JPH05317713A - Preparation of catalyst for synthesizing acrylic acid - Google Patents

Preparation of catalyst for synthesizing acrylic acid

Info

Publication number
JPH05317713A
JPH05317713A JP4122026A JP12202692A JPH05317713A JP H05317713 A JPH05317713 A JP H05317713A JP 4122026 A JP4122026 A JP 4122026A JP 12202692 A JP12202692 A JP 12202692A JP H05317713 A JPH05317713 A JP H05317713A
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
water
dried
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4122026A
Other languages
Japanese (ja)
Inventor
Hiroyuki Naito
啓幸 内藤
Masato Otani
眞人 大谷
Motomu Okita
求 大北
Toru Shiotani
徹 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4122026A priority Critical patent/JPH05317713A/en
Publication of JPH05317713A publication Critical patent/JPH05317713A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum

Abstract

PURPOSE:To prepare a catalyst with an improved yield on acrylic acid by a method wherein water and/or an alcohol are incorporated in a dried product obtd. from an aq. slurry of a catalytic ingredient and the mixture is molded after mixing and the molded catalyst is frozen and then, heat-treated. CONSTITUTION:In a method for preparing a catalyst contg. at least Mo and V as the ingredients for synthesizing acrylic acid by performing vapor phase catalytic oxidation of acrolein with molecular oxygen, a mixed soln. or an aq. slurry contg. the catalytic ingredients is dried and 5-60wt.% water and/or alcohol are added to and mixed with the obtd. dried product and after molding, it is frozen and heat-treated. As the result, a catalyst wherein fine hole area in the catalyst is increased and the yield of acrylic acid is improved, can be prepd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクロレインから気相
接触酸化によりアクリル酸を合成する際に用いられる触
媒の製造法に関する。
TECHNICAL FIELD The present invention relates to a process for producing a catalyst used in the synthesis of acrylic acid from acrolein by vapor phase catalytic oxidation.

【0002】[0002]

【従来の技術】従来、アクロレインを気相接触酸化し、
アクリル酸を合成する方法およびその際に使用する触媒
に関し、例えば、特開昭49−47276号、同50−
84521号、同52−153889号、同53−76
14号、同58−166939号公報等、数多くの提案
がなされているが、工業用触媒としては更に性能を向上
させることが望まれている。
2. Description of the Related Art Conventionally, gas phase catalytic oxidation of acrolein,
Regarding the method for synthesizing acrylic acid and the catalyst used at that time, see, for example, JP-A-49-47276 and 50-
84521, 52-153889, 53-76.
Although many proposals have been made such as JP-A No. 14 and JP-A No. 58-166939, it is desired to further improve the performance as an industrial catalyst.

【0003】[0003]

【発明が解決しようとする課題】本発明は、アクロレイ
ンからアクリル酸を合成する際に用いられる触媒の新規
な製造法の提供を目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel method for producing a catalyst used when synthesizing acrylic acid from acrolein.

【0004】[0004]

【課題を解決するための手段】本発明は、アクロレイン
を分子状酸素で気相接触酸化し、アクリル酸を合成する
ための、少なくともモリブデンおよびバナジウムを成分
として含む触媒を製造する方法において、触媒成分を含
む混合溶液または水性スラリーを乾燥し、得られた乾燥
物に対し5〜60重量%の水および/またはアルコール
を加えて混合し、賦型した後に該賦型触媒を凍結、次い
で乾燥および熱処理、または熱処理することを特徴とす
る、アクリル酸合成用触媒の製造法に関する。
The present invention provides a method for producing a catalyst containing at least molybdenum and vanadium as components for synthesizing acrylic acid by vapor-phase catalytic oxidation of acrolein with molecular oxygen. The mixed solution or aqueous slurry containing the above is dried, 5 to 60% by weight of water and / or alcohol is added to the obtained dried product and mixed, and after shaping, the shaped catalyst is frozen, then dried and heat treated. Or a heat treatment, the present invention relates to a method for producing a catalyst for acrylic acid synthesis.

