JP3710944B2 - Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid - Google Patents

Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid Download PDF

Info

Publication number
JP3710944B2
JP3710944B2 JP01028399A JP1028399A JP3710944B2 JP 3710944 B2 JP3710944 B2 JP 3710944B2 JP 01028399 A JP01028399 A JP 01028399A JP 1028399 A JP1028399 A JP 1028399A JP 3710944 B2 JP3710944 B2 JP 3710944B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
producing methacrylic
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01028399A
Other languages
Japanese (ja)
Other versions
JP2000202294A (en
Inventor
祐一郎 永田
聖午 渡辺
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP01028399A priority Critical patent/JP3710944B2/en
Publication of JP2000202294A publication Critical patent/JP2000202294A/en
Application granted granted Critical
Publication of JP3710944B2 publication Critical patent/JP3710944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタクロレインを気相接触酸化してメタクリル酸を製造する際に使用する触媒、その製造法およびメタクリル酸の製造方法に関する。
【0002】
【従来の技術】
従来、メタクロレインを気相接触酸化してメタクリル酸を製造する方法や、その製造の際に用いられる触媒およびその触媒の製造法に関しては数多くの提案がなされている。これらの中には、触媒成形方法や成形条件により、触媒の表面積、細孔容積、細孔分布等の触媒の微細構造を調節したものがある。例えば、特定の範囲に制御した細孔径分布を持つ触媒を製造する方法としては、特開昭63−315148号公報では遠心流動コーティング装置を用いて、細孔直径が1〜10μmおよび0.1〜1μmの範囲にそれぞれ集中して分布を有する触媒を製造する方法、特開平3−86242号公報および特開平4−90853号公報では不活性担体に触媒活性成分を担持する担持成形法で、触媒活性物質層の細孔径分布において、全細孔容積に対する割合が1〜10μmの細孔が20〜70%、0.5〜1μm未満の細孔が20%以下、0.1〜0.5μm未満の細孔が20〜70%である触媒を製造する方法が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、工業的にはより反応成績の優れた触媒の開発が望まれているのが現状である。
本発明の目的は、メタクロレインを気相接触酸化してメタクリル酸を高収率で製造できる触媒、その製造法、およびメタクリル酸の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
すなわち本発明は、メタクロレインを気相接触酸化してメタクリル酸を製造するのに用いられる少なくともモリブデン、リンおよびバナジウムを含む触媒であって、細孔径半径0.005〜10μmの細孔の細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合が20%以上であるメタクリル酸製造用触媒である。
【0005】
【発明の実施の形態】
本発明のメタクリル酸製造用触媒は、少なくともモリブデン、リンおよびバナジウムを含むものである。特に下記の一般式で表わされる組成を有する触媒が好ましい。
aMobcCudFeefghi
(式中、P、Mo、V、Cu、FeおよびOはそれぞれリン、モリブデン、バナジウム、銅、鉄および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、珪素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を、Yは亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素をそれぞれ示す。a、b、c、d、e、f、g、およびhは各元素の原子比率を示し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0.01〜2、f=0〜3、g=0〜3、h=0.01〜3であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)
【0006】
本発明のメタクリル酸製造用触媒を製造するための原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。例えばモリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等、バナジウム原料としてはメタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が使用できる。
