JP5020514B2 - Method for producing fluidized bed catalyst and method for producing nitriles - Google Patents

Method for producing fluidized bed catalyst and method for producing nitriles Download PDF

Info

Publication number
JP5020514B2
JP5020514B2 JP2006007666A JP2006007666A JP5020514B2 JP 5020514 B2 JP5020514 B2 JP 5020514B2 JP 2006007666 A JP2006007666 A JP 2006007666A JP 2006007666 A JP2006007666 A JP 2006007666A JP 5020514 B2 JP5020514 B2 JP 5020514B2
Authority
JP
Japan
Prior art keywords
raw material
catalyst
material slurry
fluidized bed
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006007666A
Other languages
Japanese (ja)
Other versions
JP2007185636A (en
Inventor
健一 宮氣
元男 柳田
博一 渡辺
雄一 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2006007666A priority Critical patent/JP5020514B2/en
Publication of JP2007185636A publication Critical patent/JP2007185636A/en
Application granted granted Critical
Publication of JP5020514B2 publication Critical patent/JP5020514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、流動層において用いられる触媒の製造方法に関する。また、流動層用触媒の存在下でアンモ酸化を行うニトリル類の製造方法に関する。   The present invention relates to a method for producing a catalyst used in a fluidized bed. The present invention also relates to a method for producing nitriles in which ammoxidation is performed in the presence of a fluidized bed catalyst.

流動層反応は、有機化合物のアンモ酸化反応によるニトリル類の製造、重質油の流動接触分解による高オクタン価ガソリンの製造等、石油化学工業において広く実施されている。   The fluidized bed reaction is widely practiced in the petrochemical industry, such as production of nitriles by ammoxidation reaction of organic compounds and production of high octane gasoline by fluid catalytic cracking of heavy oil.

流動層反応に用いられる触媒の製造方法としては、従来より多くの方法が開発されている。例えば、ニトリル類の製造に用いられる触媒としては、特許文献1には、約66℃以下の温度でモリブデン化合物と他の原料を混合した後、約537.7℃以下で噴霧乾燥し、焼成する方法が記載されている。
特許文献2には、アンチモン化合物、他の触媒活性成分含有化合物および触媒担体原料を含む原料スラリーを噴霧乾燥し、次いで400〜1100℃の温度で流動焼成する方法が記載されている。
特許文献3には、可溶性のタングステン化合物と鉄、コバルト等およびシリカゾルを含む原料スラリーのpHを5以下に調整した後、噴霧乾燥し、400〜1000℃で焼成する方法が記載されている。
特許文献4には、固形分濃度が40質量%以下である原料スラリーを300℃以下で噴霧乾燥した後、250〜500℃で前焼成し、次いで650〜710℃で後焼成する方法が記載されている。
特許文献5には、鉄等原料およびモリブデン化合物を含む原料スラリーのpHを7以上に調整した後、該スラリーを噴霧乾燥し、焼成する方法が記載されている。
特許文献6には、モリブデンと鉄の各成分原料を含む溶液または原料スラリーのpHを5以下に調整し、50〜120℃の温度範囲で加熱処理した後に噴霧乾燥し、焼成する方法が記載されている。
特許文献7には、鉄、アンチモンおよび硝酸を含む原料スラリーのpHを0.5〜3に調整し、加熱処理した後に噴霧乾燥し、焼成する方法が記載されている。
特許文献8には、モリブデン、ビスマス、鉄およびシリカを含む原料スラリーを濃縮した後に噴霧乾燥し、焼成する方法が記載されている。
特開昭48−15783号公報 特公昭50−3756号公報 特公昭52−10431号公報 特開昭50−125984号公報 特開平2−59046号公報 特開平1−265067号公報 特開平10−231125号公報 特開2002−306969号公報
As a method for producing a catalyst used in a fluidized bed reaction, many methods have been developed conventionally. For example, as a catalyst used for the production of nitriles, in Patent Document 1, a molybdenum compound and other raw materials are mixed at a temperature of about 66 ° C. or lower, and then spray-dried at about 537.7 ° C. or lower and calcined. A method is described.
Patent Document 2 describes a method in which a raw slurry containing an antimony compound, another catalytically active component-containing compound and a catalyst carrier raw material is spray-dried and then fluidized and fired at a temperature of 400 to 1100 ° C.
Patent Document 3 describes a method of adjusting the pH of a raw slurry containing a soluble tungsten compound, iron, cobalt and the like and silica sol to 5 or less, spray drying, and firing at 400 to 1000 ° C.
Patent Document 4 describes a method in which a raw material slurry having a solid content concentration of 40% by mass or less is spray-dried at 300 ° C. or lower, pre-fired at 250 to 500 ° C., and then post-fired at 650 to 710 ° C. ing.
Patent Document 5 describes a method of adjusting the pH of a raw material slurry containing a raw material such as iron and a molybdenum compound to 7 or more and then spray-drying and firing the slurry.
Patent Document 6 describes a method in which the pH of a solution or raw material slurry containing molybdenum and iron component raw materials is adjusted to 5 or less, heat-treated in a temperature range of 50 to 120 ° C., spray-dried, and fired. ing.
Patent Document 7 describes a method in which the pH of a raw material slurry containing iron, antimony and nitric acid is adjusted to 0.5 to 3, heat-treated, spray-dried, and fired.
Patent Document 8 describes a method of concentrating a raw slurry containing molybdenum, bismuth, iron and silica, followed by spray drying and firing.
JP 48-155783 A Japanese Patent Publication No. 50-3756 Japanese Patent Publication No.52-10431 JP 50-125984 A JP-A-2-59046 Japanese Patent Laid-Open No. 1-265067 JP-A-10-231125 JP 2002-306969 A

特許文献1〜8に記載の触媒製造法によれば、目的生成物収率の改善や、長時間にわたる反応成績の維持において、ある程度の効果は得られたものの、そのレベルは工業的には必ずしも満足できるものではなかった。そのため、目的生成物が高収率で長時間にわたって安定して得られる流動層用触媒が強く求められていた。さらに、工業的な流動層用触媒としては、取り扱い性の点から、強度等が高いことが求められていた。
また、目的生成物が高収率で長時間にわたって安定して得られず、しかも強度が低い流動層用触媒を、ニトリル類の製造に用いた場合には、ニトリル類の生産性が低くなることがあった。
According to the catalyst production methods described in Patent Documents 1 to 8, although some effects were obtained in improving the yield of the target product and maintaining the reaction results over a long period of time, the level is not necessarily industrially. It was not satisfactory. Therefore, there has been a strong demand for a fluidized bed catalyst in which the target product can be stably obtained over a long period of time with a high yield. Further, industrial fluidized bed catalysts have been required to have high strength and the like from the viewpoint of handleability.
In addition, when a fluidized bed catalyst having a low yield is not obtained stably for a long time with a high yield, the productivity of the nitriles will be low. was there.