【0005】本発明においては、触媒成分を含む混合溶
液または水性スラリーを調製後、水の大部分を除去した
後、乾燥し、触媒乾燥物を得る。得られた触媒乾燥物を
水および/またはアルコールと混合し、賦型した後に該
賦型触媒を凍結し、次いで乾燥および熱処理、または熱
処理することが重要である。水および/またはアルコー
ルと混合し、賦型して得られた含水および/または含ア
ルコール賦型触媒を凍結、次いで乾燥および熱処理、ま
たは乾燥せずに熱処理することにより、触媒性能が向上
するメカニズムについては現段階では明らかではない。
しかしながら、含水および/または含アルコール賦型触
媒を凍結することにより、アクロレインからアクリル酸
を合成する酸化反応にとって有効であると思われる、触
媒中の100〜10000Åの細孔が増大し、理想的な
細孔構造が形成されるために触媒性能が向上するものと
推定している。
In the present invention, after preparing a mixed solution or an aqueous slurry containing a catalyst component, most of the water is removed and then dried to obtain a dried catalyst product. It is important that the dried catalyst product obtained is mixed with water and / or alcohol, shaped, and then the shaped catalyst is frozen, followed by drying and heat treatment, or heat treatment. Mechanism of improving catalyst performance by freezing the water- and / or alcohol-containing shaped catalyst obtained by mixing with water and / or alcohol and shaping and then heat-treating or drying without drying Is not clear at this stage.
However, by freezing the water-containing and / or alcohol-containing catalyst, the pores of 100 to 10000Å in the catalyst, which are considered to be effective for the oxidation reaction of synthesizing acrylic acid from acrolein, are increased, which is ideal. It is estimated that the catalyst performance is improved due to the formation of the pore structure.

【0006】本発明において、触媒乾燥物と混合する水
および/またはアルコールの量は触媒乾燥物重量に対し
て5〜60重量%の範囲、特に10〜30重量%の範囲
で添加するのが好ましい。5重量%未満および60重量
%を超えた場合、賦型の際の成型性が悪くなり、工業用
触媒の製造法としては適さなくなる。また、アルコール
としては、常温において液体で、水溶性のものが良い。
このような例としては、メチルアルコール、エチルアル
コール等を挙げることができる。
In the present invention, the amount of water and / or alcohol mixed with the dried catalyst product is preferably in the range of 5 to 60% by weight, more preferably 10 to 30% by weight, based on the weight of the dried catalyst product. .. If it is less than 5% by weight or more than 60% by weight, the moldability at the time of shaping becomes poor and it becomes unsuitable as a method for producing an industrial catalyst. The alcohol is preferably liquid at room temperature and water-soluble.
Methyl alcohol, ethyl alcohol, etc. can be mentioned as such an example.

【0007】触媒乾燥物と水および/またはアルコール
と混合する際には、従来公知の添加剤、例えば、ポリビ
ニルアルコール、カルボキシメチルセルロース、無機フ
ァイバー等をさらに添加しても差し支えない。本発明に
おいて、触媒乾燥物と水および/またはアルコールを混
合させて賦型する方法およびその形状は特に限定される
ものではなく、押出成型機、転動造粒機等の一般粉体用
成型機を用いて、球状、リング状、円柱状、星型状等の
任意の形状に賦型できる。
When the dried catalyst product is mixed with water and / or alcohol, conventionally known additives such as polyvinyl alcohol, carboxymethyl cellulose, inorganic fiber and the like may be further added. In the present invention, the method of mixing the dried catalyst product with water and / or alcohol and shaping is not particularly limited, and a general powder molding machine such as an extrusion molding machine or a rolling granulator. Can be used to mold into any shape such as spherical, ring-shaped, columnar, or star-shaped.

【0008】本発明においては、水および/またはアル
コールが凍結すれば、触媒の凍結温度、時間およびその
方法は特に限定されるものではない。このような方法と
して、液体窒素中に賦型した水および/またはアルコー
ル含有触媒を投入する方法が挙げられる。このようにし
て得られた、凍結触媒は次いで乾燥および熱処理、また
は熱処理される。本発明においては、これらの処理条件
には特に限定はなく、公知の処理条件を適用することが
できる。通常、乾燥条件としては60〜150℃の温度
で行い、熱処理条件としては300〜600℃の温度で
行われる。
In the present invention, if water and / or alcohol freezes, the freezing temperature, time and method of the catalyst are not particularly limited. Examples of such a method include a method of adding a shaped water and / or alcohol-containing catalyst into liquid nitrogen. The frozen catalyst thus obtained is then dried and heat treated, or heat treated. In the present invention, these processing conditions are not particularly limited, and known processing conditions can be applied. Usually, the drying condition is 60 to 150 ° C., and the heat treatment condition is 300 to 600 ° C.