【0007】
本発明のメタクリル酸製造用触媒は、細孔径半径0.005〜10μmの細孔の細孔容積(以下、全細孔容積という。)に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合が20%以上である。
【0008】
ここで細孔容積は水銀圧入法により測定されたものである。水銀圧入法による細孔容積の測定方法を、水銀圧入式ポロシメーター(CARLOELBA社製2000型)を用いた具体例で説明する。
【0009】
水銀圧入式ポロシメーター(CARLOELBA社製2000型)を用いて、132Pa〜大気圧は手動バルブにより段階的に昇圧し、大気圧〜199MPaは平均昇圧速度0.01〜0.3MPa/秒で昇圧し、細孔径半径0.005〜10μmの範囲について細孔径半径とその細孔径半径以上の細孔容積を表すチャートを得る。このチャートから得られる細孔径半径0.005μm以上の細孔容積と細孔径半径0.05μm以上の細孔容積の差が、細孔径半径0.005〜0.05μmの細孔の有する細孔容積となる。また、細孔径半径0.005μm以上の細孔容積が全細孔容積となる。
【0010】
本発明のメタクリル酸製造用触媒では、全細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合が20%以上であり、好ましくは22〜30%である。この割合が大きくなるとメタクロレインの気相接触酸化によるメタクリル酸収率が向上する。
【0011】
以下、本発明のメタクリル酸製造用触媒の製造法の一例について詳しく説明するが、本発明の触媒はここで説明する製造法により得られたものに限定されるものではない。
【0012】
まず触媒の原料を水に混合あるいは懸濁させる。この溶液または懸濁液を攪拌しながら加熱し、80℃以上としてから1〜50時間攪拌を継続する(以下、この工程を加熱攪拌という。)。加熱攪拌中の溶液または懸濁液温度は80℃以上であれば特に限定されない。この際、蒸発により水が減少することを防ぐため、溶液または懸濁液の入った容器の頭部に冷却器等を取り付けてもよい。また、攪拌速度についても特に限定はなく、溶液または懸濁液が均一に混合または懸濁した状態になるよう任意に決められる。
【0013】
加熱攪拌終了後、この溶液または懸濁液を80℃以上で1〜24時間、好ましくは1〜10時間静置する。静置中の溶液または懸濁液の温度は、加熱攪拌中の溶液または懸濁液の温度と同じであっても、異なっていてもよいが、80〜95℃が好ましい。
【0014】
触媒組成に銅、鉄、上記X、YおよびZの元素を含む触媒を製造する場合、これらの元素の添加時期は、モリブデン、リンおよびバナジウムの混合溶液または懸濁液の加熱前、80℃以上としてからの攪拌中、加熱攪拌終了直後、静置終了後のいずれでもよい。加熱攪拌終了後または静置終了後に触媒の原料を加える際の溶液または懸濁液の温度は、特に制限されず任意である。また、加熱攪拌終了後または静置終了後に触媒の原料を加えた場合、添加後に溶液または懸濁液を任意の温度で数分〜数時間攪拌しても構わない。
【0015】
このようにして得られた溶液または懸濁液は、種々の方法を用いて乾燥し、乾燥物とする。具体的な乾燥方法としては、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法等が挙げられる。
【0016】
得られた乾燥物は、打錠成形機、押出し成形機、転動造粒機等の一般的な粉体用成形機等を用いて、球状、リング状、円柱状等任意の形状の成形物としてもよい。尚、成形に際しては、公知の添加剤、例えばグラファイト、タルク等を少量添加してもよい。
【0017】
次に、このようにして得られた乾燥物または成形物を熱処理して触媒とする。熱処理する方法や熱処理の条件は、公知の方法および条件を使用することができる。用いる触媒原料、触媒組成、製造法、流通ガス等により最適な熱処理条件は異なるが、例えば空気等の含酸素ガス流通下、あるいは窒素等の不活性ガスの流通下で200〜500℃、好ましくは300〜450℃で処理する方法が挙げられる。熱処理の時間は通常0.5時間以上必要であり、好ましくは1〜40時間である。
【0018】
本発明の触媒を用いてメタクロレインを気相接触酸化してメタクリル酸を製造するに際し、原料ガス中のメタクロレインの濃度は広い範囲で変えることができるが、容量で1〜20%が適当であり、特に3〜10%の範囲が好ましい。原料ガスには、低級飽和アルデヒド等の不純物を反応に実質的な影響を与えない程度含んでいてもよい。
【0019】
原料ガス中には酸素が必要で、酸素源としては空気を用いるのが経済的に有利であるが、必要ならば純酸素で富化した空気等も用いうる。原料ガス中の酸素量は、メタクロレインに対して0.3〜4倍モル、特に0.4〜2.5倍モルの範囲が好ましい。原料ガスには窒素、水蒸気、炭酸ガス等の不活性ガスが含まれていてもよい。
【0020】
メタクロレインからメタクリル酸を製造する反応の圧力は、常圧から数気圧までがよい。反応温度は230〜450℃の範囲で選ぶことができ、特に250〜400℃が好ましい。反応は固定床でも流動床でも行うことができる。
【0021】
【実施例】
以下、本発明による触媒の製造法およびそれを用いての反応例を具体的に説明する。説明中「部」は重量部を意味する。細孔容積は水銀圧入式ポロシメーター(CARLOELBA社製2000型)を用いて前記の方法で測定した。メタクリル酸製造反応の生成物はガスクロマトグラフィーにより分析した。メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は以下のように定義される。
メタクロレインの反応率(%)=A/B×100
メタクリル酸の選択率(%)=C/A×100
メタクリル酸の単流収率(%)=C/B×100
