+ anode. That is,
In sr'rhy with a single n layer of the same thickness, the longer the lifetime of the charge carrier, the longer the hole injection continues. In addition, in 5IThy, which has n single layers with the same charge carrier life,
The thinner the n layer is, the longer the hole injection continues.
第3図は、従来のsI’rhyのターンオフ過程の上記
説明を実証する一つの実験結果を示すグラフである。第
3図(a)はダート電流■。、アノード電流■いおよび
カソード電流■kを各々独立に観測したもの、第3図(
b)はオシロスコープ上でケ゛−ト電流I。とアノード
電流IAを加算して表示させた波形である。FIG. 3 is a graph showing the results of one experiment that substantiates the above description of the conventional sI'rhy turn-off process. Figure 3 (a) shows dart current ■. , the anode current ■i and the cathode current ■k were observed independently, Fig. 3 (
b) is the gate current I on the oscilloscope. This is a waveform displayed by adding the anode current IA and the anode current IA.
第3図から明白なようにターンオフ過程において、Ik
がきわめて高速に切れ、■□−〇となった後、Io十I
A−〇が観測されている。即ち、−I o=I Aとな
っておりカットオフに移行する過程でのアノード電流■
6はそのままケ8−ト電流■。とじて流れ出ていること
を示している。第4図は、従来のsI’rhyのターン
オフ過程の上記説明を実証する他のもう一つの実験結果
を示すグラフである。As is clear from Fig. 3, in the turn-off process, Ik
is cut off extremely quickly and becomes ■□-〇, then Io1I
A-〇 has been observed. In other words, -I o = I A, and the anode current in the process of transitioning to cutoff is
6 is the gate current ■. This indicates that the water is flowing out. FIG. 4 is a graph showing another experimental result that substantiates the above description of the conventional sI'rhy turn-off process.
第4図(a)は、n一層の厚さが400μm、不純物書
(9)
度が2X10 cm のsI’rhyのスイッチング波
形、第4図(b)はn一層の厚さが同じく400μm、
但しn一層の不純物密度が5X10 cm の5ITh
yのスイッチング波形である。第4図の(a)と(b)
を比較するとn一層の厚さは同じであるがアノード電流
■。Fig. 4(a) shows the switching waveform of sI'rhy when the thickness of the n layer is 400 μm and the impurity degree is 2X10 cm.
However, n 5ITh with a single layer impurity density of 5X10 cm
y switching waveform. Figure 4 (a) and (b)
Comparing n, the thickness of the single layer is the same, but the anode current ■.
の降下時間tfは(b)の方が長いことが分る。通常、
担体寿命は不純物密度の低い方が長い訳であるから、前
述の説明の正当性をこれらのグラフは示している。更に
第4図(c)は、n一層の厚さが50μm1n一層の不
純物密度が2 X 10”cm−3のsI’rhyのス
イッチング波形である。It can be seen that the falling time tf of (b) is longer. usually,
Since the carrier life is longer when the impurity density is lower, these graphs demonstrate the validity of the above explanation. Furthermore, FIG. 4(c) shows the switching waveform of sI'rhy in which the thickness of one n layer is 50 μm and the impurity density of one n layer is 2×10” cm −3 .
第4図の(、)と(c)を比較すると、n一層の不純物
密度は同じであっても、電流降下時間1fは(C)の方
が非常に長いことが分る。担体寿命が同程度であっても
、n一層の厚みの薄い方が、p+アノード領域前面の電
子密度が高くp+アノード領域からのホールの注入を引
起していることをこれらは示している。Comparing (,) and (c) in FIG. 4, it can be seen that even though the impurity density of the n layer is the same, the current fall time 1f is much longer in (C). These results indicate that even if the carrier lifetimes are the same, the thinner the n layer is, the higher the electron density in front of the p+ anode region is, causing hole injection from the p+ anode region.
以上の解釈から、n一層の不純物密度をできるだけ高く
、n一層の厚さをできるだけ厚くすると電流降下時間t
fは速くなる筈であるがアノード電流IAの(10)
立上り時間t が非常に遅くなるし、またS■Thyと
r
して動作させ得ること、およびsI’rhyの特徴を有
すことを保証しようとすると、n一層の不純物密度およ
び厚さの可能な範囲は限定せざるを得ない。From the above interpretation, if the impurity density of the n-layer is made as high as possible and the thickness of the n-layer is made as thick as possible, the current drop time t
f should be faster, but the (10) rise time t of the anode current IA will be very slow, and it is guaranteed that it can be operated as S Thy and r and has the characteristics of sI'rhy. If one attempts to do so, the possible range of the impurity density and thickness of the n-layer must be limited.
即ち、p+ダートとiケ゛−トとの間のチャネルに、ケ
9−トとカソード間のバイアス電圧のみで電流を遮断し
得るポテンシャル障壁を誘起し得ること、およびn一層
の不純物密度の範囲、或いは電流阻止時には、数100
V乃至数1.000Vのアノード電圧を阻止し、導通時
には09SV程度から数v程度迄の順方向電圧降下が実
現可能なn一層の不純物密度と厚さに制限される。これ
らの制限内でのn一層の不純物密度と厚さの選択では、
電流降下時間1fを1μ9ee以下にすること、それも
01μ8ee程度かそれ以下にすることはきわめて困難
である。That is, in the channel between the p+ gate and the i gate, a potential barrier capable of blocking current can be induced only by the bias voltage between the gate and the cathode, and the range of the impurity density of the n layer is Or, when blocking current, several hundred
It blocks an anode voltage of V to several 1,000 V, and is limited to an impurity density and thickness of n-layer, which can realize a forward voltage drop of about 0.9 SV to several volts when conducting. In selecting the impurity density and thickness of the n layer within these limits,
It is extremely difficult to reduce the current fall time 1f to 1μ9ee or less, and to make it approximately 01μ8ee or less.
本発明の目的は、上記の事情に鑑み高速スイッチングを
可能ならしめる構造のsI’rhyおよびその製造方法
を提供することにある。更に具体的に言えば、ターンオ
フ過程における電流降下時間tfが容易に1μSee以
下になるようなS IThyおよびその製造方法を実現
することを目的とする。In view of the above circumstances, an object of the present invention is to provide an sI'rhy having a structure that enables high-speed switching and a method for manufacturing the same. More specifically, the object is to realize a SIThy and its manufacturing method in which the current drop time tf in the turn-off process can easily become 1 μSee or less.