【0009】本発明は、一般式 Moa b c d e f (式中、Mo、VおよびOはそれぞれモリブデン、バナ
ジウムおよび酸素を示し、Xは鉄、クロム、コバルト、
ストロンチウムおよびアルミニウムからなる群より選ば
れた少なくとも1種の元素を示し、Yはゲルマニウム、
ホウ素、砒素、セレン、銀、テルル、珪素、ナトリウ
ム、リチウム、アンチモン、リン、カリウムおよびバリ
ウムからなる群より選ばれた少なくとも1種の元素を示
し、Zはマグネシウム、チタン、マンガン、銅、亜鉛、
ジルコニウム、ニオブ、タングステン、タンタル、ビス
マス、カルシウムおよびスズからなる群より選ばれた少
なくとも1種の元素を示す。a、b、c、d、eおよび
fは各元素の原子比率を表し、a=12のときb=0.
01〜6、c=0.1〜5、d=0〜10、e=0〜5
であり、fは前記各成分の原子価を満足するのに必要な
酸素原子数である。)で表される組成を有する触媒を製
造する際に適用することが好ましい。
[0009] The present invention relates to compounds of the general formula Mo a V b X c Y d Z e O f ( wherein, Mo, V and O each represent molybdenum, vanadium and oxygen, X is iron, chromium, cobalt,
At least one element selected from the group consisting of strontium and aluminum is shown, Y is germanium,
At least one element selected from the group consisting of boron, arsenic, selenium, silver, tellurium, silicon, sodium, lithium, antimony, phosphorus, potassium and barium is shown, and Z is magnesium, titanium, manganese, copper, zinc,
At least one element selected from the group consisting of zirconium, niobium, tungsten, tantalum, bismuth, calcium and tin is shown. a, b, c, d, e and f represent the atomic ratio of each element, and when a = 12, b = 0.
01-6, c = 0.1-5, d = 0-10, e = 0-5
And f is the number of oxygen atoms required to satisfy the valence of each component. It is preferably applied when producing a catalyst having a composition represented by

【0010】本発明に用いられる組成の触媒を製造する
方法としては 特殊な方法に限定する必要はなく、成分
の著しい偏在を伴わない限り、従来からよく知られてい
る蒸発乾固法、沈澱法、酸化物混合法等の種々の方法を
用いることができる。触媒成分の原料としては、各元素
の酸化物、硝酸塩、炭酸塩、アンモニウム塩、ハロゲン
化物などを組み合わせて使用することができる。例え
ば、モリブデン原料としてはパラモリブデン酸アンモニ
ウム、三酸化モリブデン、塩化モリブデン等、バナジウ
ム原料としてはメタバナジン酸アンモニウム、五酸化バ
ナジウム、塩化バナジウム等が使用できる。
The method for producing the catalyst having the composition used in the present invention does not need to be limited to a special method, and is a well-known evaporation dry method or precipitation method as long as there is no significant uneven distribution of the components. Various methods such as the oxide mixing method can be used. As a raw material of the catalyst component, a combination of oxides, nitrates, carbonates, ammonium salts, halides and the like of each element can be used. For example, ammonium paramolybdate, molybdenum trioxide, molybdenum chloride or the like can be used as the molybdenum raw material, and ammonium metavanadate, vanadium pentoxide, vanadium chloride or the like can be used as the vanadium raw material.