ここで、Aは反応したメタクロレインのモル数、Bは供給したメタクロレインのモル数、Cは生成したメタクリル酸のモル数を表わす。
【0022】
[実施例1]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部、85重量%リン酸8.2部を純水30部に溶解した溶液、硝酸銅1.1部を純水30部に溶解した溶液および硝酸鉄3.8部を純水10部に溶解した溶液を純水200部に加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間加熱攪拌した。次に、液温を85℃としてこれを保ちつつ3時間静置し、ついで硝酸セシウム9.2部を純水100部に溶解した溶液をこれに加え、混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で16時間乾燥後、加圧成形し、空気流通下に380℃で6時間熱処理して触媒を得た。
【0023】
得られた触媒の酸素以外の元素の組成はMo121.50.5Cu0.1Fe0.2Cs1.0であった。この触媒の全細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合は23.7%であった。
【0024】
この触媒を反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(容量%)の混合ガスを反応温度290℃、接触時間3.6秒で通じた。生成物を捕集し、ガスクロマトグラフィーで分析したところ、メタクロレイン反応率83.8%、メタクリル酸選択率82.9%、メタクリル酸単流収率69.5%であった。
【0025】
[比較例1]
実施例1において静置を行わず、加熱攪拌終了後すぐに硝酸セシウムの水溶液を加えた点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0026】
[実施例2]
実施例1において、加熱攪拌時の液温を100℃にした点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0027】
[比較例2]
実施例1において、加熱攪拌時の液温を70℃にした点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0028】
[実施例3]
実施例1において、加熱攪拌の時間を20時間にした点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0029】
[比較例3]
実施例1において、加熱攪拌の時間を0.5時間にした点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0030】
[比較例4]
実施例1において、加熱攪拌を行わず、液温を90℃とした後すぐに硝酸セシウムの水溶液を加えた点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0031】
[実施例4]
実施例1において、硝酸鉄を加えなかった点以外は、実施例1と同様にして触媒を製造し、メタクリル酸の製造反応を行った。この触媒の酸素以外の元素の組成はMo121.50.5Cu0.1Cs1.0であった。この触媒の全細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合、および反応結果を表1に示した。
【0032】
[比較例5]
実施例4において静置を行わず、加熱攪拌終了後すぐに硝酸セシウムの水溶液を加えた点以外は、実施例4と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0033】
[比較例6]
実施例4において、加熱攪拌を行わず、液温を90℃とした後すぐに硝酸セシウムの水溶液を加えた点以外は、実施例4と同様にして触媒を製造し、メタクリル酸の製造反応を行ない、表1の結果を得た。
【0034】
[実施例5]
三酸化モリブデン100部、五酸化バナジウム2.6部、85重量%リン酸6.7部を純水30部に溶解した溶液、硝酸銅1.4部および硝酸鉄2.3部を純水800部に加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間加熱攪拌した。次に、液温を85℃としてこれを保ちつつ3時間静置し、ついで重炭酸セシウム11.2部を純水100部に溶解した溶液をこれに加えた後、混合液を加熱して蒸発乾固した。得られた固形物を130℃で16時間乾燥後、加圧成形し、空気流通下に380℃で6時間熱処理して触媒を得た。
【0035】
得られた触媒の酸素以外の元素の組成はMo121.0Cu0.10.5Fe0.1Cs1.0であった。この触媒の全細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合、およびこの触媒を用いて実施例1と同じ条件でメタクリル酸の製造反応を行った結果を表1に示す。
【0036】
【表1】

Figure 0003710944
【0037】
【発明の効果】
本発明の触媒を用いてメタクロレインを気相接触酸化すると、高収率でメタクリル酸を製造することができる。特に、一般式PaMobcCudFeefghi(式中の記号の意味は前記と同じ。)を用いることで、より高収率でメタクリル酸を製造することができる。
また本発明のメタクリル酸製造用触媒の製造法により、このような高収率でメタクリル酸を製造できる触媒が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, a method for producing the catalyst, and a method for producing methacrylic acid.