本発明は、上記目的を達成するために、低不純物密度領
域と、その低不純物密度領域と反対導電型の高不純物密
度のアノード領域と、前記低不純物密度領域を挾んで前
記アノード領域に対向しそのアノード領域と反対導電型
の高不純物密度のカソード領域と、そのカソード領域の
近傍に形成されたカソード領域と反対導電型のケ゛−1
領域を有する静電誘導サイリスタにおいて、前記低不純
物密度領域の中の特定部分に陽子線を照射することによ
多形成された荷電担体寿命を減少させる領域を設けたこ
とを特徴とするものである。In order to achieve the above object, the present invention includes a low impurity density region, a high impurity density anode region having a conductivity type opposite to that of the low impurity density region, and an anode region that faces the anode region with the low impurity density region sandwiched therebetween. A cathode region having a high impurity density and having a conductivity type opposite to that of the anode region, and a case-1 having a conductivity type opposite to that of the cathode region formed near the cathode region.
An electrostatic induction thyristor having a region, characterized in that a region is provided in which the lifetime of charge carriers formed by irradiating a specific portion of the low impurity density region with a proton beam is reduced. .
また、本発明の一態様によれば、前記アノード領域に隣
接して、前記アノード領域とは反対導電型の比較的不純
物密度の高い薄層領域が設けられたことを特徴とする。Further, according to one aspect of the present invention, a thin layer region having a relatively high impurity density and having a conductivity type opposite to that of the anode region is provided adjacent to the anode region.
また、本発明による前記sr’rhyを製造する方法は
、従来と同様の静電誘導サイリスクの構造の半導体装置
を形成する工程と、その半導体装置に放射線を照射し、
前記低不純物密度領域の中の特定部分に荷電担体寿命を
減少させる領域を形成する工程と、前記照射によって形
成された前記荷電担体寿命を減少させる領域v外の比較
的欠陥密度の低い領域の半導体結晶格子の損傷を回復さ
せる工程とを有している。Further, the method for manufacturing the sr'rhy according to the present invention includes a step of forming a semiconductor device having a structure of electrostatic induction silica similar to the conventional one, and irradiating the semiconductor device with radiation.
forming a region that reduces the charge carrier lifetime in a specific part of the low impurity density region; and a semiconductor in a region with a relatively low defect density outside the region v that reduces the charge carrier lifetime formed by the irradiation. and a step of recovering damage to the crystal lattice.
その製造方法の一態様によれば、前記低不純物密度領域
の中に荷電担体寿命を減少させる領域を形成する工程に
おいて照射する陽子線としてはIMeV乃至10 Me
Vのエネルギーを持つ陽子線を用いる。また、その照射
量としては約1012乃至1014陽子粒/crn2ま
での放射線量とするのが良い。According to one aspect of the manufacturing method, the proton beam irradiated in the step of forming a region that reduces charge carrier lifetime in the low impurity density region is IMeV to 10 MeV.
A proton beam with an energy of V is used. Further, the radiation dose is preferably about 1012 to 1014 proton particles/crn2.
また、本発明の製造方法の一態様においては、前記照射
によって形成された前記荷電担体寿命を減少させる領域
以外の比較的欠陥密度の低い領域の半導体結晶格子の損
傷を回復させる工程が、300乃至450℃の温度で3
0乃至60分までアニールするアニール工程として構成
される。Further, in one aspect of the manufacturing method of the present invention, the step of recovering damage to the semiconductor crystal lattice in a region having a relatively low defect density other than the region formed by the irradiation and reducing the charge carrier lifetime may be performed for 30 to 30 minutes. 3 at a temperature of 450℃
It is configured as an annealing process in which annealing is performed for 0 to 60 minutes.
以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.
(13)
第5図は、本発明の構造と効果を説明するだめの、表面
ケ8〜ト構造のnチャネル5IThyの実施例の断面構
造の図である。第5図(a)はn一層54が比較的厚く
、アノード電流阻止時に、アノードに印加されている最
大阻止電圧によってp ケゝ−ト53とp+アノード5
2との間の電界分布かp ケ゛−ト53とn一層54の
接合付近で最大電界と々る三角状をなし、p+アノード
52の前面のn一層54に中性領域が残ることによる電
界が零となる領域を持たせた構造の5IThyである。(13) FIG. 5 is a diagram of a cross-sectional structure of an embodiment of an n-channel 5IThy having a surface cage structure for explaining the structure and effects of the present invention. In FIG. 5(a), the n-layer 54 is relatively thick, and when the anode current is blocked, the p-gate 53 and the p+ anode 5 are separated by the maximum blocking voltage applied to the anode.
The electric field distribution between the p+ anode 52 and the n-layer 54 has a triangular shape with a maximum electric field near the junction of the p-gate 53 and the n-layer 54, and the electric field due to the neutral region remaining in the n-layer 54 in front of the p+ anode 52 This is 5IThy, which has a structure that has a zero region.
第5図(b)は、n一層が比較的薄く、p アノード5
2の前面に隣接して比較的不純物密度の高いn層の薄層
領域55を設けたものでアノード電流阻止時に、アノー
ドに印加されている最大阻止電圧によって、p+ゲート
53とp+アノード52との間の電界分布か、p ゲー
ト53とn一層54との接合付近で最大電界となる四辺
形状をなし、比較的不純物密度の高い1層55が中性領
域として残っているようにした構造の8IThyである
。第5図の(a)および(b)には同じ作用を持つ領域
には同じ記号を用いである。第5図(、)(14)
の構造の5IThyのアノード側の接合は、■×101
2乃至2X10 cm の不純物密度を有するn形シリ
コン基板にボロンを拡散して容易に得られる。In FIG. 5(b), the n layer is relatively thin and the p anode 5
A thin n-layer region 55 with a relatively high impurity density is provided adjacent to the front surface of the p+ gate 53 and the p+ anode 52 by the maximum blocking voltage applied to the anode when blocking the anode current. 8IThy has a structure in which the electric field distribution between the p-gate 53 and the n-layer 54 has a quadrilateral shape with the maximum electric field near the junction, and the first layer 55 with relatively high impurity density remains as a neutral region. It is. In FIGS. 5(a) and 5(b), the same symbols are used for regions having the same effect. The junction on the anode side of 5IThy with the structure shown in Figure 5 (,) (14) is ■ × 101
It can be easily obtained by diffusing boron into an n-type silicon substrate having an impurity density of 2 to 2×10 cm.