本発明は、これらの課題を解決するためになされたものであり、目的生成物が高収率で長時間にわたって安定して得られる上に、強度が高い流動層用触媒を製造できる流動層用触媒の製造方法を提供することを目的とする。また、流動層を用いた接触反応にて、生産性の高いニトリル類の製造方法を提供することを目的とする。   The present invention has been made to solve these problems, and the target product can be stably obtained over a long period of time with a high yield, and also can be used to produce a fluid bed catalyst with high strength. It aims at providing the manufacturing method of a catalyst. Moreover, it aims at providing the manufacturing method of nitriles with high productivity by the contact reaction using a fluidized bed.

本発明の流動層用触媒の製造方法は、触媒原料を含む原料スラリーを調製する原料スラリー調製工程と、
該原料スラリーを容器内に充填し、圧力300〜50000Pa(ゲージ圧力)、加熱温度50℃以上で10分以上加熱する加熱工程と、
加熱した原料スラリーを噴霧乾燥し、焼成する乾燥・焼成工程とを有することを特徴とする。
本発明のニトリル類の製造方法は、上述した流動層用触媒の製造方法で得られた流動層用触媒の存在下、流動層にて、原料有機化合物をアンモ酸化することを特徴とする。
The method for producing a fluidized bed catalyst of the present invention comprises a raw material slurry preparation step of preparing a raw material slurry containing a catalyst raw material,
A heating step of filling the raw material slurry in a container and heating at a pressure of 300 to 50000 Pa (gauge pressure) at a heating temperature of 50 ° C. or more for 10 minutes or more;
It has the drying and baking process of spray-drying and baking the heated raw material slurry, It is characterized by the above-mentioned.
The method for producing nitriles of the present invention is characterized in that the raw organic compound is ammoxidized in the fluidized bed in the presence of the fluidized bed catalyst obtained by the fluidized bed catalyst producing method described above.

本発明の流動層用触媒の製造方法によれば、目的生成物が高収率で長時間にわたって安定して得られる上に、触媒強度等が高い流動層用触媒を製造できる。
本発明のニトリル類の製造方法によれば、流動層を用いた接触反応にて、高い生産性でニトリル類を製造できる。
According to the method for producing a fluidized bed catalyst of the present invention, a target product can be stably obtained over a long period of time with a high yield, and a fluidized bed catalyst having high catalyst strength and the like can be produced.
According to the method for producing nitriles of the present invention, nitriles can be produced with high productivity by a catalytic reaction using a fluidized bed.

<流動層用触媒の製造方法>
本発明の流動層用触媒(以下、触媒と略す。)の製造方法は、触媒原料を含む原料スラリーを調製する原料スラリー調製工程と、該原料スラリーを加熱する加熱工程と、加熱した原料スラリーを噴霧乾燥し、焼成する乾燥・焼成工程とを有する。
<Method for producing fluidized bed catalyst>
The method for producing a fluidized bed catalyst (hereinafter abbreviated as catalyst) of the present invention comprises a raw material slurry preparation step for preparing a raw material slurry containing a catalyst raw material, a heating step for heating the raw material slurry, and a heated raw material slurry. A drying / firing step of spray drying and baking.

(原料スラリー調製工程)
原料スラリー調製工程においては、例えば、触媒原料を、固体のまま水中で調合することにより、あるいは、水や希硝酸等に溶解して溶液とした後に調合することにより、原料スラリーを得る。
触媒原料としては、得られる触媒によって製造する化合物に応じて適宜選択することができ、例えば、酸化物、あるいは強熱することにより容易に酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物、アンモニウム塩等、またはそれらの混合物などが好適に用いられる。触媒原料は単独であってもよいが、複数であることが好ましい。
触媒原料は、必ずしも触媒を構成する全ての元素を含んでいなくてもよい。ここで添加されなかった元素は乾燥・焼成工程前までに添加すればよい。
(Raw material slurry preparation process)
In the raw material slurry preparation step, for example, the raw material slurry is obtained by preparing the catalyst raw material in water as it is in the solid state, or by preparing it after dissolving in water or dilute nitric acid to form a solution.
The catalyst raw material can be appropriately selected according to the compound produced by the obtained catalyst. For example, it is an oxide, or nitrate, carbonate, organic acid salt, water that can be easily converted into an oxide by ignition. Oxides, ammonium salts, etc., or mixtures thereof are preferably used. Although the catalyst raw material may be single, it is preferable that it is plural.
The catalyst raw material does not necessarily include all elements constituting the catalyst. The elements not added here may be added before the drying / firing process.

原料スラリー調製工程においては、必要に応じて、硝酸やアンモニア水等を添加してpH調整を行ってもよい。加熱工程前に原料スラリーのpHを5以下にすれば、得られる触媒の性能が向上して、目的生成物収率がより高くなる場合がある。   In the raw material slurry preparation step, if necessary, the pH may be adjusted by adding nitric acid, aqueous ammonia or the like. If the pH of the raw slurry is adjusted to 5 or less before the heating step, the performance of the resulting catalyst may be improved and the target product yield may be higher.

(加熱工程)
加熱工程では、原料スラリーを、圧力300〜50000Paで加熱する。
圧力が300Pa未満であると、本発明の効果が発揮されない。一方、圧力が50000Paを超えても、圧力の上昇に応じた効果が得られなくなる上に、高い耐圧性を有する装置が必要になるため、無駄が多くなる。
圧力の好ましい下限値は400Paであり、より好ましい下限値は500Paであり、好ましい上限値は40000Paである。
なお、ここでいう圧力は、大気圧(容器外の雰囲気の圧力)を0Paとした圧力、すなわちゲージ圧力のことである。
(Heating process)
In the heating step, the raw material slurry is heated at a pressure of 300 to 50000 Pa.
When the pressure is less than 300 Pa, the effect of the present invention is not exhibited. On the other hand, even if the pressure exceeds 50000 Pa, an effect corresponding to the increase in pressure cannot be obtained, and a device having high pressure resistance is required.
A preferable lower limit of the pressure is 400 Pa, a more preferable lower limit is 500 Pa, and a preferable upper limit is 40000 Pa.
The pressure referred to here is a pressure at which atmospheric pressure (pressure in the atmosphere outside the container) is 0 Pa, that is, gauge pressure.