[0002]
[Prior art]
Conventionally, many proposals have been made regarding a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, a catalyst used in the production thereof, and a method for producing the catalyst. Among these, there are those in which the fine structure of the catalyst such as the surface area, pore volume, and pore distribution of the catalyst is adjusted by the catalyst molding method and molding conditions. For example, as a method for producing a catalyst having a pore size distribution controlled within a specific range, Japanese Patent Application Laid-Open No. 63-315148 uses a centrifugal flow coating apparatus to make pore diameters of 1 to 10 μm and 0.1 to 0.1 μm. In the method of producing a catalyst having a distribution concentrated in the range of 1 μm, in JP-A-3-86242 and JP-A-4-90853, there is a support molding method in which a catalytically active component is supported on an inert carrier. In the pore size distribution of the substance layer, the proportion of the pores with respect to the total pore volume is 20 to 70%, the pores less than 0.5 to 1 μm are 20% or less, and less than 0.1 to 0.5 μm. A method for producing a catalyst having 20 to 70% pores has been proposed.
[0003]
[Problems to be solved by the invention]
However, the present situation is that industrial development of catalysts with better reaction results is desired.
An object of the present invention is to provide a catalyst that can produce methacrylic acid in high yield by gas phase catalytic oxidation of methacrolein, a method for producing the catalyst, and a method for producing methacrylic acid.
[0004]
[Means for Solving the Problems]
That is, the present invention is a catalyst containing at least molybdenum, phosphorus and vanadium used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, and having pores with pore diameters of 0.005 to 10 μm. A catalyst for producing methacrylic acid, in which the ratio of the pore volume of pores having a pore diameter radius of 0.005 to 0.05 μm to the volume is 20% or more.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for producing methacrylic acid of the present invention contains at least molybdenum, phosphorus and vanadium. In particular, a catalyst having a composition represented by the following general formula is preferred.
P a Mo b V c Cu d F e X f Y g Z h O i
(Wherein, P, Mo, V, Cu, Fe and O represent phosphorus, molybdenum, vanadium, copper, iron and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon. , At least one element selected from the group consisting of tungsten and boron, Y is at least one element selected from the group consisting of zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g and h are atomic ratios of the respective elements When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0.01-2 f = 0~3, g = 0~3, a h = 0.01 to 3, i is an oxygen atom ratio required for satisfying the valency of each component.)
[0006]
The raw material for producing the catalyst for producing methacrylic acid of the present invention is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material, and ammonium metavanadate, vanadium pentoxide, vanadium chloride, etc. can be used as the vanadium raw material.
[0007]
The catalyst for producing methacrylic acid of the present invention has a pore diameter of 0.005 to 0.05 μm with respect to the pore volume of pores having a pore diameter of 0.005 to 10 μm (hereinafter referred to as total pore volume). The proportion of the pore volume is 20% or more.
[0008]
Here, the pore volume is measured by mercury porosimetry. A method for measuring the pore volume by the mercury intrusion method will be described using a specific example using a mercury intrusion porosimeter (carloelba type 2000).