第5図(b)の構造の5IThyのアノード側の接合は
、1×10 乃至lXl0 cm の不純物密度を有す
るp形シリコン基板に不純物密度を制御した連続気相エ
ピタキシャル成長を行って容易に得られる。第5図(a
)および(b)のいずれの場合もp+アノード52と対
向する面に形成されるn+カソード領域51およびp″
−ケ゛−ト領域53は、層カソード領域51に対しては
リン或いはヒ素、p+ダート領域53に対してはボロン
を選択拡散して得られる。The anode-side junction of 5IThy having the structure shown in FIG. 5(b) can be easily obtained by performing continuous vapor phase epitaxial growth with controlled impurity density on a p-type silicon substrate having an impurity density of 1×10 2 to 1X10 cm 2 . Figure 5 (a
) and (b), the n+ cathode region 51 and p'' formed on the surface facing the p+ anode 52
The -gate region 53 is obtained by selectively diffusing phosphorus or arsenic for the layer cathode region 51 and boron for the p+ dirt region 53.
第5図(a)および(b)のいずれの構造においても本
発明による特徴はn一層54の中に、陽子線を照射する
ことによって形成した荷電坦体寿命を減少させた領域5
6を設けたことである。更に、該領域56は陽子線のエ
ネルギーを制御することによりn一層54内の所望の位
置に設けることが可能であり、荷電担体寿命の減少の程
度は、陽子線の照射量と照射後のアニール工程によって
選択することが可能である。このような荷電担体寿命を
減少させた領域56を所望の位置に設けた最大の効果の
一つは、前述の従来のsI’rhyのターンオフ過程の
説明における第2図の等価回路のpnp)ランノスタQ
2およびQ3のベース(n″′層)に蓄積されている荷
電担体の消滅を促進し、Q2およびQ3が高速にカット
オフすることである。即ち、5IThyの電流降下時間
t、がきわめて高速になることである。In both the structures shown in FIGS. 5(a) and 5(b), the feature according to the present invention is that in the n-layer 54, a region 5 having a reduced charge carrier lifetime is formed by irradiating a proton beam.
6 was established. Furthermore, the region 56 can be provided at a desired position within the n-layer 54 by controlling the energy of the proton beam, and the degree of reduction in charge carrier lifetime can be determined by the amount of proton beam irradiation and the annealing after irradiation. It can be selected depending on the process. One of the greatest effects of providing the region 56 that reduces the charge carrier lifetime at a desired position is that the pnp) runnostar of the equivalent circuit of FIG. Q
This promotes the disappearance of the charge carriers accumulated in the bases (n''' layers) of Q2 and Q3, and quickly cuts off Q2 and Q3. In other words, the current fall time t of 5IThy becomes extremely fast. It is what happens.
更に、本発明の効果の一つは、該領域56 f n一層
54の成る位置に局在させることにより、n″−カソー
ド領域51およびp+ケゝ−ト領域53の近傍は元の荷
電担体寿命が保存されており、デバイスの動作および特
性に支障を来たさないことである。Furthermore, one of the effects of the present invention is that by localizing the region 56f at the position where the n layer 54 is formed, the vicinity of the n''-cathode region 51 and the p+ cathode region 53 has the original charge carrier lifetime. is preserved and does not interfere with the operation and characteristics of the device.
陽子線をカソードおよびケ゛−トが構成される表面から
照射することによって引起されるn カソード領域51
およびp″−ケ゛−ト領域53の近傍の結晶格子の損傷
は、アニール工程で簡単に回復し得る。n cathode region 51 caused by irradiating a proton beam from the surface where the cathode and the cathode are formed.
Damage to the crystal lattice near the p''-gate region 53 can be easily repaired by an annealing process.
陽子線の照射は、必要に応じて、カソード側表面からか
、まだはアノード側表面からかのどちらからでも行える
。該照射はシリコンウェーハ上に従来の5IThyを形
成する全ての工程が完了してからでも良いし、アルミニ
ウム等の電極配線を施す前であっても良い。後者の場合
は、後述するが、照射量およびアニール工程に成る条件
が付与される。Proton beam irradiation can be performed either from the cathode side surface or from the anode side surface, if desired. The irradiation may be performed after all the conventional steps of forming 5IThy on the silicon wafer have been completed, or may be performed before electrode wiring of aluminum or the like is provided. In the latter case, as will be described later, conditions for the irradiation amount and the annealing step are provided.
荷電担体寿命を減少させる従来技術としては、金捷たは
同様な重金属を拡散することが行われているが、金の拡
散処理には困難な問題が存在する。Conventional techniques for reducing charge carrier lifetime include diffusing gold or similar heavy metals, but difficult problems exist in the gold diffusion process.
それは、シリコン中の金が非常に速い速度で拡散し、金
を拡散した領域を任意の場所に限定することが困難であ
り、大概はシリコンウェーッ・全域に及ぶことである。The reason is that gold in silicon diffuses at a very high rate, and it is difficult to limit the region where gold is diffused to any desired location, and it generally covers the entire silicon wafer.
金が層カソード領域およびp+ゲート領域の近傍に及べ
ば、該近傍の荷電担体寿命を減じることとなシ、デバイ
スの順方向電圧降下の増大、およびケ゛−ト感度の低下
を招く。更には、静電誘導サイリスタとしての必要条件
を満さなくなる。即ち、n カソード領域およびp ダ
ート領域近傍で構成されているBS ITのケゝ−ト接
地電流増幅率αBSITの低下を招き、αBSITとp
+アノード、n一層およびp ゲートで構成されるpn
p トランジスタのペース接地電流増幅率α、n、との
和(17)
aBSIT+α が1より小さくなりラッチアップnp
しなくなる。αBSIT+αpnp〈1の条件下でも高
速スイッチングは可能であるが、順方向電圧降下は増大
するし、またこのようなデバイスを導通状態に保つため
にはダート電流をかなり流し込1なくてはならない。本
発明の5IThyは、荷電担体寿命の減少した傾城が電
流降下時間t、の改善に有効々位置にのみ局在化できる
ためケ゛−ト感度が高く、順方向電圧降下の増加も必要
最小限に抑えることができ、低損失かつ高効率の高速ス
イッチングデバイスとなる。Gold in the vicinity of the layer cathode and p+ gate regions does not reduce the charge carrier lifetime in the vicinity, increasing the forward voltage drop of the device, and decreasing the gate sensitivity. Furthermore, it no longer satisfies the requirements for an electrostatic induction thyristor. In other words, the gate ground current amplification factor αBSIT of BSIT configured near the n cathode region and the p dirt region decreases, and αBSIT and p
+ anode, pn consisting of n single layer and p gate
The sum of the pace ground current amplification factors α and n of the p transistor (17) aBSIT+α becomes smaller than 1, and latch-up np does not occur. Fast switching is possible under the condition αBSIT+αpnp<1, but the forward voltage drop increases and a significant dart current must be applied to keep such a device conductive. The 5IThy of the present invention has high gate sensitivity because the tilted wall with a reduced charge carrier life can be localized only at a position that is effective for improving the current drop time t, and the increase in forward voltage drop is also minimized. This results in a high-speed switching device with low loss and high efficiency.