圧力を前記範囲にするためには、例えば、容器内に充填した原料スラリーを加熱し、それにより発生する水蒸気で加圧しつつ、調圧弁等を用いて容器内の水蒸気を排気して所定の圧力に調圧する方法などが挙げられる。加熱のみで容器内の圧力が所定の範囲まで達しない場合には、加圧された空気や不活性ガス等を容器内に供給する方法を適用することが好ましい。 In order to set the pressure within the above range, for example, the raw material slurry charged in the container is heated and pressurized with water vapor generated thereby, and the water vapor in the container is exhausted using a pressure regulating valve or the like to a predetermined pressure. And a method of adjusting the pressure to the above. When the pressure in the container does not reach a predetermined range only by heating, it is preferable to apply a method of supplying pressurized air, inert gas, or the like into the container.

加熱工程における加熱温度は50℃以上であり、好ましくは60℃以上、さらに好ましくは70℃以上である。加熱温度が前記下限値より低い場合には本発明の効果が発揮されない。加熱温度の上限は特に制限されないが、120℃以下が好ましい。   The heating temperature in the heating step is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher. When the heating temperature is lower than the lower limit, the effect of the present invention is not exhibited. The upper limit of the heating temperature is not particularly limited, but is preferably 120 ° C. or lower.

加熱時間は10分以上であり、好ましくは15分以上、さらに好ましくは30分以上である。加熱時間が下限値より短い場合には本発明の効果が発揮されない。加熱時間の上限値は特に制限されないが、10時間を超えて加熱しても、それに応じた効果が発揮されず、無駄が多くなることから、10時間以下が好ましい。
本発明における加熱時間とは、所定の温度に到達した後、その温度を保持する時間のことをいう。
The heating time is 10 minutes or more, preferably 15 minutes or more, and more preferably 30 minutes or more. When the heating time is shorter than the lower limit value, the effect of the present invention is not exhibited. The upper limit of the heating time is not particularly limited, but even if heating is performed for more than 10 hours, the corresponding effect is not exhibited and waste is increased.
The heating time in the present invention refers to a time for maintaining the temperature after reaching a predetermined temperature.

加熱工程においては、前記所定の圧力および温度で所定時間、加熱することに加えて、必要に応じて、前記圧力および温度以外の条件で加熱しても構わない。 In the heating step, in addition to heating at the predetermined pressure and temperature for a predetermined time, heating may be performed under conditions other than the pressure and temperature as necessary.

加熱工程は、還流冷却器を設けて還流下で行ってもよい。また、この加熱工程によって原料スラリーを濃縮してもよい。 The heating step may be performed under reflux with a reflux condenser. Moreover, you may concentrate a raw material slurry by this heating process.

(乾燥・焼成工程)
乾燥・焼成工程における原料スラリーの噴霧乾燥では、例えば、回転円盤式、ノズル式等の噴霧乾燥装置を用いることができる。噴霧乾燥条件は、触媒として好ましい粒径分布になるように適宜選択することが好ましい。
(Drying and firing process)
In the spray drying of the raw material slurry in the drying / firing process, for example, a rotary disk type, a nozzle type or the like can be used. The spray drying conditions are preferably selected as appropriate so as to obtain a particle size distribution preferable as a catalyst.

上記乾燥により得られた乾燥粒子の焼成温度は200〜1000℃であることが好ましく、焼成時間は0.5〜20時間であることが好ましい。焼成に用いられる炉については特に制限はなく、箱型炉、ロータリーキルン、流動焼成炉等を用いることができる。これらの中でも、特に均一に焼成できるという点で流動焼成炉が好ましい。焼成は、異なる条件でまたは同じ条件で二回以上行ってもよい。焼成を二回以上行った場合には、得られる触媒の活性および強度がより高くなる傾向にある。   The firing temperature of the dried particles obtained by the drying is preferably 200 to 1000 ° C., and the firing time is preferably 0.5 to 20 hours. There is no restriction | limiting in particular about the furnace used for baking, A box furnace, a rotary kiln, a fluidized-fired furnace, etc. can be used. Among these, a fluidized firing furnace is preferable in that it can be fired uniformly. Firing may be performed twice or more under different conditions or under the same conditions. When the calcination is performed twice or more, the activity and strength of the resulting catalyst tend to be higher.

(触媒の組成)
本発明の製造方法により製造された触媒は、下記式(I)または(II)で表される組成であることが好ましく、特に下記式(I)で表される組成であることがより好ましい。
触媒が下記式で表される組成であれば、反応時に目的生成物の収率がより向上し、また、触媒の強度がより高くなる。
(Composition of catalyst)
The catalyst produced by the production method of the present invention preferably has a composition represented by the following formula (I) or (II), more preferably a composition represented by the following formula (I).
When the catalyst has a composition represented by the following formula, the yield of the target product is further improved during the reaction, and the strength of the catalyst is further increased.

Fe10Sbixyzj(SiO2k・・・(I)
式中、Fe、SbおよびSiO2はそれぞれ鉄、アンチモン、およびシリカを表す。
Xはバナジウム、モリブデンおよびタングステンからなる群より選ばれた少なくとも一種の元素を表す。
Yはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、ビスマスおよびテルルからなる群より選ばれた少なくとも一種の元素を表す。
Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムからなる群より選ばれた少なくとも一種の元素を表す。
Oは酸素を表す。
Fe 10 Sb i X x Y y Z z O j (SiO 2 ) k (I)
In the formula, Fe, Sb and SiO 2 represent iron, antimony and silica, respectively.
X represents at least one element selected from the group consisting of vanadium, molybdenum and tungsten.
Y is magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, copper, silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, It represents at least one element selected from the group consisting of bismuth and tellurium.
Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
O represents oxygen.

添字i、x、y、z、jおよびkは原子比を表し、iの下限は好ましくは3、さらに好ましくは5であり、上限は好ましくは100、さらに好ましくは90である。
xの下限は好ましくは0.1、さらに好ましくは0.3であり、上限は好ましくは15、さらに好ましくは12である。
yの下限は好ましくは0.1、さらに好ましくは0.3であり、上限は好ましくは20、さらに好ましくは15である。
zの下限は0、上限は好ましくは3、さらに好ましくは2である。
jは上記各成分が結合して生成する金属酸化物の酸素の数である。
kの下限は好ましくは10、さらに好ましくは30であり、上限は好ましくは200、さらに好ましくは180である。
The subscripts i, x, y, z, j and k represent an atomic ratio. The lower limit of i is preferably 3, more preferably 5, and the upper limit is preferably 100, more preferably 90.
The lower limit of x is preferably 0.1, more preferably 0.3, and the upper limit is preferably 15, more preferably 12.
The lower limit of y is preferably 0.1, more preferably 0.3, and the upper limit is preferably 20, more preferably 15.
The lower limit of z is 0, and the upper limit is preferably 3, more preferably 2.
j is the number of oxygen in the metal oxide formed by combining the above components.
The lower limit of k is preferably 10, more preferably 30, and the upper limit is preferably 200, more preferably 180.