[0009]
Using a mercury intrusion porosimeter (carloelba type 2000), the pressure from 132 Pa to atmospheric pressure was increased stepwise by a manual valve, and atmospheric pressure to 199 MPa was increased at an average pressure increase rate of 0.01 to 0.3 MPa / second. A chart representing the pore diameter radius and the pore volume equal to or larger than the pore diameter radius in the range of the pore diameter radius of 0.005 to 10 μm is obtained. The difference between the pore volume having a pore diameter of 0.005 μm or more obtained from this chart and the pore volume having a pore diameter of 0.05 μm or more is the pore volume possessed by pores having a pore diameter of 0.005 to 0.05 μm. It becomes. A pore volume having a pore diameter radius of 0.005 μm or more is the total pore volume.
[0010]
In the methacrylic acid production catalyst of the present invention, the ratio of the pore volume of pores having a pore diameter radius of 0.005 to 0.05 μm to the total pore volume is 20% or more, preferably 22 to 30%. As this ratio increases, the yield of methacrylic acid by gas phase catalytic oxidation of methacrolein is improved.
[0011]
Hereinafter, although an example of the manufacturing method of the catalyst for methacrylic acid manufacture of this invention is demonstrated in detail, the catalyst of this invention is not limited to what was obtained by the manufacturing method demonstrated here.
[0012]
First, the catalyst raw material is mixed or suspended in water. This solution or suspension is heated with stirring, and the stirring is continued for 1 to 50 hours after reaching 80 ° C. or higher (hereinafter, this step is referred to as heating and stirring). The temperature of the solution or suspension during heating and stirring is not particularly limited as long as it is 80 ° C. or higher. At this time, in order to prevent water from being reduced by evaporation, a cooler or the like may be attached to the head of the container containing the solution or suspension. Further, the stirring speed is not particularly limited, and can be arbitrarily determined so that the solution or suspension is uniformly mixed or suspended.
[0013]
After completion of heating and stirring, the solution or suspension is allowed to stand at 80 ° C. or higher for 1 to 24 hours, preferably 1 to 10 hours. The temperature of the solution or suspension during standing may be the same as or different from the temperature of the solution or suspension during heating and stirring, but is preferably 80 to 95 ° C.
[0014]
When producing a catalyst containing copper, iron, and the above X, Y and Z elements in the catalyst composition, the addition timing of these elements is 80 ° C. or higher before heating the mixed solution or suspension of molybdenum, phosphorus and vanadium. In the subsequent agitation, it may be either immediately after the end of heating and agitation or after completion of standing. The temperature of the solution or suspension when the catalyst raw material is added after completion of heating and stirring or after standing is not particularly limited. In addition, when the catalyst raw material is added after completion of heating and stirring or after standing, the solution or suspension may be stirred at an arbitrary temperature for several minutes to several hours after the addition.
[0015]
The solution or suspension thus obtained is dried using various methods to obtain a dried product. Specific examples of the drying method include evaporation to dryness, spray drying, and drum drying.
[0016]
The obtained dried product is a molded product having an arbitrary shape such as a spherical shape, a ring shape, or a cylindrical shape using a general powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, etc. It is good. In molding, a small amount of known additives such as graphite and talc may be added.
[0017]
Next, the dried product or molded product thus obtained is heat-treated to form a catalyst. Known methods and conditions can be used for the heat treatment method and the heat treatment conditions. The optimum heat treatment conditions vary depending on the catalyst raw material, catalyst composition, production method, flow gas, etc. used, but for example, 200 to 500 ° C., preferably under an oxygen-containing gas flow such as air or an inert gas flow such as nitrogen, preferably The method of processing at 300-450 degreeC is mentioned. The heat treatment time is usually 0.5 hours or more, preferably 1 to 40 hours.