【0011】本発明で得られる触媒の利用に際して、原
料ガス中のアクロレインの濃度は広い範囲で変えること
ができるが、1〜20容量%が適当であり、特に3〜1
0容量%が好ましい。原料のアクロレインは、水、低級
飽和アルデヒド等の不純物を少量含んでいても良く、こ
れらの不純物は反応に実質的な影響を与えない。接触酸
化を行う際の酸素源としては、空気を用いるのが経済的
であるが、必要ならば純酸素で富化した空気も用いう
る。原料ガス中の酸素濃度は、アクロレインに対するモ
ル比で規定され、この値は0.3〜4、特に0.4〜
2.5が好ましい。原料ガスは窒素、水蒸気、炭酸ガス
等の不活性ガスを加えて希釈してもよい。反応圧力は、
常圧から数気圧までがよい。反応温度は、200〜45
0℃の範囲で選ぶことができるが、特に220〜430
℃が好ましい。反応は固定床でも流動床でも行うことが
できる。
When the catalyst obtained in the present invention is used, the concentration of acrolein in the raw material gas can be varied over a wide range, but 1 to 20% by volume is suitable, and particularly 3 to 1
0% by volume is preferred. The raw material acrolein may contain a small amount of impurities such as water and lower saturated aldehydes, and these impurities do not substantially affect the reaction. It is economical to use air as an oxygen source for the catalytic oxidation, but if necessary, air enriched with pure oxygen can also be used. The oxygen concentration in the raw material gas is defined by the molar ratio to acrolein, and this value is 0.3 to 4, especially 0.4 to
2.5 is preferred. The raw material gas may be diluted by adding an inert gas such as nitrogen, steam or carbon dioxide gas. The reaction pressure is
From normal pressure to several atmospheres is good. The reaction temperature is 200 to 45
It can be selected in the range of 0 ° C., but especially 220 to 430
C is preferred. The reaction can be carried out in a fixed bed or a fluidized bed.

【0012】[0012]

【実施例】以下、本発明による触媒の製造法およびそれ
を用いての反応例を具体的に説明する。実施例および比
較例中の、アクロレインの反応率および生成するアクリ
ル酸の選択率は以下のように定義される。
EXAMPLES The method for producing the catalyst according to the present invention and the reaction examples using the same will be specifically described below. In the examples and comparative examples, the reaction rate of acrolein and the selectivity of acrylic acid produced are defined as follows.

【0013】[0013]

【数1】 [Equation 1]

【0014】下記実施例および比較例中の部は重量部で
あり、分析はガスクロマトグラフィーにより行った。
Parts in the following Examples and Comparative Examples are parts by weight, and analysis was carried out by gas chromatography.

【0015】実施例1 特願平3−210264号明細書に記載の実施例1に従
って、触媒成分を含む混合溶液を調製し、これを蒸発乾
固後、得られた固形物を130℃で16時間乾燥した。
この乾燥粉100部に対して水18部を混合し、押出成
型機により外径5mm、内径2mm、平均長さ5mmの
リング状に賦型した。この含水賦型物を液体窒素中に5
分間浸漬して凍結させた後、130℃で6時間乾燥し、
次いで空気流通下に380℃で5時間熱処理したものを
触媒として用いた。得られた触媒の酸素以外の元素の組
成(以下同じ)はMo123 Si4.3 Na0.7 Fe1
0.3 であった。本触媒を反応管に充填し、アクロレイ
ン5%、酸素10%、水蒸気30%、窒素55%(容量
%)の混合ガスを反応温度270℃、接触時間3.6秒
で通じた。生成物を補集し、ガスクロマトグラフィーで
分析したところ、アクロレイン反応率99.7%、アク
リル酸選択率95.4%であった。この触媒の100〜
10000Åの範囲の細孔容積は0.31ml/gであ
った。
Example 1 A mixed solution containing a catalyst component was prepared in accordance with Example 1 described in Japanese Patent Application No. 3-210264, and the solid solution obtained was evaporated to dryness. Dried for hours.
18 parts of water was mixed with 100 parts of this dry powder, and shaped into a ring with an outer diameter of 5 mm, an inner diameter of 2 mm and an average length of 5 mm by an extruder. 5% of this water-containing shaped material was added to liquid nitrogen.
After soaking for 5 minutes to freeze, dry at 130 ℃ for 6 hours,
Then, the one that was heat-treated at 380 ° C. for 5 hours under air flow was used as a catalyst. The composition of elements other than oxygen in the obtained catalyst (hereinafter the same) is Mo 12 V 3 Si 4.3 Na 0.7 Fe 1 B
It was a 0.3 . This catalyst was filled in a reaction tube, and a mixed gas of acrolein 5%, oxygen 10%, water vapor 30%, and nitrogen 55% (volume%) was passed through at a reaction temperature of 270 ° C. and a contact time of 3.6 seconds. When the products were collected and analyzed by gas chromatography, the acrolein conversion was 99.7% and the acrylic acid selectivity was 95.4%. 100 ~ of this catalyst
The pore volume in the range of 10000Å was 0.31 ml / g.