Mo10BiaFebcdefg(SiO2h・・・(II)
式中、Mo、Bi、Fe、およびSiはそれぞれモリブデン、ビスマス、鉄およびケイ素を表す。
Cはニッケル、コバルト、亜鉛、マグネシウム、マンガンおよび銅よりなる群から選ばれた少なくとも一種の元素を表す。
Dはランタン、セリウム、プラセオジム、ネオジムおよびサマリウムからなる群より選ばれた少なくとも一種の元素を表す。
Eはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムよりなる群から選ばれた少なくとも一種の元素を表す。
Fはカルシウム、ストロンチウム、バリウム、カドミウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、タングステン、ゲルマニウム、スズ、イットリウム、アルミニウム、ガリウム、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム、白金、銀、ホウ素、リン、アンチモンおよびテルルよりなる群から選ばれた少なくとも一種の元素を表す。
Oは酸素を表す。
Mo 10 Bi a Fe b C c D d E e F f O g (SiO 2) h ··· (II)
In the formula, Mo, Bi, Fe, and Si represent molybdenum, bismuth, iron, and silicon, respectively.
C represents at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese and copper.
D represents at least one element selected from the group consisting of lanthanum, cerium, praseodymium, neodymium and samarium.
E represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
F is calcium, strontium, barium, cadmium, titanium, zirconium, vanadium, niobium, tantalum, chromium, tungsten, germanium, tin, yttrium, aluminum, gallium, ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum, silver, It represents at least one element selected from the group consisting of boron, phosphorus, antimony and tellurium.
O represents oxygen.

添字a、b、c、d、e、f、gおよびhは原子比を表し、aの下限は好ましくは0.1、さらに好ましくは0.2であり、上限は好ましくは2.5、さらに好ましくは2である。
bの下限は好ましくは0.1、さらに好ましくは0.3であり、上限は好ましくは15、さらに好ましくは12である。
cの下限は好ましくは2、さらに好ましくは2.5であり、上限は好ましくは12、さらに好ましくは10である。
dの下限は好ましくは0.05、さらに好ましくは0.1であり、上限は好ましくは5、さらに好ましくは3である。
eの下限は好ましくは0.05、さらに好ましくは0.07であり、上限は好ましくは2、さらに好ましくは1.5である。
fの下限は好ましくは0、上限は好ましくは10、さらに好ましくは8である。
gは上記各成分が結合して生成する金属酸化物の酸素の数である。
hの下限は好ましくは20、さらに好ましくは30であり、上限は好ましくは200、さらに好ましくは150である。
The subscripts a, b, c, d, e, f, g and h represent the atomic ratio, and the lower limit of a is preferably 0.1, more preferably 0.2, and the upper limit is preferably 2.5, Preferably it is 2.
The lower limit of b is preferably 0.1, more preferably 0.3, and the upper limit is preferably 15, more preferably 12.
The lower limit of c is preferably 2, more preferably 2.5, and the upper limit is preferably 12, more preferably 10.
The lower limit of d is preferably 0.05, more preferably 0.1, and the upper limit is preferably 5, more preferably 3.
The lower limit of e is preferably 0.05, more preferably 0.07, and the upper limit is preferably 2, more preferably 1.5.
The lower limit of f is preferably 0, and the upper limit is preferably 10, and more preferably 8.
g is the number of oxygen of the metal oxide produced | generated by said each component couple | bonding.
The lower limit of h is preferably 20, more preferably 30, and the upper limit is preferably 200, more preferably 150.

触媒を前記組成にするためには、例えば、原料スラリー調製工程における触媒原料の添加量を適宜選択したり、原料スラリー調製工程後から乾燥・焼成工程前までに添加する、触媒を構成する元素が含まれる化合物の添加量を適宜選択したりする方法などが挙げられる。   In order to make the catalyst into the composition, for example, the amount of the catalyst raw material added in the raw material slurry preparation step is appropriately selected, or the element constituting the catalyst added after the raw material slurry preparation step and before the drying and firing step is used. Examples thereof include a method of appropriately selecting the amount of the compound contained.

上述したように、本発明の触媒の製造方法では、触媒原料を含む原料スラリーを特定の圧力・温度で特定時間加熱する加熱工程を有しているため、反応時に目的生成物が高収率で安定して得られる触媒を製造できる。また、強度が高く、流動層用として好適な性状の触媒を製造できる。
本発明の触媒の製造方法で得られた触媒は、流動層が用いられる反応、例えば、重質油の接触分解や、後述するニトリル類の製造などに好適に用いられる。
As described above, in the method for producing a catalyst of the present invention, since the raw material slurry containing the catalyst raw material is heated for a specific time at a specific pressure and temperature, the target product is produced in a high yield during the reaction. A catalyst obtained stably can be produced. In addition, a catalyst having high strength and suitable properties for a fluidized bed can be produced.
The catalyst obtained by the method for producing a catalyst of the present invention is suitably used for reactions in which a fluidized bed is used, for example, catalytic cracking of heavy oil, production of nitrites described later, and the like.

<ニトリル類の製造方法>
本発明のニトリル類の製造方法は、上記触媒の存在下、流動層にて、原料有機化合物をアンモ酸化する方法である。ここで、アンモ酸化とは、有機化合物をアンモニアおよび酸素の存在下でニトリル化する反応のことである。
原料有機化合物としては、オレフィン類、アルコール類、エーテル類、芳香族化合物、ヘテロ芳香族化合物等が挙げられる。具体的には、プロピレン、イソブテン、メタノール、エタノール、ターシャリーブタノール、メチルターシャリーブチルエーテル、トルエン、キシレン、ピコリン、キナルジン等が挙げられる。
ここで、プロピレンをアンモ酸化した場合に得られるニトリル類はアクリロニトリルであり、メタノールをアンモ酸化した場合に得られるニトリル類は青酸である。本発明は、プロピレンまたはメタノールのアンモ酸化にとりわけ効果を発揮する。
酸素源としては空気が好ましい。空気は、水蒸気、窒素、炭酸ガス、飽和炭化水素等で希釈して用いてもよいし、酸素をあらかじめ富化してもよい。
<Method for producing nitriles>
The method for producing nitriles of the present invention is a method in which a starting organic compound is ammoxidized in a fluidized bed in the presence of the catalyst. Here, ammoxidation is a reaction in which an organic compound is nitrified in the presence of ammonia and oxygen.
Examples of the raw material organic compound include olefins, alcohols, ethers, aromatic compounds, and heteroaromatic compounds. Specific examples include propylene, isobutene, methanol, ethanol, tertiary butanol, methyl tertiary butyl ether, toluene, xylene, picoline, and quinaldine.
Here, the nitriles obtained when propylene is ammoxidized is acrylonitrile, and the nitriles obtained when methanol is ammoxidized is hydrocyanic acid. The present invention is particularly effective for ammoxidation of propylene or methanol.
Air is preferred as the oxygen source. The air may be diluted with water vapor, nitrogen, carbon dioxide, saturated hydrocarbon, or the like, or may be enriched with oxygen in advance.