[0018]
In producing methacrylic acid by gas phase catalytic oxidation of methacrolein using the catalyst of the present invention, the concentration of methacrolein in the raw material gas can be varied within a wide range, but 1-20% by volume is appropriate. In particular, the range of 3 to 10% is preferable. The source gas may contain impurities such as lower saturated aldehydes to the extent that they do not substantially affect the reaction.
[0019]
Oxygen is required in the raw material gas, and it is economically advantageous to use air as the oxygen source. However, if necessary, air enriched with pure oxygen can also be used. The amount of oxygen in the raw material gas is preferably in the range of 0.3 to 4 times mol, particularly 0.4 to 2.5 times mol with respect to methacrolein. The source gas may contain an inert gas such as nitrogen, water vapor, or carbon dioxide.
[0020]
The reaction pressure for producing methacrylic acid from methacrolein is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, and particularly preferably 250 to 400 ° C. The reaction can be carried out in a fixed bed or a fluidized bed.
[0021]
【Example】
Hereinafter, the method for producing a catalyst according to the present invention and reaction examples using the method will be described in detail. In the description, “parts” means parts by weight. The pore volume was measured by the method described above using a mercury intrusion porosimeter (carloelba type 2000). The product of the methacrylic acid production reaction was analyzed by gas chromatography. The reaction rate of methacrolein, the selectivity of methacrylic acid produced and the single flow yield are defined as follows.
Reaction rate of methacrolein (%) = A / B × 100
Methacrylic acid selectivity (%) = C / A × 100
Single stream yield of methacrylic acid (%) = C / B × 100
Here, A represents the number of moles of reacted methacrolein, B represents the number of moles of methacrolein supplied, and C represents the number of moles of methacrylic acid produced.
[0022]
[Example 1]
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate, 8.2 parts of 85% by weight phosphoric acid in 30 parts of pure water, a solution of 1.1 parts of copper nitrate in 30 parts of pure water, and A solution prepared by dissolving 3.8 parts of iron nitrate in 10 parts of pure water was added to 200 parts of pure water, and this was heated to 90 ° C. while stirring, and heated and stirred for 5 hours while maintaining the liquid temperature at 90 ° C. Next, the liquid temperature is kept at 85 ° C. and left for 3 hours, and then a solution obtained by dissolving 9.2 parts of cesium nitrate in 100 parts of pure water is added thereto, and the mixture is evaporated to dryness while heating and stirring. did. The obtained solid was dried at 130 ° C. for 16 hours, then pressure-molded, and heat-treated at 380 ° C. for 6 hours under air flow to obtain a catalyst.
[0023]
The composition of elements other than oxygen in the obtained catalyst was Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1.0 . The ratio of the pore volume of pores having a pore diameter of 0.005 to 0.05 μm to the total pore volume of this catalyst was 23.7%.
[0024]
This catalyst was charged into a reaction tube, and a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% nitrogen (volume%) was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. When the product was collected and analyzed by gas chromatography, the reaction rate of methacrolein was 83.8%, the selectivity of methacrylic acid was 82.9%, and the single flow rate of methacrylic acid was 69.5%.
[0025]
[Comparative Example 1]
In Example 1, the catalyst was produced in the same manner as in Example 1 except that an aqueous solution of cesium nitrate was added immediately after completion of heating and stirring, and a reaction for producing methacrylic acid was conducted. The result was obtained.
[0026]
[Example 2]
In Example 1, except that the liquid temperature during heating and stirring was set to 100 ° C., a catalyst was produced in the same manner as in Example 1, and a reaction for producing methacrylic acid was carried out. The results shown in Table 1 were obtained.
[0027]
[Comparative Example 2]
In Example 1, except that the liquid temperature at the time of heating and stirring was set to 70 ° C., a catalyst was produced in the same manner as in Example 1, and a reaction for producing methacrylic acid was performed. The results shown in Table 1 were obtained.
[0028]
[Example 3]
In Example 1, except that the heating and stirring time was 20 hours, a catalyst was produced in the same manner as in Example 1, and a reaction for producing methacrylic acid was carried out. The results shown in Table 1 were obtained.