【0016】比較例1 実施例1において、含水賦型物を液体窒素中に浸漬しな
い点以外は実施例1と同様にして賦型および反応を行っ
た。その結果、アクロレイン反応率98.9%、アクリ
ル酸選択率95.0%であった。この触媒の100〜1
0000Åの範囲の細孔容積は0.25ml/gであっ
た。 比較例2 実施例1において、乾燥粉100部と混合する水の量を
3.5部とする点以外は実施例1と同様にして賦型を行
ったところ、賦型時の成型性が極めて悪く、目的とする
賦型物を得ることができなかった。 比較例3 実施例1において、乾燥粉100部と混合する水の量を
110部とする点以外は実施例1と同様にして賦型を行
ったところ、賦型時の成型性が悪く、また、賦型物の形
を保つことが困難であり、目的とする賦型物を得ること
ができなかった。
Comparative Example 1 Molding and reaction were carried out in the same manner as in Example 1 except that the water-containing shaped product was not immersed in liquid nitrogen. As a result, the acrolein conversion was 98.9% and the acrylic acid selectivity was 95.0%. 100-1 of this catalyst
The pore volume in the range of 0000Å was 0.25 ml / g. Comparative Example 2 When a mold was applied in the same manner as in Example 1 except that the amount of water mixed with 100 parts of dry powder was 3.5 parts, the moldability during molding was extremely high. Poorly, it was not possible to obtain the target shaped object. Comparative Example 3 When molding was performed in the same manner as in Example 1 except that the amount of water mixed with 100 parts of dry powder was 110 parts, the moldability during molding was poor, and However, it was difficult to maintain the shape of the shaped product, and the intended shaped product could not be obtained.

【0017】実施例2 実施例1において、含水賦型物を−10℃の冷凍庫中に
15時間放置する点以外は実施例1と同様にして賦型お
よび反応を行った。反応結果と細孔容積を表1に示す。
Example 2 Molding and reaction were carried out in the same manner as in Example 1 except that the hydrous shaped product was left in a freezer at -10 ° C for 15 hours. The reaction results and pore volume are shown in Table 1.

【0018】実施例3 実施例1において、乾燥粉100部と混合する水の量を
25部にし、含水賦型物を液体窒素中で凍結させた後、
乾燥を行わない点以外は実施例1と同様にして賦型、す
なわち、凍結後直ちに空気流通下に380℃で熱処理し
た触媒を用いて反応を行った。反応結果と細孔容積を表
1に示す。
Example 3 In Example 1, the amount of water mixed with 100 parts of dry powder was changed to 25 parts, and the hydrous shaped product was frozen in liquid nitrogen.
In the same manner as in Example 1 except that the drying was not performed, that is, the reaction was performed using a catalyst that was heat-treated at 380 ° C. immediately after freezing under air flow. The reaction results and pore volume are shown in Table 1.

【0019】比較例4 実施例3において、含水賦型物を液体窒素中に浸漬しな
い点以外は実施例3と同様にして賦型および反応を行っ
た。反応結果と細孔容積を表1に示す。
Comparative Example 4 Molding and reaction were carried out in the same manner as in Example 3 except that the hydrous shaped article was not immersed in liquid nitrogen. The reaction results and pore volume are shown in Table 1.