本発明のニトリル類の製造方法においては、原料有機化合物/アンモニア/空気が1/0.1〜5/1〜20(モル比)の組成範囲の原料ガスを触媒に供給することが好ましい。
反応温度は370〜500℃、反応圧力は常圧〜500kPaが好ましく、見掛け接触時間は0.1〜20秒であることが好ましい。
In the method for producing nitriles of the present invention, it is preferable to supply a raw material gas having a composition range of raw material organic compound / ammonia / air of 1 / 0.1 to 5/1 to 20 (molar ratio) to the catalyst.
The reaction temperature is preferably 370 to 500 ° C., the reaction pressure is preferably atmospheric pressure to 500 kPa, and the apparent contact time is preferably 0.1 to 20 seconds.

以下、本発明を実施例および比較例により具体的に説明するが、本発明は実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to an Example.

(実施例1)
表1に示す組成の触媒を以下の手順で製造した。
63質量%の硝酸6500gに銅粉末64.5gを溶解した。この溶液に純水6300gを添加してから60℃に加熱し、電解鉄粉566.9g、金属テルル粉末142.5gを少量ずつ添加し、溶解した。溶解を確認した後、硝酸ニッケル885.5g、硝酸マグネシウム52.1g、硝酸カリウム10.3g、硝酸リチウム3.5gを順次添加し、溶解した(A液)
別途、純水6700gにパラタングステン酸アンモニウム265.0gを溶解した溶液(B液)、純水300gにパラモリブデン酸アンモニウム89.6gを溶解した溶液(C液)を調製した。
攪拌しながらA液に20質量%シリカゾル18295.6g、三酸化アンチモン粉末4438.7g、B液、C液を順次添加して原料スラリーを得た。
この原料スラリーに15質量%アンモニア水を滴下して、pHを2.0に調整し、次いで、容器内にてpH調整後の原料スラリーを還流下、沸点で3時間加熱した。その際、容器内の圧力を1280Pa(ゲージ圧力)に調整した。
加熱後の原料スラリーを80℃まで冷却し、85質量%リン酸58.5g、ホウ酸6.3gを添加した。
その後、原料スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥した。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉にて800℃で3時間流動焼成して粒子状の触媒を得た。
Example 1
Catalysts having the compositions shown in Table 1 were produced by the following procedure.
64.5 g of copper powder was dissolved in 6500 g of 63% by mass nitric acid. 6300 g of pure water was added to this solution and then heated to 60 ° C., and 566.9 g of electrolytic iron powder and 142.5 g of metal tellurium powder were added little by little and dissolved. After confirming dissolution, 885.5 g of nickel nitrate, 52.1 g of magnesium nitrate, 10.3 g of potassium nitrate, and 3.5 g of lithium nitrate were sequentially added and dissolved (solution A).
Separately, a solution (solution B) in which 265.0 g of ammonium paratungstate was dissolved in 6700 g of pure water, and a solution (solution C) in which 89.6 g of ammonium paramolybdate were dissolved in 300 g of pure water were prepared.
While stirring, 18295.6 g of 20 mass% silica sol, 4438.7 g of antimony trioxide powder, B liquid, and C liquid were sequentially added to the A liquid to obtain a raw material slurry.
To this raw material slurry, 15% by mass of ammonia water was added dropwise to adjust the pH to 2.0, and then the raw material slurry after pH adjustment was heated in a vessel at the boiling point for 3 hours under reflux. At that time, the pressure in the container was adjusted to 1280 Pa (gauge pressure).
The raw material slurry after heating was cooled to 80 ° C., and 58.5 g of 85 mass% phosphoric acid and 6.3 g of boric acid were added.
Thereafter, the raw material slurry was spray-dried by a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet. Next, the obtained dry particles were calcined at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidized and calcined at 800 ° C. for 3 hours in a fluid calcining furnace to obtain a particulate catalyst.

Figure 0005020514
Figure 0005020514

(実施例2)
表1に示す組成の触媒を以下の手順で製造した。
63質量%の硝酸4900gに純水3200gを添加してから60℃に加熱し、電解鉄粉442.3g、金属テルル粉末202.1gを少量ずつ添加して溶解した。溶解を確認した後、硝酸ニッケル460.5g、硝酸コバルト230.5g、硝酸ルビジウム11.7gを順次添加し、溶解した(D液)。
別途、純水5000gにパラモリブデン酸アンモニウム279.6g、メタバナジン酸アンモニウム18.5gを順次添加し、溶解した(E液)。
攪拌しながらD液に20質量%シリカゾル19030.1g、三酸化アンチモン粉末4617.0g、E液を順次添加して原料スラリーを得た。
得られた原料スラリーに15質量%アンモニア水を滴下して、原料スラリーのpHを2.2に調整し、次いで、容器内にてpH調整後の原料スラリーを還流下、沸点で3時間加熱した。その際、容器内の圧力を2320Pa(ゲージ圧力)に調整した。
加熱後の原料スラリーを80℃まで冷却し、ホウ酸19.6gを添加した。
その後、原料スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥した。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉にて740℃で3時間流動焼成して粒子状の触媒を得た。
(Example 2)
Catalysts having the compositions shown in Table 1 were produced by the following procedure.
After 3200 g of pure water was added to 4900 g of 63 mass% nitric acid, the mixture was heated to 60 ° C., and 442.3 g of electrolytic iron powder and 202.1 g of metal tellurium powder were added and dissolved little by little. After confirming dissolution, 460.5 g of nickel nitrate, 230.5 g of cobalt nitrate, and 11.7 g of rubidium nitrate were sequentially added and dissolved (solution D).
Separately, 279.6 g of ammonium paramolybdate and 18.5 g of ammonium metavanadate were sequentially added to 5000 g of pure water and dissolved (solution E).
While stirring, 19030.1 g of 20% by mass silica sol, 4617.0 g of antimony trioxide powder, and E solution were sequentially added to the D solution to obtain a raw material slurry.
To the obtained raw material slurry, 15% by mass ammonia water was dropped to adjust the pH of the raw material slurry to 2.2, and then the raw material slurry after pH adjustment was heated in a vessel at the boiling point for 3 hours under reflux. . At that time, the pressure in the container was adjusted to 2320 Pa (gauge pressure).
The raw material slurry after heating was cooled to 80 ° C., and 19.6 g of boric acid was added.
Thereafter, the raw material slurry was spray-dried by a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet. Next, the obtained dried particles were calcined at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidly calcined at 740 ° C. for 3 hours in a fluidized calcining furnace to obtain a particulate catalyst.