[0029]
[Comparative Example 3]
In Example 1, except that the time of heating and stirring was changed to 0.5 hour, a catalyst was produced in the same manner as in Example 1, and a reaction for producing methacrylic acid was carried out. The results shown in Table 1 were obtained.
[0030]
[Comparative Example 4]
In Example 1, the catalyst was produced in the same manner as in Example 1 except that the aqueous solution of cesium nitrate was added immediately after the liquid temperature was set to 90 ° C. without heating and stirring, and the reaction for producing methacrylic acid was conducted. The results shown in Table 1 were obtained.
[0031]
[Example 4]
In Example 1, except that iron nitrate was not added, a catalyst was produced in the same manner as in Example 1, and a reaction for producing methacrylic acid was performed. The composition of elements other than oxygen in this catalyst was Mo 12 P 1.5 V 0.5 Cu 0.1 Cs 1.0 . Table 1 shows the ratio of the pore volume of pores having a pore diameter radius of 0.005 to 0.05 μm with respect to the total pore volume of this catalyst, and the reaction results.
[0032]
[Comparative Example 5]
In Example 4, the catalyst was produced in the same manner as in Example 4 except that an aqueous solution of cesium nitrate was added immediately after the heating and stirring, and a reaction for producing methacrylic acid was conducted. The result was obtained.
[0033]
[Comparative Example 6]
In Example 4, the catalyst was produced in the same manner as in Example 4 except that the aqueous solution of cesium nitrate was added immediately after the liquid temperature was set to 90 ° C. without heating and stirring, and the reaction for producing methacrylic acid was carried out. The results shown in Table 1 were obtained.
[0034]
[Example 5]
A solution obtained by dissolving 100 parts of molybdenum trioxide, 2.6 parts of vanadium pentoxide, 6.7 parts of 85% by weight phosphoric acid in 30 parts of pure water, 1.4 parts of copper nitrate and 2.3 parts of iron nitrate were added to 800 parts of pure water. The mixture was heated to 90 ° C. with stirring, and stirred for 5 hours while maintaining the liquid temperature at 90 ° C. Next, the liquid temperature was kept at 85 ° C. and left for 3 hours, and then a solution in which 11.2 parts of cesium bicarbonate was dissolved in 100 parts of pure water was added thereto, and then the mixture was heated to evaporate. Dried to dryness. The obtained solid was dried at 130 ° C. for 16 hours, then pressure-molded, and heat-treated at 380 ° C. for 6 hours under air flow to obtain a catalyst.
[0035]
The composition of elements other than oxygen in the obtained catalyst was Mo 12 P 1.0 Cu 0.1 V 0.5 Fe 0.1 Cs 1.0 . The ratio of the pore volume of pores having a pore radius of 0.005 to 0.05 μm to the total pore volume of this catalyst, and the results of the reaction for producing methacrylic acid under the same conditions as in Example 1 using this catalyst Is shown in Table 1.
[0036]
[Table 1]
Figure 0003710944
[0037]
【The invention's effect】
When methacrolein is subjected to gas phase catalytic oxidation using the catalyst of the present invention, methacrylic acid can be produced in high yield. In particular, the general formula P a Mo b V c Cu d Fe e X f Y g Z h O it ( meaning of symbols in the formula is the same. As defined above) by using, more producing methacrylic acid in high yield be able to.
Moreover, the catalyst which can manufacture methacrylic acid with such a high yield is obtained by the manufacturing method of the catalyst for methacrylic acid manufacture of this invention.