次に、本発明による実施例の5IThyについて、陽子
線の照射およびアニールの条件と電気的特性の改善の関
係を述べる。先ず、第2図(b)に示すような従来型の
S r’rhyを製作した。不純物密度が約5×101
8crn−3、厚さが350μmのp形基板(これはp
+アノードとなる)に最初約2 X 1016cm−3
のn形層を約15μmエピタキシャル成長させ、次に連
続して約1×10 cm のn一層を約50μmエピタ
キシャル成長させる。このようにして得られた(18)
シリコンウェーハに、n一層側表面から選択拡散を重ね
、拡散深さ3.5μmのpゲート領域および拡散深さ0
.5μmのn カソード領域を形成した。その後、厚さ
5μmのアルミニウム電極配線を施した。p+ダートと
′p+ダートの間のチャネルは、その幅が1、5μmに
なっている。尚、チップサイズは7×10鴫2である。Next, the relationship between the proton beam irradiation and annealing conditions and the improvement in electrical characteristics will be described for Example 5ITy according to the present invention. First, a conventional Sr'rhy as shown in FIG. 2(b) was manufactured. Impurity density is approximately 5×101
8crn-3, 350 μm thick p-type substrate (this is p
+ anode) at first about 2 x 1016cm-3
An n-type layer of about 15 μm is epitaxially grown, and then an n-type layer of about 1×10 cm 2 is epitaxially grown to about 50 μm. The thus obtained (18) silicon wafer was subjected to selective diffusion from the surface of the n single layer to form a p gate region with a diffusion depth of 3.5 μm and a diffusion depth of 0.
.. A 5 μm n cathode region was formed. Thereafter, aluminum electrode wiring with a thickness of 5 μm was applied. The channel between the p+ dart and the 'p+ dart has a width of 1.5 μm. Note that the chip size is 7×10 pieces.
このように製作した従来型の5IThyの特性は第6図
のようであった。第6図(a)は、縦軸がアノード電流
■え、および横軸がアノード、カソード電圧■AKを示
すところのS ITh)’の静特性である。ダート、カ
ソード間電圧V。Kが零のとき、S I’rhyはOF
’F’ s vGKが約0.8VC7)とき(ゲートに
電流を流し込んだとき)ONであシ、典型的なノーマリ
イ・オフ型sI’rhyのスイッチ特性を示している。The characteristics of the conventional type 5IThy manufactured in this way are as shown in FIG. FIG. 6(a) shows the static characteristics of SITh)' where the vertical axis shows the anode current and the horizontal axis shows the anode and cathode voltages. Dart, voltage between cathode V. When K is zero, S I'rhy is OF
'F' is ON when svGK is approximately 0.8VC7) (when current is applied to the gate), and exhibits typical normally-off type sI'rhy switching characteristics.
アノード電流■いが5OAのとき、順方向電圧降下は約
1■であることが分る。また、該sx’rhyの最大順
方向阻止電圧は600vであった。It can be seen that when the anode current is 5OA, the forward voltage drop is about 1. Further, the maximum forward blocking voltage of the sx'rhy was 600V.
第6図(b)は、縦軸がゲート電流■。およびアノード
電流■Aヲ示し、横軸が時間を示すところの従来の5I
Thyのスイッチング波形である。ダート電流I、を、
5IThyをターンオンさせたいタイミングにケゝ−ト
にパルス的に流し込み、ターンオフさせたいタイミング
に・ぐルス的にケ8−トから引抜くようにして測定した
。典型的なラッチアップ動作がこの図に示されている訳
である。アノード電流XAの立上り時間t は20 n
5ecと超高速であるが、降下時間t、は5μ8eeと
遅いことが分る。更に、ターンオフ過程に1μsecの
ストレーノ時間tstgも観察されている。In FIG. 6(b), the vertical axis represents the gate current ■. and the anode current ■A, and the conventional 5I where the horizontal axis represents time.
This is the switching waveform of Thy. Dart current I,
The measurement was carried out by injecting 5IThy into the gate in a pulse manner at the desired timing to turn it on, and pulling it out from the gate in a pulsating manner at the desired timing to turn it off. A typical latch-up operation is shown in this figure. The rise time t of the anode current XA is 20 n
Although it is extremely fast at 5 ec, it can be seen that the descent time t is slow at 5 μ8 ee. Furthermore, a straino time tstg of 1 μsec is also observed during the turn-off process.
このような特性を有する従来型の5IThyのアルミニ
ウム電極形成後のウェー・・に対してカソードを形成し
た方の面から陽子線を2 MeVのエネルギーで約1×
10 陽子粒/crn2の照射量だけ照射し、第5図(
b)に示したような本発明の構造のsI’rhyを製作
した。2 MeVのエネルギーを持つ陽子線はウェーハ
表面から約45μmの深さまで透過する。放射線の照射
による結晶格子への損傷の度合は、放射線の透過深度近
傍が通過経路の領域よシ甚しく大きい。従って、荷電担
体寿命を減少させた領域は本実施例の場合、表面より約
45μmの深さの近傍に局在していることになる。陽子
線の照射後アニールを施さない状態では、該照射によっ
てカソード領域およびダート領域の近傍に、比較的少な
いが、結晶格子の損傷があるため、該近傍で構成されて
いるBS ITの特性が著しく劣下しており、5ITh
y特性は得られない。A proton beam is applied to the wafer after forming a conventional 5IThy aluminum electrode with such characteristics from the side on which the cathode is formed at an energy of 2 MeV at approximately 1×
10 Irradiate with the irradiation amount of proton particles/crn2, as shown in Figure 5 (
sI'rhy having the structure of the present invention as shown in b) was manufactured. A proton beam with an energy of 2 MeV penetrates to a depth of approximately 45 μm from the wafer surface. The degree of damage to the crystal lattice due to radiation irradiation is much greater near the penetration depth of the radiation than in the region of the passage. Therefore, in this example, the region where the charge carrier lifetime is reduced is localized in the vicinity of a depth of about 45 μm from the surface. If no annealing is performed after proton beam irradiation, the irradiation causes relatively little damage to the crystal lattice in the vicinity of the cathode region and dirt region, so the characteristics of the BS IT configured in the vicinity are significantly affected. inferior, 5ITh
y characteristics cannot be obtained.