(実施例3)
表1に示す組成の触媒を以下の手順で製造した。
63質量%の硝酸6050gに銅粉末140.8gを溶解した。この溶液に純水5900gを添加してから60℃に加熱し、電解鉄粉495.0g、金属テルル粉末56.5gを少量ずつ添加し、溶解した。溶解を確認した後、硝酸マグネシウム113.6g、硝酸ビスマス86.0g、硝酸セシウム17.3g、硝酸カリウム4.5gを順次添加し、溶解した(F液)。
別途、純水300gにパラモリブデン酸アンモニウム125.2gを溶解した液(G液)、純水3000gにパラタングステン酸アンモニウム115.7gを溶解した液(H液)純水3500gにメタバナジン酸アンモニウム20.7gを溶解した液(I液)を調製した。
攪拌しながらF液に20質量%シリカゾル26624.4g、三酸化アンチモン粉末3229.7g、G液、H液、I液を順次添加して原料スラリーを得た。
得られた原料スラリーに15質量%アンモニア水を滴下し、原料スラリーのpHを1.9に調整し、次いで、容器内にてpH調整後の原料スラリーを還流下99℃で3時間加熱した。その際、容器内の圧力を620Pa(ゲージ圧力)に調整した。
加熱後の原料スラリーを80℃まで冷却し、85質量%リン酸30.7gを添加した。
その後、原料スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥した。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉にて770℃で3時間流動焼成して粒子状の触媒を得た。
(Example 3)
Catalysts having the compositions shown in Table 1 were produced by the following procedure.
140.8 g of copper powder was dissolved in 6050 g of 63% by mass nitric acid. 5900 g of pure water was added to this solution, and then heated to 60 ° C., and 495.0 g of electrolytic iron powder and 56.5 g of metal tellurium powder were added little by little and dissolved. After confirming dissolution, 113.6 g of magnesium nitrate, 86.0 g of bismuth nitrate, 17.3 g of cesium nitrate, and 4.5 g of potassium nitrate were sequentially added and dissolved (solution F).
Separately, a solution in which 125.2 g of ammonium paramolybdate was dissolved in 300 g of pure water (solution G), a solution in which 115.7 g of ammonium paratungstate was dissolved in 3000 g of pure water (solution H), and ammonium metavanadate in 3500 g of pure water. A solution (solution I) in which 7 g was dissolved was prepared.
With stirring, 20 mass% silica sol 266424.4 g, antimony trioxide powder 3229.7 g, G liquid, H liquid, and I liquid were sequentially added to the F liquid to obtain a raw material slurry.
15 mass% ammonia water was dripped at the obtained raw material slurry, pH of the raw material slurry was adjusted to 1.9, and the raw material slurry after pH adjustment was then heated at 99 ° C. for 3 hours under reflux in a container. At that time, the pressure in the container was adjusted to 620 Pa (gauge pressure).
The raw material slurry after heating was cooled to 80 ° C., and 30.7 g of 85 mass% phosphoric acid was added.
Thereafter, the raw material slurry was spray-dried by a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet. Next, the obtained dried particles were calcined at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidly calcined at 770 ° C. for 3 hours in a fluidized calcining furnace to obtain a particulate catalyst.

(実施例4)
表1に示す組成の触媒を以下の手順で製造した。
63質量%の硝酸4900gに銅粉末131.6gを溶解した。この溶液に純水4700gを添加してから60℃に加熱し、電解鉄粉385.5g、金属テルル粉末70.5gを少量ずつ添加し、溶解した。溶解を確認した後、硝酸ニッケル200.7g、硝酸クロム110.5g、硝酸アルミニウム25.9g、硝酸カリウム3.5g、硝酸ルビジウム5.1gを順次添加し、溶解した(J液)。
別途、純水600gにパラタングステン酸アンモニウム219.4gを溶解した溶液(K液)、純水2500gにパラタングステン酸アンモニウム90.1gを溶解した溶液(L液)を調製した。
攪拌しながらJ液に20質量%シリカゾル12441.2g、三酸化アンチモン粉末6036.7g、K液、L液を順次添加して原料スラリーを得た。
得られた原料スラリーに15質量%アンモニア水を滴下し、pHを2.2に調整し、次いで、容器内にてpH調整後の原料スラリーを還流下99℃で3時間加熱した。その際、容器内の圧力を830Pa(ゲージ圧力)に調整した。
その後、原料スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥した。次いで、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に流動焼成炉にて750℃で3時間流動焼成して粒子状の触媒を得た。
Example 4
Catalysts having the compositions shown in Table 1 were produced by the following procedure.
131.6 g of copper powder was dissolved in 4900 g of 63% by mass nitric acid. To this solution, 4700 g of pure water was added and then heated to 60 ° C., and 385.5 g of electrolytic iron powder and 70.5 g of metal tellurium powder were added little by little and dissolved. After confirming dissolution, 200.7 g of nickel nitrate, 110.5 g of chromium nitrate, 25.9 g of aluminum nitrate, 3.5 g of potassium nitrate, and 5.1 g of rubidium nitrate were sequentially added and dissolved (solution J).
Separately, a solution (solution K) in which 219.4 g of ammonium paratungstate was dissolved in 600 g of pure water and a solution (solution L) in which 90.1 g of ammonium paratungstate was dissolved in 2500 g of pure water were prepared.
While stirring, 12441.2 g of 20 mass% silica sol, 6036.7 g of antimony trioxide powder, K solution, and L solution were sequentially added to the J solution to obtain a raw material slurry.
15 mass% ammonia water was dripped at the obtained raw material slurry, pH was adjusted to 2.2, and the raw material slurry after pH adjustment was then heated at 99 ° C. for 3 hours under reflux in a container. At that time, the pressure in the container was adjusted to 830 Pa (gauge pressure).
Thereafter, the raw material slurry was spray-dried by a spray dryer at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet. Next, the obtained dried particles were calcined at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidly calcined at 750 ° C. for 3 hours in a fluidized calcining furnace to obtain a particulate catalyst.

(比較例1)
実施例1と同一組成の触媒を、加熱時の容器内の圧力を常圧(0Pa)としたこと以外は実施例1と同じ手順で製造した。
(Comparative Example 1)
A catalyst having the same composition as in Example 1 was produced in the same procedure as in Example 1 except that the pressure in the container during heating was changed to normal pressure (0 Pa).

(比較例2)
実施例2と同一組成の触媒を、加熱時の容器内の圧力を常圧(0Pa)としたこと以外は実施例2と同じ手順で製造した。
(Comparative Example 2)
A catalyst having the same composition as in Example 2 was produced in the same procedure as in Example 2, except that the pressure in the container during heating was changed to normal pressure (0 Pa).