【0020】実施例4 特願平2−285147号明細書に記載の実施例6に従
って、触媒成分を含む混合溶液を調製し、これを蒸発乾
固後、得られた固形物を130℃で16時間乾燥した。
この乾燥粉100部に対して重合度500のポリビニル
アルコール3.5部および水20部を混合し、押出成型
機により外径5mm、内径2mm、平均長さ5mmのリ
ング状に賦型した。この含水賦型物を液体窒素中に5分
間浸漬して凍結させた後、130℃で6時間乾燥し、次
いで空気流通下に380℃で5時間熱処理した。得られ
た触媒の元素の組成はMo123 0.2 Nb0.2 Cr
0.5 Co0.5 Al0.5 Si3 Mg0.2 であった。この触
媒を用いて、実施例1と同じ条件で反応を行った。反応
結果と細孔容積を表1に示す。
Example 4 A mixed solution containing a catalyst component was prepared according to Example 6 described in Japanese Patent Application No. 2-285147, and the solid solution obtained was evaporated to dryness, and then the resulting solid matter was dried at 130 ° C. at 16 ° C. Dried for hours.
3.5 parts of polyvinyl alcohol having a degree of polymerization of 500 and 20 parts of water were mixed with 100 parts of this dry powder, and the mixture was shaped into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm and an average length of 5 mm by an extruder. This hydrated product was immersed in liquid nitrogen for 5 minutes to be frozen, dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air circulation. The composition of elements of the obtained catalyst was Mo 12 V 3 W 0.2 Nb 0.2 Cr.
It was 0.5 Co 0.5 Al 0.5 Si 3 Mg 0.2 . Using this catalyst, a reaction was carried out under the same conditions as in Example 1. The reaction results and pore volume are shown in Table 1.

【0021】比較例5 実施例4において、含水賦型物を液体窒素中に投入しな
い点以外は実施例4と同様にして賦型および反応を行っ
た。反応結果と細孔容積を表1に示す。
Comparative Example 5 Molding and reaction were carried out in the same manner as in Example 4 except that the water-containing shaped product was not charged into liquid nitrogen. The reaction results and pore volume are shown in Table 1.

【0022】実施例5 特願平2−280683号明細書に記載の実施例18に
従って、触媒成分を含む混合溶液を調製し、これを蒸発
乾固後、得られた固形物を130℃で16時間乾燥し
た。この乾燥粉100部に対してエチルアルコール18
部および平均長さ200μの無機ファイバー5部を混合
し、押出成型機により外径5mm、内径2mm、平均長
さ5mmのリング状に賦型した。この含エチルアルコー
ル賦型物を液体窒素中に15分間浸漬して凍結させた
後、130℃で6時間乾燥し、次いで空気流通下に38
0℃で5時間熱処理した。得られた触媒の元素の組成は
Mo123.5 Fe0.8 Na0.3 Co0.5 Si4.5Sr
0.5 Ag0.08であった。この触媒を用いて、実施例1と
同じ条件で反応を行った。反応結果と細孔容積を表1に
示す。
Example 5 A mixed solution containing a catalyst component was prepared according to Example 18 described in Japanese Patent Application No. 2-280683, and the solid solution obtained was evaporated to dryness, and the resulting solid matter was dried at 130 ° C. at 16 ° C. Dried for hours. 18 parts of ethyl alcohol to 100 parts of this dry powder
Parts and 5 parts of an inorganic fiber having an average length of 200 μ were mixed and shaped into a ring having an outer diameter of 5 mm, an inner diameter of 2 mm and an average length of 5 mm by an extruder. This ethyl alcohol-containing shaped product was immersed in liquid nitrogen for 15 minutes to be frozen, dried at 130 ° C. for 6 hours, and then dried under air flow at 38 ° C.
Heat treatment was performed at 0 ° C. for 5 hours. The composition of the elements of the obtained catalyst was Mo 12 V 3.5 Fe 0.8 Na 0.3 Co 0.5 Si 4.5 Sr.
It was 0.5 Ag 0.08 . Using this catalyst, a reaction was carried out under the same conditions as in Example 1. The reaction results and pore volume are shown in Table 1.

【0023】比較例6 実施例5において、含エチルアルコール賦型物を液体窒
素中に投入しない点以外は実施例5と同様にして賦型お
よび反応を行った。反応結果と細孔容積を表1に示す。
Comparative Example 6 Molding and reaction were carried out in the same manner as in Example 5 except that the ethyl alcohol-containing shaped product was not charged into liquid nitrogen. The reaction results and pore volume are shown in Table 1.