次に、カソード領域およびケ゛−ト領域近傍の、陽子線
の照射によって導入された比較的小さい結晶格子の損傷
を回復させるべく前記の構成の5IThyにアニールを
施した本発明の構造のsI’rhyの特性を示す。第7
図、第8図、第9図および第10図は、各々アニール条
件を3ec℃で60分、350℃で60分、400℃で
60分、および450℃で30分としてアニールしたも
のの特性の図である。各番号の図において、(a)はア
ノード電流工□対アノード、カソード間電圧vAKの、
ダート電流Ioを・々ラメータとした静特性であり、(
b)はダート電流■。とアノード電流降下時間のスイッ
チング波形である。第7図乃至第10図のいずれも(a
)の静特性を見ると、ゲート電流■。の幾つかの・ぐラ
メ(21)
りに対してもブレークオーバし、サイリスタ動作をして
いることが分る。即ち、前記アニール条件で基本的なs
I’rhy動作が可能までに、n カソード領域および
p ゲート領域近傍の結晶格子の損傷が回復しているこ
とが示されている訳である。但し、順方向電圧降下はア
ニール条件に依存し、第7図乃至第10図の各々(&)
の静特性から、了ノード電流IAが5OAのとき、各/
F3V、2V、1.IVおよび1vと読み取ることがで
きる。400℃で60分および450℃で30分のアニ
ール条件では、順方向電圧降下に関する限シ殆んど従来
型のsx’rhyと同様な低い値になっていることが分
る。Next, the sI'rhy of the structure of the present invention was annealed to recover the relatively small crystal lattice damage introduced by the proton beam irradiation near the cathode region and the cathode region. shows the characteristics of 7th
8, 9, and 10 are characteristic diagrams of annealing under annealing conditions of 3ec°C for 60 minutes, 350°C for 60 minutes, 400°C for 60 minutes, and 450°C for 30 minutes, respectively. It is. In the figures with each number, (a) shows the anode current □ versus the voltage vAK between the anode and cathode,
It is a static characteristic with dirt current Io as a parameter, and (
b) is dart current■. and the switching waveform of the anode current fall time. All of Figures 7 to 10 (a
), the gate current ■. It can be seen that there is a breakover even in response to some of the lags (21), indicating that the thyristor is acting as a thyristor. That is, under the above annealing conditions, the basic s
This indicates that the damage to the crystal lattice near the n cathode region and p gate region has been recovered by the time I'rhy operation is possible. However, the forward voltage drop depends on the annealing conditions and is as shown in each of Figures 7 to 10 (&).
From the static characteristics of, when the end node current IA is 5OA, each /
F3V, 2V, 1. It can be read as IV and 1v. It can be seen that under the annealing conditions of 400° C. for 60 minutes and 450° C. for 30 minutes, the forward voltage drop is almost as low as the conventional sx'rhy.
第7図乃至第10図の各々(b)のスイッチング波形を
見ると、本発明の効果が、とりわけターンオフ過程にお
いて顕著に見えれる。即ち、各々の電流降下時間tfが
、50 n5ec 、 120nsec 、 300n
secおよび600 n5ecになっている。これらの
値は従来型の5ITh>’の電流降下時間tfO値の、
約100倍から約10倍の速度が達成されていることを
表わしている。特に、蓄積時間tstgに関しては、(
22)
450℃で30分(第10図(b))のアニール条件の
5IThy (tstg = 100 n5ec )を
除いて殆んど読み取れない程度の小さな値となっている
し、立上り時間t は、若干遅くはなるものの最も遅い
300℃で60分のアニール条件の5IThyでさえ1
00nsecと超高速である。前記順方向電圧降下vo
n(■□=5OAのとき)および降下時間t、とアニー
ル条件の関係をグラフにして示しだものが、第11図で
ある。第11図の中に従来型のst’rhyO値も示し
であるが、該図に見られるように本発明の効果は歴然で
ある。更に第11図は、陽子線照射によって導入した荷
電担体寿命を減少させた領域の結晶格子の損傷がアニー
ル温度を上げることにより次第に回復してくることを示
している。Looking at the switching waveforms shown in each of FIGS. 7 to 10 (b), the effects of the present invention can be seen particularly in the turn-off process. That is, each current drop time tf is 50 n5ec, 120 nsec, 300 n
sec and 600 n5ec. These values are the current drop time tfO value of 5ITh>' of the conventional type.
This indicates that a speed of about 100 to about 10 times has been achieved. In particular, regarding the accumulation time tstg, (
22) Except for 5IThy (tstg = 100 n5ec) under the annealing condition of 450°C for 30 minutes (Fig. 10(b)), the values are so small that they are almost unreadable, and the rise time t is slightly Although it is slower, even 5IThy with the slowest annealing condition of 300℃ and 60 minutes is 1
It is extremely fast at 00nsec. The forward voltage drop vo
FIG. 11 is a graph showing the relationship between n (when ■□=5OA) and fall time t, and annealing conditions. FIG. 11 also shows the st'rhyO value of the conventional type, and as can be seen from the figure, the effects of the present invention are obvious. Further, FIG. 11 shows that the damage to the crystal lattice in the region where the life of charge carriers introduced by proton beam irradiation is reduced is gradually recovered by increasing the annealing temperature.
450℃で30分アニールしたsI’rhyの場合は、
前記スイッチング特性を測定したアノード電流IAより
も、更にアノード電流IAヲ大きくした場合、例えば1
00Aでスイッチング特性を測定すると蓄積時間tst
gは約2μsec程度にまで増加する。In the case of sI'rhy annealed at 450°C for 30 minutes,
When the anode current IA is made larger than the anode current IA at which the switching characteristics were measured, for example, 1
When measuring the switching characteristics at 00A, the storage time tst
g increases to about 2 μsec.
このことは、450℃で30分のアニールで、陽子線の
照射によって得られた荷電担体寿命を減少させた領域の
結晶格子の損傷が大分回復していることを示している訳
である。他のより低いアニール温度でアニールをした場
合も、更に例えば100Aよりアノード電流工Aヲ相当
大きくすれば蓄積時間tstgは増加する。結晶格子の
損傷領域で荷電担体が再結合する割合よりも、かなり多
くの荷電担体がn一層に注入されてくれば、当然荷電担
体が蓄積される割合が大きくなることの結果である。蓄
積時間tstg kできるだけ小さく抑えたいとすれば
sI’rhyに流す電流を成る程度まで制限すれば良い
。This indicates that annealing at 450° C. for 30 minutes largely recovers the damage to the crystal lattice in the region where the charge carrier lifetime was reduced due to proton beam irradiation. Even when annealing is performed at another lower annealing temperature, the storage time tstg increases if the anode current A is made considerably larger than, for example, 100A. If a considerably larger number of charge carriers are injected into the n layer than the rate at which charge carriers recombine in the damaged region of the crystal lattice, the rate at which charge carriers are accumulated naturally increases. If it is desired to keep the accumulation time tstgk as small as possible, it is sufficient to limit the current flowing through sI'rhy to a certain extent.
第11図のグラフと前記説明から次のことが言える。即
ち、順方向電圧降下が比較的高くとも、超高速スイッチ
ングが行なえて、かつ大きなアノード電流IAを流した
いと言うような要求に対しては300℃乃至350℃程
度の比較的低温のアニールを、一方順方向電圧降下が従
来のsi’rhy並みに低くて、従来のsx’rhyよ
りも高速で、かつアノード電流IAを成る程度制限して
も良いと言えるよう々要求に対しては350℃乃至45
0℃程度の温度でアニールを行えば良い。更に言えば本
発明のS IThyは使用者の性能に対する要求に合せ
て製作(25)
これまで本発明の構成とそれによる効果を説明するのに
好適な実施例について述べたが、陽子線のエネルギー、
照射量およびアニール条件は、前記実施例における値に
限らないことは勿論である。The following can be said from the graph of FIG. 11 and the above explanation. That is, even if the forward voltage drop is relatively high, in order to perform ultra-high-speed switching and to flow a large anode current IA, annealing at a relatively low temperature of about 300°C to 350°C is required. On the other hand, the forward voltage drop is as low as the conventional si'rhy, the speed is faster than the conventional sx'rhy, and the anode current IA can be limited to a certain extent. 45
Annealing may be performed at a temperature of about 0°C. Furthermore, the SIThy of the present invention is manufactured in accordance with the user's performance requirements. ,
Of course, the irradiation amount and annealing conditions are not limited to the values in the above embodiments.
例えば、順方向阻止電圧が高くなるように設計、製作さ
れるsi’rhyは低不純物密度層< n−層)が、数
100μm程度になる。このような5IThyのp+ア
ノード領域近くに荷電担体寿命の減少した領域をカソー
ドの形成される表面から陽子線を照射して形成する場合
には、前記実施例よシ相当高いエネルギーが必要である
。また、アノード側表面から陽子線を照射する場合は、
p+アノード領域の厚さを勘案して照射エネルギーを設
定する。所望の位置に荷電担体寿命の減少した領域を形
成するだめの陽子線のエネルギーの設定は、例えば19
77年Pergamon Press社発行のH,H,
AndersenおよびJ、F、Ziegler著の[
HYDROGEN stopping Powersa
nd Ranges in All Elements
Jの中のr RANGEOF HYDROGEN l
0NS IN SI[14’:] Jおよびr RAN
GEOF HYDROGEN l0NS IN AL[
13’ll Jのグラフを参照C96)
することにより決定できる。本発明の構造のS X’r
hyに適用する適当な陽子線の照射量は、厳密にはS’
IThyの構造、と9わけ低不純物密度領域の厚さ、不
純物密度等や、得よう1するsI’rhyの電気的特性
に依存するが、本発明において実施した例では1×10
12乃至I X 1014陽子粒/ cm2 の範囲で
照射したものに対して、アニール条件を300℃乃至4
50℃の範囲の温度で、また30分乃至60分の範囲の
時間で変化させアニールすることで、殆んど所望の効果
を得ることができた。For example, in a si'rhy that is designed and manufactured to have a high forward blocking voltage, the low impurity density layer (<n- layer) is approximately several hundred micrometers thick. When forming a region with a reduced charge carrier lifetime near the p+ anode region of 5IThy by irradiating a proton beam from the surface where the cathode is to be formed, considerably higher energy is required than in the above embodiment. In addition, when irradiating proton beam from the anode side surface,
The irradiation energy is set taking into consideration the thickness of the p+ anode region. The energy of the proton beam to form a region with reduced charge carrier lifetime at a desired position can be set, for example, at 19
H, H, published by Pergamon Press in 1977.
Andersen and J. F. Ziegler [
HYDROGEN stopping power
nd Ranges in All Elements
r in J RANGEOF HYDROGEN l
0NS IN SI[14':] J and r RAN
GEOF HYDROGEN 10NS IN AL[
It can be determined by referring to the graph of 13'll J C96). S X'r of the structure of the present invention
Strictly speaking, the appropriate proton beam irradiation dose to be applied to hy is S'
Although it depends on the structure of IThy, especially the thickness of the low impurity density region, the impurity density, etc., and the electrical characteristics of sI'rhy to be obtained, in the example implemented in the present invention, it is 1×10
For those irradiated in the range of 12 to I x 1014 proton particles/cm2, the annealing conditions were set to 300°C to 4.
By annealing at temperatures in the range of 50° C. and varying times in the range of 30 to 60 minutes, almost the desired effect could be obtained.
得ようとするS IThyの特性を勘案してアルミニウ
ム電極のシンターと同時にアニールをすると言う工程を
設定すれば、良いし、アルミニウム電極のシンター後に
照射を行う工程を設定すれば、アニール温度がアルミニ
ウム電極のシンタ一温度よシ低くなされなければならな
いので、その条件で行なえば良い。It is possible to set a process in which annealing is performed at the same time as the sintering of the aluminum electrode, taking into consideration the characteristics of the SIThy to be obtained, or it is possible to set a process in which irradiation is performed after the sintering of the aluminum electrode, so that the annealing temperature is higher than that of the aluminum electrode. The sintering temperature must be lower than the sintering temperature of
以上、本発明の構成とそれによる効果を幾つかの実施例
によシ具体的に説明したが、本発明の主旨および範囲か
ら逸脱することなく、細部において種々の変更をなし得
ることは言うまでもない。Although the configuration of the present invention and its effects have been specifically explained above using several examples, it goes without saying that various changes can be made in details without departing from the spirit and scope of the present invention. .
例えば、説明に用いた実施例は表面ケ゛−ト構造のnチ
ャネル型sI’rhyであるが、埋込ゲート構造にも、
またpチャネル型の5IThyにも適用できるのは勿論
である。For example, the embodiment used in the explanation is an n-channel type sI'rhy with a surface gate structure, but it can also be used with a buried gate structure.
It goes without saying that it can also be applied to p-channel type 5IThy.