(比較例3)
実施例3と同一組成の触媒を、加熱時の容器内の圧力を常圧(0Pa)としたこと以外は実施例3と同じ手順で製造した。
(Comparative Example 3)
A catalyst having the same composition as in Example 3 was produced in the same procedure as in Example 3 except that the pressure in the container during heating was changed to normal pressure (0 Pa).

(実施例5)
表2に示す組成の触媒を以下の手順で製造した。
純水10000gにパラモリブデン酸アンモニウム3896.3を溶解した溶液(X液)、純水7500gにパラタングステン酸アンモニウム288.1gを溶解した溶液(Y液)を調製した。
別途、63質量%の硝酸1500gと純水4000gを混合し、これに硝酸第二鉄980.7g、硝酸ニッケル3208.7g、硝酸コバルト321.1g、硝酸マンガン126.7g、硝酸セリウム383.3g、硝酸カリウム22.3g、硝酸ランタン286.7g、硝酸ルビジウム32.5g、硝酸クロム706.5g、オキシ硝酸ジルコニウム118.0g、硝酸ビスマス642.4gを順次添加し、溶解した(Z液)。
攪拌しながら20質量%シリカゾル23203.3gにX液、Y液、Z液を順次添加した後、容器内にて還流下99℃で3時間加熱した。加熱時の容器内の圧力は660Pa(ゲージ圧力)に調整した。
これにより得られた原料スラリーを、噴霧乾燥機により、乾燥空気の温度を乾燥機入口で330℃、乾燥機出口で160℃として噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間焼成し、最終的に640℃で3時間流動焼成して粒子状の触媒を得た。
(Example 5)
Catalysts having the compositions shown in Table 2 were produced by the following procedure.
A solution (solution X) in which 3896.3 ammonium paramolybdate was dissolved in 10000 g of pure water, and a solution (solution Y) in which 288.1 g of ammonium paratungstate was dissolved in 7500 g of pure water were prepared.
Separately, 1500 g of 63 mass% nitric acid and 4000 g of pure water were mixed, and 980.7 g of ferric nitrate, 3208.7 g of nickel nitrate, 321.1 g of cobalt nitrate, 126.7 g of manganese nitrate, 383.3 g of cerium nitrate, Potassium nitrate 22.3 g, lanthanum nitrate 286.7 g, rubidium nitrate 32.5 g, chromium nitrate 706.5 g, zirconium oxynitrate 118.0 g, and bismuth nitrate 642.4 g were sequentially added and dissolved (solution Z).
Solution X, solution Y and solution Z were sequentially added to 23203.3 g of 20% by mass silica sol with stirring, and then heated at 99 ° C. for 3 hours under reflux in a container. The pressure in the container at the time of heating was adjusted to 660 Pa (gauge pressure).
The raw material slurry thus obtained was spray-dried with a spray drier at a drying air temperature of 330 ° C. at the dryer inlet and 160 ° C. at the dryer outlet, and the resulting dried particles were heated at 250 ° C. for 2 hours, 400 The particles were calcined for 2 hours and finally fluidized and calcined for 3 hours at 640 ° C. to obtain a particulate catalyst.

Figure 0005020514
Figure 0005020514

(比較例4)
実施例5と同一組成の触媒を、加熱時の容器内の圧力を常圧(0Pa)としたこと以外は実施例5と同じ手順で製造した。
(Comparative Example 4)
A catalyst having the same composition as in Example 5 was produced in the same procedure as in Example 5 except that the pressure in the container during heating was changed to normal pressure (0 Pa).

実施例1〜5、比較例1〜4の触媒を以下のように評価した。評価結果を表3に示す。   The catalysts of Examples 1 to 5 and Comparative Examples 1 to 4 were evaluated as follows. The evaluation results are shown in Table 3.

Figure 0005020514
Figure 0005020514

(触媒の圧縮強度試験)
マイクロメッシュ・ハイ・プレシジョン・シーブスを用いて粒径が45〜50μmの粒子を分取し、圧縮強度(mN/粒)を測定した。測定条件は下記の通りとした。
試験装置:島津製作所製 MCTM−200
測定条件:上部加圧圧子 ダイヤモンド製500μm平面圧子
下部加圧板 SUS板
負荷速度 7.1mN/秒
表3における圧縮強度は各サンプルとも30個について測定し、その平均値で示した。
(Catalyst compressive strength test)
Using a micromesh high precision sieve, particles having a particle size of 45 to 50 μm were collected and measured for compressive strength (mN / particle). The measurement conditions were as follows.
Test device: MCTM-200 manufactured by Shimadzu Corporation
Measurement conditions: Upper pressure indenter Diamond 500 μm flat indenter
Lower pressure plate SUS plate
Loading speed 7.1 mN / sec The compressive strength in Table 3 was measured for 30 samples for each sample, and the average value was shown.

(触媒の活性試験)
プロピレンのアンモ酸化によるアクリロニトリル合成を行って触媒の活性評価を行った。
触媒流動部の内径が25mm、高さ400mmである流動層反応器に触媒を充填し、組成がプロピレン/アンモニア/酸素(空気として供給)/水蒸気=1/1.1/2.2/0.5(モル比)である混合ガスをガス線速度4.5cm/秒で供給し、反応圧力を200kPaとして、反応を行った。
反応生成物はガスクロマトグラフィーを用いて定量した。
その際の接触時間、プロピレン転化率、アクリロニトリル収率は下記の式により求めた。
接触時間(秒)=見掛け嵩密度基準の触媒容積(ml)/反応条件に換算した供給ガス流量(ml/秒)
プロピレン転化率(%)=(反応で消費されたプロピレンのモル数/供給したプロピレンのモル数)×100
アクリロニトリル収率(%)=(生成したアクリロニトリルのモル数/供給したプロピレンのモル数)×100
(Catalyst activity test)
The activity of the catalyst was evaluated by synthesizing acrylonitrile by propylene ammoxidation.
The catalyst is packed in a fluidized bed reactor having an inner diameter of 25 mm and a height of 400 mm, and the composition is propylene / ammonia / oxygen (supplied as air) / water vapor = 1 / 1.1 / 2.2 / 0. 5 (molar ratio) was supplied at a gas linear velocity of 4.5 cm / sec, and the reaction pressure was 200 kPa to carry out the reaction.
The reaction product was quantified using gas chromatography.
The contact time, propylene conversion rate, and acrylonitrile yield were determined by the following formula.
Contact time (second) = catalyst volume based on apparent bulk density (ml) / feed gas flow rate converted to reaction conditions (ml / second)
Propylene conversion rate (%) = (number of moles of propylene consumed in reaction / number of moles of propylene supplied) × 100
Acrylonitrile yield (%) = (number of moles of acrylonitrile produced / number of moles of propylene fed) × 100