【0024】実施例6 特願平3−112311号明細書に記載の実施例10に
従って、触媒成分を含む混合溶液を調製し、これを蒸発
乾固後、得られた固形物を130℃で16時間乾燥し
た。この乾燥粉100部に対して水10部およびエチル
アルコール8部を混合し、転動造粒機により平均直径4
mmの球状に賦型した。この含水および含エチルアルコ
ール賦型物を液体窒素中に投入して凍結させた後、13
0℃で6時間乾燥し、次いで空気流通下に380℃で5
時間熱処理した。得られた触媒の元素の組成はMo12
3 Si4.3 Fe1 Sn0.5 Mn0.1 Ta0.2 Na0.7
あった。この触媒を用いて、実施例1と同じ条件で反応
を行った。反応結果と細孔容積を表1に示す。
Example 6 A mixed solution containing a catalyst component was prepared according to Example 10 described in Japanese Patent Application No. 3-112311, and the solid solution obtained was evaporated to dryness, and the resulting solid matter was dried at 16 ° C. at 16 ° C. Dried for hours. 10 parts of water and 8 parts of ethyl alcohol were mixed with 100 parts of this dry powder, and the average diameter was 4 by a tumbling granulator.
It was shaped into a spherical shape of mm. After this water-containing and ethyl alcohol-containing shaped product was put into liquid nitrogen to be frozen, 13
Dry for 6 hours at 0 ° C, then at 380 ° C for 5 hours under air flow
Heat treated for hours. The composition of the elements of the obtained catalyst is Mo 12 V
It was 3 Si 4.3 Fe 1 Sn 0.5 Mn 0.1 Ta 0.2 Na 0.7. Using this catalyst, a reaction was carried out under the same conditions as in Example 1. The reaction results and pore volume are shown in Table 1.

【0025】比較例7 実施例6において、含水および含エチルアルコール賦型
物を液体窒素中に投入しない点以外は実施例6と同様に
して賦型および反応を行った。反応結果と細孔容積を表
1に示す。
Comparative Example 7 Molding and reaction were carried out in the same manner as in Example 6 except that the water-containing and ethyl alcohol-containing shaped product was not added to liquid nitrogen. The reaction results and pore volume are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の製法で得られた触媒は触媒中の
細孔容積が増大し、アクロレインの反応率を向上させ、
アクリル酸の選択率も向上させる効果を有する。
The catalyst obtained by the process of the present invention has an increased pore volume in the catalyst and improves the reaction rate of acrolein,
It also has the effect of improving the selectivity of acrylic acid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩谷 徹 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Shioya 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アクロレインを分子状酸素で気相接触酸
化し、アクリル酸を合成するための、少なくともモリブ
デンおよびバナジウムを成分として含む触媒を製造する
方法において、触媒成分を含む混合溶液または水性スラ
リーを乾燥し、得られた乾燥物に対し5〜60重量%の
水および/またはアルコールを加えて混合し、賦型した
後に該賦型触媒を凍結、次いで乾燥および熱処理、また
は熱処理することを特徴することを特徴とする、アクリ
ル酸合成用触媒の製造法。
1. A method for producing a catalyst containing at least molybdenum and vanadium as a component for synthesizing acrylic acid by vapor-phase catalytic oxidation of acrolein with molecular oxygen to prepare a mixed solution or an aqueous slurry containing the catalyst component. It is characterized in that after drying, 5 to 60% by weight of water and / or alcohol is added to the obtained dried product, mixed and shaped, and then the shaped catalyst is frozen, then dried and heat-treated, or heat-treated. A method for producing a catalyst for synthesizing acrylic acid, which comprises:
【請求項2】 請求項1で得られる触媒を用いてアクロ
レインを分子状酸素を用いて温度200〜500℃で気
相接触酸化し、アクリル酸を製造する方法。
2. A method for producing acrylic acid by gas-phase catalytic oxidation of acrolein with molecular oxygen using the catalyst obtained in claim 1 at a temperature of 200 to 500 ° C.
JP4122026A 1992-05-14 1992-05-14 Preparation of catalyst for synthesizing acrylic acid Pending JPH05317713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4122026A JPH05317713A (en) 1992-05-14 1992-05-14 Preparation of catalyst for synthesizing acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4122026A JPH05317713A (en) 1992-05-14 1992-05-14 Preparation of catalyst for synthesizing acrylic acid

Publications (1)

Publication Number Publication Date
JPH05317713A true JPH05317713A (en) 1993-12-03

Family

ID=14825755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4122026A Pending JPH05317713A (en) 1992-05-14 1992-05-14 Preparation of catalyst for synthesizing acrylic acid

Country Status (1)

Country Link
JP (1) JPH05317713A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444845B1 (en) 2000-04-28 2002-09-03 Saudia Basic Industries Corporation Process for the oxidation of unsaturated aldehydes to produce carboxylic acids using Mo-V based catalysts
US6638891B2 (en) 2000-04-28 2003-10-28 Saudi Basic Industries Corporation Molybdenum and vanadium based catalysts for the oxidation of alkanes to carboxylic acids and olefins
JP2009502927A (en) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション Catalyst for the oxidation of mixed aldehyde feedstock to methacrylic acid and method for its production and use
US20120129682A1 (en) * 2010-11-23 2012-05-24 Electronics And Telecommunications Research Institute Method of fabricating nanowire porous medium and nanowire porous medium fabricated by the same
JP2017064615A (en) * 2015-09-29 2017-04-06 株式会社日本触媒 Process for producing acrylic acid production catalyst, and catalyst thereof, and process for producing acrylic acid using the catalyst
WO2018181226A1 (en) 2017-03-27 2018-10-04 三菱ケミカル株式会社 Catalyst and catalyst group
US11628425B2 (en) 2017-03-27 2023-04-18 Mitsubishi Chemical Corporation Catalyst and catalyst group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444845B1 (en) 2000-04-28 2002-09-03 Saudia Basic Industries Corporation Process for the oxidation of unsaturated aldehydes to produce carboxylic acids using Mo-V based catalysts
US6638891B2 (en) 2000-04-28 2003-10-28 Saudi Basic Industries Corporation Molybdenum and vanadium based catalysts for the oxidation of alkanes to carboxylic acids and olefins
US6989347B2 (en) 2000-04-28 2006-01-24 Saudi Basic Industries Corporation Catalysts for the oxidation of unsaturated aldehydes to produce carboxylic acids and methods of making the same
JP2009502927A (en) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション Catalyst for the oxidation of mixed aldehyde feedstock to methacrylic acid and method for its production and use
US20120129682A1 (en) * 2010-11-23 2012-05-24 Electronics And Telecommunications Research Institute Method of fabricating nanowire porous medium and nanowire porous medium fabricated by the same
JP2017064615A (en) * 2015-09-29 2017-04-06 株式会社日本触媒 Process for producing acrylic acid production catalyst, and catalyst thereof, and process for producing acrylic acid using the catalyst
WO2018181226A1 (en) 2017-03-27 2018-10-04 三菱ケミカル株式会社 Catalyst and catalyst group
US11628425B2 (en) 2017-03-27 2023-04-18 Mitsubishi Chemical Corporation Catalyst and catalyst group

Similar Documents

Publication Publication Date Title
KR940002982B1 (en) Method for preparing acrolein or methacrolein
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
KR950004031B1 (en) Method for preparing mettacrolein and method for preparing a catalyst for use in the preparation of methacrolein
DE10344149A1 (en) Production of ring-shaped solid mixed oxide catalysts, useful for the gas phase oxidation of propene, isobutene or tert-butanol to acrolein or methacrolein, comprises thermal treatment to give a specific lateral compressive strength
DE2752492A1 (en) OXIDATION CATALYST AND METHOD OF ITS USE
JPH05317713A (en) Preparation of catalyst for synthesizing acrylic acid
US5550095A (en) Process for producing catalyst used for synthesis of methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP3200149B2 (en) Method for producing catalyst for methacrylic acid synthesis
EP0543019B1 (en) Process for preparing catalyst for producing methacrylic acid
JP3251642B2 (en) Preparation of catalyst for unsaturated carboxylic acid production
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JPH05309274A (en) Production of catalyst for synthesis of methacrylic acid
JPH0810621A (en) Production of catalyst for producing unsaturated carboxylic acid
JPH0840969A (en) Production of acrolein and catalyst
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JPH11226412A (en) Production of catalyst for production of methacrylic acid and production of methacrylic acid
JPH05317714A (en) Preparation of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3251641B2 (en) Process for producing catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
JP2002282696A (en) Catalyst for synthesizing unsaturated carboxylic acid, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the same
JPH09173852A (en) Preparation of catalyst for manufacturing methacrylic acid
JPH07299369A (en) Preparation of catalyst for producing unsaturated carboxylic acid and production of unsaturated carboxylic acid using the catalyst