本発明によシ、低損失で高速に大電流のスイッチングが
可能な5IThyが、簡単な工程で、かつ低コストで実
現できることになり、その工業的価値はきわめて大きい
。According to the present invention, a 5IThy capable of high-speed, high-current switching with low loss can be realized through a simple process and at low cost, and its industrial value is extremely large.
第1図は従来の表面ダート構造sI’rhyの1ユニッ
ト分の断面構造を示す図である。
第2図はS t’rhyの1ユニット分の断面構造を示
す図に、等価回路図を重ねて示した図である。
第3図は、従来の5IThyのスイッチング特性を示す
図であり、(a)は、I、iI□およびIKの個々の波
形、11))は■。と工えを加算した波形を示す。
第4図は従来のsI’rhyのIAスイッチング特性を
示す図である。
第5図は本発明の5IThyの構造の実施例を示す図で
ある。
第6図は従来の5IThyの電気的特性を示す図であり
、(a)は■い対VAK特性、(b)はI。および■い
のスイッチング波形である。
第7図乃至第10図は本発明の実施例のsI’rhyの
電気的特性を示す図であり、各々の(a)は工え対vA
K特性、(b)は■。および■□のスイッチング波形を
示す。
第11図は本発明の実施例の5IThyの降下時間tf
および順方向電圧降下V。nをアニール条件に対してプ
ロットした図である。
11.21.51・・・n+カソード領域、12..2
2゜52・・・p+アノード領域、13,23.53・
・・p+ダート領域、14,24,54・;・低不純物
密度n−領域、56・・・荷電担体寿命を減少させた領
域。
(29)
第1図
第2図
第3図
国世耳E
oYII ′?!P9トー
(V) マI
第4図
(C)
第5図
(V)マエ
(V) Vl’elFIG. 1 is a diagram showing a cross-sectional structure of one unit of a conventional surface dart structure sI'rhy. FIG. 2 is a diagram in which an equivalent circuit diagram is superimposed on a diagram showing the cross-sectional structure of one unit of S t'rhy. FIG. 3 is a diagram showing the switching characteristics of the conventional 5IThy, where (a) is the individual waveforms of I, iI□ and IK, and 11)) is ■. This shows the waveform obtained by adding the FIG. 4 is a diagram showing the IA switching characteristics of the conventional sI'rhy. FIG. 5 is a diagram showing an embodiment of the structure of 5IThy of the present invention. FIG. 6 is a diagram showing the electrical characteristics of the conventional 5I Thy, where (a) shows the I vs. VAK characteristics, and (b) shows the I Thy. and ■ switching waveforms. FIG. 7 to FIG. 10 are diagrams showing the electrical characteristics of sI'rhy in the embodiment of the present invention, and each (a) is a diagram showing the electrical characteristics of sI'rhy in the embodiment of the present invention.
K characteristic, (b) is ■. The switching waveforms of and ■□ are shown. FIG. 11 shows the fall time tf of 5IThy in the embodiment of the present invention.
and forward voltage drop V. FIG. 4 is a diagram in which n is plotted against annealing conditions. 11.21.51...n+ cathode region, 12. .. 2
2゜52...p+anode region, 13,23.53.
...p+ dirt region, 14,24,54;-low impurity density n- region, 56...region with reduced charge carrier lifetime. (29) Figure 1 Figure 2 Figure 3 Kunise E oYII '? ! P9 To (V) Ma I Figure 4 (C) Figure 5 (V) Mae (V) Vl'el
Claims (6)
反対導電型の高不純物密度のアノード領域と、前記低不
純物密度領域を挾んで前記アノード領域に対向しそのア
ノード領域と反対導電型の高不純物密度のカソード領域
と、そのカソード領域の近傍に形成されたカソード領域
と反対導電型のケ゛−ト領域と、陽子線を照射すること
により前記低不純物密度領域の中の特定部分に形成され
た荷電担体寿命を減少させる領域とを有することを特徴
とする高速静電誘導サイリスタ。(1) A low impurity density region, a high impurity density anode region having a conductivity type opposite to that of the low impurity density region, and a high impurity density region facing the anode region sandwiching the low impurity density region and having a conductivity type opposite to that of the anode region. A cathode region with an impurity density, a cathode region of the opposite conductivity type to the cathode region formed near the cathode region, and a cathode region formed in a specific part of the low impurity density region by irradiation with a proton beam. A high-speed electrostatic induction thyristor characterized in that it has a region that reduces charge carrier lifetime.
とは反対導電型の比較的不純物密度の高い薄層領域が設
けられたことを特徴とする特許請求の範囲第(1)項記
載の高速静電誘導サイリスタ。(2) The high speed according to claim (1), characterized in that a thin layer region having a relatively high impurity density and having a conductivity type opposite to that of the anode region is provided adjacent to the anode region. Electrostatic induction thyristor.
導電型高不純物密度領域により構成され、この両頭域は
互いに低不純物密度領域をはさんで対向して構成され、
かつ前記アノード領域と同導電型のダートが前記カソー
ド領域近傍に設けられた構造の半導体装置を形成する工
程と、 前記半導体装置に陽子線を照射し、前記低不純物密度領
域の中の特定部分に荷電担体寿命を減少させる領域を形
成する工程と、 前記照射によって形成された前記荷電担体寿命を減少さ
せる領域以外の比較的欠陥密度の低い領域の半導体結晶
格子の損傷を回復させる工程とを有することを特徴とす
る高速静電誘導サイリスタの製造方法。(3) The cathode region and the anode region are constituted by mutually opposite conductivity type high impurity density regions, and these two head regions are constituted to face each other with a low impurity density region in between,
and forming a semiconductor device having a structure in which dirt of the same conductivity type as the anode region is provided near the cathode region, and irradiating the semiconductor device with a proton beam to target a specific portion in the low impurity density region. forming a region that reduces the charge carrier lifetime; and repairing damage to a semiconductor crystal lattice in a region formed by the irradiation and having a relatively low defect density other than the region that reduces the charge carrier lifetime. A method for manufacturing a high-speed electrostatic induction thyristor characterized by:
少させる領域を形成する工程が、IMe■乃至l Q
MeVのエネルギーを持つ陽子線を照射することからな
る、特許請求の範囲第(3)項記載の方法。(4) The step of forming a region that reduces the charge carrier lifetime in the low impurity density region includes IMe
The method according to claim 3, which comprises irradiating with a proton beam having an energy of MeV.
rn2の放射線量まで照射することからなる特許請求の
範囲第(4)項記載の方法。(5) The irradiation is about 1012 to 1014 proton particles/C
The method according to claim 4, comprising irradiating to a radiation dose of rn2.
減少させる領域以外の比較的欠陥密度の低い領域の半導
体結晶格子の損傷を回復させる工程が、300乃至45
0℃の温度で30乃至60分までアニールすることから
なる、特許請求の範囲(6) a step of recovering damage to the semiconductor crystal lattice in a region with relatively low defect density other than the region where the charge carrier lifetime is reduced, formed by the irradiation, for a period of 300 to 45 days;
Claims consisting of annealing at a temperature of 0°C for up to 30 to 60 minutes
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6441984A JPS60207376A (en) | 1984-03-31 | 1984-03-31 | High-speed electrostatic induction thyristor and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6441984A JPS60207376A (en) | 1984-03-31 | 1984-03-31 | High-speed electrostatic induction thyristor and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60207376A true JPS60207376A (en) | 1985-10-18 |
Family
ID=13257735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6441984A Pending JPS60207376A (en) | 1984-03-31 | 1984-03-31 | High-speed electrostatic induction thyristor and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60207376A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419771A (en) * | 1987-07-15 | 1989-01-23 | Fuji Electric Co Ltd | Insulated-gate bipolar transistor |
JPH01162368A (en) * | 1987-12-18 | 1989-06-26 | Matsushita Electric Works Ltd | Semiconductor device |
DE3842468A1 (en) * | 1987-12-18 | 1989-06-29 | Matsushita Electric Works Ltd | SEMICONDUCTOR DEVICE |
JPH01272157A (en) * | 1988-04-23 | 1989-10-31 | Matsushita Electric Works Ltd | Semiconductor device |
DE102006001252A1 (en) * | 2006-01-10 | 2007-07-26 | Infineon Technologies Ag | Bipolar power semiconductor component e.g. power thyristor, has semiconductor body in vertical direction and strongly p-doped zones of n-doped gate are spaced, and are reached through n-gate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52113686A (en) * | 1976-03-17 | 1977-09-22 | Westinghouse Electric Corp | Method of producing semiconductor device |
JPS5522840A (en) * | 1978-08-07 | 1980-02-18 | Hitachi Ltd | Semiconductor switching element and manufacturing method thereof |
JPS5599774A (en) * | 1979-01-26 | 1980-07-30 | Semiconductor Res Found | Electrostatic induction type thyristor |
JPS5739577A (en) * | 1980-06-27 | 1982-03-04 | Westinghouse Electric Corp | Method of reducing reverse recovery charge for thyristor |
-
1984
- 1984-03-31 JP JP6441984A patent/JPS60207376A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52113686A (en) * | 1976-03-17 | 1977-09-22 | Westinghouse Electric Corp | Method of producing semiconductor device |
JPS5522840A (en) * | 1978-08-07 | 1980-02-18 | Hitachi Ltd | Semiconductor switching element and manufacturing method thereof |
JPS5599774A (en) * | 1979-01-26 | 1980-07-30 | Semiconductor Res Found | Electrostatic induction type thyristor |
JPS5739577A (en) * | 1980-06-27 | 1982-03-04 | Westinghouse Electric Corp | Method of reducing reverse recovery charge for thyristor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419771A (en) * | 1987-07-15 | 1989-01-23 | Fuji Electric Co Ltd | Insulated-gate bipolar transistor |
JPH0722198B2 (en) * | 1987-07-15 | 1995-03-08 | 富士電機株式会社 | Insulated gate type bipolar transistor |
JPH01162368A (en) * | 1987-12-18 | 1989-06-26 | Matsushita Electric Works Ltd | Semiconductor device |
DE3842468A1 (en) * | 1987-12-18 | 1989-06-29 | Matsushita Electric Works Ltd | SEMICONDUCTOR DEVICE |
US5075751A (en) * | 1987-12-18 | 1991-12-24 | Matsushita Electric Works, Ltd. | Semiconductor device |
DE3842468C3 (en) * | 1987-12-18 | 1998-03-26 | Matsushita Electric Works Ltd | Semiconductor device |
JPH01272157A (en) * | 1988-04-23 | 1989-10-31 | Matsushita Electric Works Ltd | Semiconductor device |
DE102006001252A1 (en) * | 2006-01-10 | 2007-07-26 | Infineon Technologies Ag | Bipolar power semiconductor component e.g. power thyristor, has semiconductor body in vertical direction and strongly p-doped zones of n-doped gate are spaced, and are reached through n-gate |
DE102006001252B4 (en) * | 2006-01-10 | 2012-01-26 | Infineon Technologies Ag | A bipolar power semiconductor device having a p-emitter and higher doped regions in the p-emitter and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11508581B2 (en) | Semiconductor device having IGBT and diode with field stop layer formed of hydrogen donor and helium | |
US10629678B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
US7485920B2 (en) | Process to create buried heavy metal at selected depth | |
US7749876B2 (en) | Method for the production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone | |
US8178411B2 (en) | Method for producing a stop zone in a semiconductor body and semiconductor component having a stop zone | |
JP5033335B2 (en) | Semiconductor device and inverter device using the same | |
US10224206B2 (en) | Bipolar transistor device with an emitter having two types of emitter regions | |
JPH09121052A (en) | Semiconductor device and fabrication thereof | |
DE112013002031T5 (en) | Semiconductor device and semiconductor device manufacturing method | |
JP2526653B2 (en) | Conductivity modulation type MOSFET | |
JPH01258476A (en) | High breakdown voltage semiconductor device and manufacture thereof | |
JP3952452B2 (en) | Manufacturing method of semiconductor device | |
US4238761A (en) | Integrated gate assisted turn-off, amplifying gate thyristor with narrow lipped turn-off diode | |
JP2851026B2 (en) | High speed diode | |
JPS60207376A (en) | High-speed electrostatic induction thyristor and manufacture thereof | |
US4040170A (en) | Integrated gate assisted turn-off, amplifying gate thyristor, and a method for making the same | |
JPS6276556A (en) | High-speed electrostatic induction thyristor | |
JPH09237904A (en) | Semiconductor device and its manufacturing method | |
JP3518486B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4045749B2 (en) | Semiconductor device and circuit using semiconductor device | |
Chernyavskii et al. | MOS-controlled thyristor: A study of a promising power-switching device | |
Chernyavsky et al. | Dynamic and static characteristics of MOS thyristors irradiated with electrons | |
JPH0685242A (en) | Semiconductor device | |
JPH09260686A (en) | Semiconductor device and its manufacture | |
JPS62173761A (en) | Manufacture of static induction type thyristor |