触媒原料を含む原料スラリーを特定の圧力・温度で特定時間加熱した実施例1〜5の方法では、プロピレンのアンモ酸化においてアクリロニトリルを高収率で得られ、また、強度が高く、流動層用として好適な触媒を得ることができた。
これに対し、加熱工程時に加圧しなかった比較例1〜4の方法で得られた触媒は、同じ反応条件の実施例とそれぞれ比較(比較例1は実施例1、比較例2は実施例2、比較例3は実施例3、比較例4は実施例5と比較)してアクリロニトリル収率が低かった。また、比較例で得られた触媒は強度が低かった。


In the methods of Examples 1 to 5 in which the raw material slurry containing the catalyst raw material was heated at a specific pressure and temperature for a specific time, acrylonitrile was obtained in a high yield in the ammoxidation of propylene, and the strength was high. A suitable catalyst could be obtained.
On the other hand, the catalysts obtained by the methods of Comparative Examples 1 to 4 that were not pressurized during the heating step were compared with Examples under the same reaction conditions (Comparative Example 1 was Example 1 and Comparative Example 2 was Example 2). Comparative Example 3 was low in acrylonitrile yield as compared with Example 3 and Comparative Example 4 as compared with Example 5. In addition, the strength of the catalyst obtained in the comparative example was low.


Claims (2)

触媒原料を含む原料スラリーを調製する原料スラリー調製工程と、
該原料スラリーを容器内に充填し、圧力300〜50000Pa(ゲージ圧力)、加熱温度50℃以上で10分以上加熱する加熱工程と、
加熱した原料スラリーを噴霧乾燥し、焼成する乾燥・焼成工程とを有することを特徴とする流動層用触媒の製造方法。
A raw material slurry preparation step of preparing a raw material slurry containing a catalyst raw material;
A heating step of filling the raw material slurry in a container and heating at a pressure of 300 to 50000 Pa (gauge pressure) at a heating temperature of 50 ° C. or more for 10 minutes or more;
A method for producing a fluidized bed catalyst, comprising: drying and baking a heated raw material slurry and spray-drying.
請求項1に記載の流動層用触媒の製造方法で得られた流動層用触媒の存在下、流動層にて、原料有機化合物をアンモ酸化することを特徴とするニトリル類の製造方法。
A method for producing a nitrile, comprising ammoxidizing a raw material organic compound in a fluidized bed in the presence of the fluidized bed catalyst obtained by the method for producing a fluidized bed catalyst according to claim 1.
JP2006007666A 2006-01-16 2006-01-16 Method for producing fluidized bed catalyst and method for producing nitriles Active JP5020514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007666A JP5020514B2 (en) 2006-01-16 2006-01-16 Method for producing fluidized bed catalyst and method for producing nitriles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007666A JP5020514B2 (en) 2006-01-16 2006-01-16 Method for producing fluidized bed catalyst and method for producing nitriles

Publications (2)

Publication Number Publication Date
JP2007185636A JP2007185636A (en) 2007-07-26
JP5020514B2 true JP5020514B2 (en) 2012-09-05

Family

ID=38341169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007666A Active JP5020514B2 (en) 2006-01-16 2006-01-16 Method for producing fluidized bed catalyst and method for producing nitriles

Country Status (1)

Country Link
JP (1) JP5020514B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707841B2 (en) * 2010-10-14 2015-04-30 三菱レイヨン株式会社 Method for producing fluidized bed catalyst and method for producing acrylonitrile
WO2014129566A1 (en) * 2013-02-25 2014-08-28 三菱レイヨン株式会社 Method for producing catalyst for acrylonitrile production and method for producing acrylonitrile
CN105080584A (en) * 2014-11-21 2015-11-25 荆楚理工学院 Catalyst and technology for anthraquinone synthesis by fluidized bed air oxidation of anthracene

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747920B2 (en) * 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction
BR9203110A (en) * 1992-08-12 1994-03-01 Petroleo Brasileiro Sa PASSIVATIVE CATALYTIC COMPOSITION FOR HYDROCARBON CRACKING, ALUMINUM AND FLUID CATALYTIC CRACKING PROCESS
JP2821075B2 (en) * 1992-12-28 1998-11-05 川崎製鉄株式会社 Fluidized bed catalyst for gas phase catalytic oxidation of aromatic hydrocarbons.
JP3710944B2 (en) * 1999-01-19 2005-10-26 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2000344724A (en) * 1999-03-26 2000-12-12 Mitsubishi Rayon Co Ltd Production of unsaturated nitrile
US6407031B1 (en) * 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
JP4535611B2 (en) * 2000-12-27 2010-09-01 旭化成ケミカルズ株式会社 Catalyst and method for producing unsaturated nitrile using the same
JP4878684B2 (en) * 2001-01-24 2012-02-15 旭化成ケミカルズ株式会社 Low specific gravity silica supported catalyst
JP2002301373A (en) * 2001-04-05 2002-10-15 Mitsubishi Chemicals Corp Method for producing composite metal oxide catalyst
US6383978B1 (en) * 2001-04-25 2002-05-07 Rohm And Haas Company Promoted multi-metal oxide catalyst
JP3797146B2 (en) * 2001-06-28 2006-07-12 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4030740B2 (en) * 2001-10-11 2008-01-09 ダイヤニトリックス株式会社 Method for producing ammoxidation catalyst
WO2005056184A1 (en) * 2003-11-24 2005-06-23 Exxonmobil Chemical Patents Inc. Spray drying molecular sieve catalyst

Also Published As

Publication number Publication date
JP2007185636A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4030740B2 (en) Method for producing ammoxidation catalyst
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
EP2550100B1 (en) Improved mixed metal oxide ammoxidation catalysts
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
EP3148692B1 (en) Improved selective ammoxidation catalysts
JP6355030B2 (en) Pre-fired additives for mixed metal oxide ammoxidation catalysts
RU2692253C2 (en) Improved mixed metal oxide ammoxidation catalysts
JP6526062B2 (en) Improved selective ammoxidation catalyst
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP5020514B2 (en) Method for producing fluidized bed catalyst and method for producing nitriles
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4503315B2 (en) Method for producing iron / antimony / tellurium-containing metal oxide catalyst
JPS6041665B2 (en) Method for producing methacrylonitrile
JP6439819B2 (en) Method for producing acrylonitrile
US20170114007A1 (en) Ammoxidation catalysts containing samarium
JP2006218395A (en) Method and apparatus for producing fluidized bed catalyst
JP5609285B2 (en) Method for producing composite oxide catalyst
JP4447336B2 (en) Method for producing acrylonitrile
RU2806328C2 (en) Method of producing catalyst for synthesis of unsaturated carboxylic acid
JPH11309374A (en) Production of molybdenum-containing oxide catalyst
JP5609254B2 (en) Method for producing composite oxide catalyst
WO2019012920A1 (en) Method for producing catalyst and method for producing unsaturated nitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5020514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250