Claims (4)

メタクロレインを気相接触酸化してメタクリル酸を製造するのに用いられる少なくともモリブデン、リンおよびバナジウムを含む触媒であって、細孔径半径0.005〜10μmの細孔の細孔容積に対する細孔径半径0.005〜0.05μmの細孔の細孔容積の割合が20%以上であるメタクリル酸製造用触媒。A catalyst containing at least molybdenum, phosphorus and vanadium used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein, and a pore diameter radius with respect to a pore volume of a pore having a pore diameter radius of 0.005 to 10 μm A catalyst for producing methacrylic acid, wherein the ratio of the pore volume of 0.005-0.05 μm pores is 20% or more. 下記の一般式で表わされる組成を有する請求項1記載のメタクリル酸製造用触媒。
aMobcCudFeefghi
(式中、P、Mo、V、Cu、FeおよびOはそれぞれリン、モリブデン、バナジウム、銅、鉄および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、珪素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を、Yは亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素をそれぞれ示す。a、b、c、d、e、f、g、およびhは各元素の原子比率を示し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0.01〜2、f=0〜3、g=0〜3、h=0.01〜3であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)
The catalyst for methacrylic acid production according to claim 1, which has a composition represented by the following general formula.
P a Mo b V c Cu d F e X f Y g Z h O i
(Wherein, P, Mo, V, Cu, Fe and O represent phosphorus, molybdenum, vanadium, copper, iron and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon. , At least one element selected from the group consisting of tungsten and boron, Y is at least one element selected from the group consisting of zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g and h are atomic ratios of the respective elements When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0.01-2 f = 0~3, g = 0~3, a h = 0.01 to 3, i is an oxygen atom ratio required for satisfying the valency of each component.)
少なくともモリブデン、リンおよびバナジウムを含む溶液または懸濁液を混合し、80℃以上で1〜50時間加熱攪拌を行った後、80℃以上で1〜24時間静置したものを乾燥し、次いで熱処理する請求項1または2記載のメタクリル酸製造用触媒の製造法。A solution or suspension containing at least molybdenum, phosphorus and vanadium is mixed, heated and stirred at 80 ° C. or higher for 1 to 50 hours, dried at 80 ° C. or higher for 1 to 24 hours, and then heat treated. A process for producing a catalyst for producing methacrylic acid according to claim 1 or 2. 請求項1または2記載の触媒を用いてメタクロレインを気相接触酸化するメタクリル酸の製造方法。A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation using the catalyst according to claim 1.
JP01028399A 1999-01-19 1999-01-19 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid Expired - Fee Related JP3710944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01028399A JP3710944B2 (en) 1999-01-19 1999-01-19 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01028399A JP3710944B2 (en) 1999-01-19 1999-01-19 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2000202294A JP2000202294A (en) 2000-07-25
JP3710944B2 true JP3710944B2 (en) 2005-10-26

Family

ID=11745996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01028399A Expired - Fee Related JP3710944B2 (en) 1999-01-19 1999-01-19 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3710944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163726A1 (en) 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carobxylic acid using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557640B1 (en) 2004-01-09 2006-03-10 주식회사 엘지화학 Novel Heteropoly Acid Catalyst and Preparing Method Thereof
US7649111B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Catalyst for the oxidation of a mixed aldehyde feedstock to methacrylic acid and methods for making and using same
JP5020514B2 (en) * 2006-01-16 2012-09-05 ダイヤニトリックス株式会社 Method for producing fluidized bed catalyst and method for producing nitriles
US7494952B2 (en) * 2006-01-17 2009-02-24 Saudi Basic Industries Corporation Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
WO2013147041A1 (en) * 2012-03-30 2013-10-03 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163726A1 (en) 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carobxylic acid using same

Also Published As

Publication number Publication date
JP2000202294A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JPH0570502B2 (en)
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JPWO2004004900A1 (en) Method for producing a catalyst for methacrylic acid production
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP3200149B2 (en) Method for producing catalyst for methacrylic acid synthesis
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH0810621A (en) Production of catalyst for producing unsaturated carboxylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP3581038B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP2006102740A (en) Catalyst for producing methacrylic acid, process for producing the same and process for producing methacrylic acid
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JPH11226412A (en) Production of catalyst for production of methacrylic acid and production of methacrylic acid
JP3764805B2 (en) Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JP4881229B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the same
JPH03167152A (en) Production of methacrylic acid
JP2003190798A (en) Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid
JPH06374A (en) Preparation of catalyst for producing unsaturated carboxylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees