JP2000344724A - Production of unsaturated nitrile - Google Patents

Production of unsaturated nitrile

Info

Publication number
JP2000344724A
JP2000344724A JP11233133A JP23313399A JP2000344724A JP 2000344724 A JP2000344724 A JP 2000344724A JP 11233133 A JP11233133 A JP 11233133A JP 23313399 A JP23313399 A JP 23313399A JP 2000344724 A JP2000344724 A JP 2000344724A
Authority
JP
Japan
Prior art keywords
unsaturated nitrile
group
element selected
catalyst
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11233133A
Other languages
Japanese (ja)
Inventor
Kenichi Miyagi
健一 宮氣
Kunio Mori
邦夫 森
Tomu Sasaki
富 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11233133A priority Critical patent/JP2000344724A/en
Priority to PCT/JP2000/001139 priority patent/WO2000058272A1/en
Publication of JP2000344724A publication Critical patent/JP2000344724A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an unsaturated nitrile in a high yield, by conducting ammoxidation reaction by the use of a specific metal oxide catalyst containing molybdenum, bismuth, iron, nickel, potassium, etc. SOLUTION: This method for producing an unsaturated nitrile comprises subjecting an organic compound to ammoxidation reaction at, preferably, 370-500 deg.C by the use of a metal oxide catalyst of the formula: MoaBibFecNidKeAfBgChQiRjOk (SiO2)l A is at least one element selected from the group comprising Mg, Ca, Sr and so on; B is at least one element selected from the group comprising Cd, Al, Ga, Sn, Sb and so on; C is at least one element selected from the group comprising Cu, Ag, In, Ge, Nb and so on; Q is at least one element selected from the group comprising P, B(boron) and Te; R is at least one element selected from the group comprising Li, Na, Rb and Cs; (a) to (l) express each an atomic ratio of each element and satisfy (b)=0.2-1.2, (c)=0.1-15, (d)=38, (e)=0.3-0.8, (f)=0-5, (g)=0-8, (h)=0-2, (i)=0-2, (j)=0-0.3, (k) is a number of oxygen atoms required for satisfying atomic valences of each element, (l)=0-200, (e)/(b)=0.6-5, (e)/[(d)+(f)]=0.06-0.2, when (a)=10}.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物触媒を
用いるアンモ酸化法による不飽和ニトリル製造法に関す
る。
[0001] The present invention relates to a method for producing unsaturated nitrile by an ammoxidation method using a metal oxide catalyst.

【0002】[0002]

【従来の技術】アンモ酸化法による不飽和ニトリルの製
造法については、プロピレン、イソブテンあるいは第三
級ブタノールと、酸素及びアンモニアとの反応によりア
クリロニトリル、メタクリロニトリル等を製造する方法
が知られており、種々の触媒が開示されている。例えば
特公昭38−17967号公報にはモリブデン、ビスマ
ス及び鉄を含む酸化物触媒が、特公昭38−19111
号公報には鉄及びアンチモンを含む酸化物触媒が示され
ている。
2. Description of the Related Art As a method for producing unsaturated nitriles by an ammoxidation method, there is known a method for producing acrylonitrile, methacrylonitrile and the like by reacting propylene, isobutene or tertiary butanol with oxygen and ammonia. And various catalysts are disclosed. For example, JP-B-38-17967 discloses an oxide catalyst containing molybdenum, bismuth and iron.
In this publication, an oxide catalyst containing iron and antimony is disclosed.

【0003】その後これらの改良が精力的に続けられ、
特開平7−48334号公報にはモリブデン、ビスマ
ス、鉄、ニッケル、プラセオジム、ネオジム及びアルカ
リ金属を含む酸化物触媒、特開平6−9530号公報に
はモリブデン、ビスマス、鉄、コバルト、ニッケル、ク
ロム、リン、アンチモン及びアルカリ金属を含む酸化物
触媒、特開平7−47271号公報には鉄、ビスマス、
モリブデン、ニッケル、マグネシウム、セシウム及びカ
リウムを含む酸化物触媒、特開平8−266899号公
報にはモリブデン、ビスマス、鉄と稀土類元素およびイ
ットリウムから選ばれる1種以上の元素を含む酸化物触
媒、特開平4−118051号公報には鉄、アンチモ
ン、モリブデン、ビスマス、テルル及びカリウムを含む
酸化物触媒が開示されている。
[0003] Thereafter, these improvements continued vigorously,
JP-A-7-48334 discloses an oxide catalyst containing molybdenum, bismuth, iron, nickel, praseodymium, neodymium and an alkali metal. JP-A-6-9530 discloses molybdenum, bismuth, iron, cobalt, nickel, chromium, Oxide catalyst containing phosphorus, antimony and alkali metal, JP-A-7-47271 discloses iron, bismuth,
Oxide catalysts containing molybdenum, nickel, magnesium, cesium and potassium. JP-A-8-266899 discloses an oxide catalyst containing at least one element selected from molybdenum, bismuth, iron and rare earth elements and yttrium. Japanese Patent Laid-Open No. 4-118051 discloses an oxide catalyst containing iron, antimony, molybdenum, bismuth, tellurium and potassium.

【0004】[0004]

【発明が解決しようとする課題】これら従来技術の触媒
は不飽和ニトリルの収率を徐々に改善してはきたが、未
だ必ずしも充分満足できる収率を与えるものではなく、
不飽和ニトリル収率のなお一層の改善と共に、炭酸ガ
ス、一酸化炭素等の不要な副生物の生成を抑制し、有用
な副生物である青酸の副生収率が高い触媒が望まれてい
た。またモリブデン含有量の多い触媒に一般的に見られ
るアンモニア燃焼性が高いことも改善すべき点であっ
た。同時に、特に流動層反応に用いるためには、その触
媒強度の改善も重要な課題であった。
Although these prior art catalysts have gradually improved the yield of unsaturated nitriles, they still do not always provide satisfactory yields.
A catalyst that suppresses the generation of unnecessary by-products such as carbon dioxide and carbon monoxide, and that has a high by-product yield of hydrocyanic acid, which is a useful by-product, with further improvement in the yield of unsaturated nitriles has been desired. . It was also a point to be improved that the ammonia flammability generally found in a catalyst having a high molybdenum content was high. At the same time, particularly for use in fluidized bed reactions, improvement of the catalyst strength was also an important issue.

【0005】[0005]

【問題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、モリブデン、ビ
スマス、鉄、ニッケル及びカリウムを必須成分として含
有し、かつビスマスとニッケル及びA成分に対しカリウ
ムの含有量をかなり多いところに設定することによっ
て、不飽和ニトリル収率と共に有用な副生青酸の収率も
高い触媒の開発に成功した。また、モリブデンを比較的
多く含む触媒は通常アンモニア燃焼性が大きいためアン
モニアの効率が低く、アルデヒド、酸、NOx等の副生
物が多く、収率低下もさることながら環境対策上も種々
問題を生じがちであったが、本発明の触媒はこの点でも
優れている。さらに流動層触媒として用いるときには、
実用上その強度が特に重要であるが、本発明の触媒は比
較的低い焼成温度で十分な強度を有する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the present invention contains molybdenum, bismuth, iron, nickel and potassium as essential components, and contains bismuth, nickel and A By setting the potassium content to be relatively high relative to the components, a catalyst having a high yield of useful by-product hydrocyanic acid as well as a yield of unsaturated nitrile was successfully developed. In addition, catalysts containing a relatively large amount of molybdenum usually have high ammonia flammability, so the efficiency of ammonia is low, and there are many by-products such as aldehydes, acids, and NOx. However, the catalyst of the present invention is also excellent in this respect. When used as a fluidized bed catalyst,
Although the strength is particularly important in practical use, the catalyst of the present invention has sufficient strength at a relatively low calcination temperature.

【0006】すなわち、本発明はアンモ酸化により不飽
和ニトリルを製造するに際し、下記の実験式で表される
組成を有する金属酸化物触媒を用る不飽和ニトリル製造
法に関する。 MoaBibFecNidKeAfBgChQiRjO
k(SiO2)l (式中、Mo、Bi、Fe、Ni、K、O及びSiはそ
れぞれモリブデン、ビスマス、鉄、ニッケル、カリウ
ム、酸素及びケイ素を示し、Aはマグネシウム、カルシ
ウム、ストロンチウム、バリウム、マンガン、コバル
ト、亜鉛からなる群より選ばれた少なくとも一種の元
素、Bはカドミウム、アルミニウム、ガリウム、スズ、
鉛、アンチモン、チタン、ジルコニウム、バナジウム、
クロム及びタングステンからなる群より選ばれた少なく
とも一種の元素、Cは銅、銀、インジウム、ゲルマニウ
ム、ニオブ、タンタル、レニウム、ルテニウム、オスミ
ウム、ロジウム、イリジウム、パラジウム、白金、トリ
ウム、イットリウム、ランタン、セリウム、プラセオジ
ム、ネオジム、サマリウム、ユウロピウム及びガドリニ
ウムからなる群より選ばれた少なくとも一種の元素、Q
はリン、ホウ素及びテルルからなる群より選ばれた少な
くとも一種の元素、Rはリチウム、ナトリウム、ルビジ
ウム及びセシウムからなる群より選ばれた少なくとも一
種の元素を表す。ただし添字a、b、c、d、e、f、
g、h、i、j、k及びlは各元素の原子比を表し、a
=10のときb=0.1〜1.2、好ましくは0.2〜
1.0、より好ましくは0.3〜0.8、c=0.1〜
15、好ましくは0.2〜10、より好ましくは0.5
〜8、d=3〜8、好ましくは4〜7、e=0.3〜
0.8、f=0〜5、g=0〜8、h=0〜2、i=0
〜2、j=0〜0.3、k=前記各成分の原子価を満足
するのに必要な酸素原子数、l=0〜200であり、か
つe/b=0.6〜5、e/(d+f)=0.06〜
0.2である。)
That is, the present invention relates to a method for producing an unsaturated nitrile using a metal oxide catalyst having a composition represented by the following empirical formula when producing an unsaturated nitrile by ammoxidation. MoaBibFecNidKeAfBgChQiRjO
k (SiO2) l (wherein, Mo, Bi, Fe, Ni, K, O, and Si represent molybdenum, bismuth, iron, nickel, potassium, oxygen, and silicon, respectively, and A represents magnesium, calcium, strontium, barium, Manganese, cobalt, at least one element selected from the group consisting of zinc, B is cadmium, aluminum, gallium, tin,
Lead, antimony, titanium, zirconium, vanadium,
At least one element selected from the group consisting of chromium and tungsten, C is copper, silver, indium, germanium, niobium, tantalum, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, thorium, yttrium, lanthanum, cerium , At least one element selected from the group consisting of praseodymium, neodymium, samarium, europium and gadolinium, Q
Represents at least one element selected from the group consisting of phosphorus, boron and tellurium, and R represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium. Where subscripts a, b, c, d, e, f,
g, h, i, j, k and l represent the atomic ratio of each element, and a
= 10, b = 0.1-1.2, preferably 0.2-
1.0, more preferably 0.3-0.8, c = 0.1-
15, preferably 0.2 to 10, more preferably 0.5
-8, d = 3-8, preferably 4-7, e = 0.3-
0.8, f = 0-5, g = 0-8, h = 0-2, i = 0
2, j = 0 to 0.3, k = the number of oxygen atoms necessary to satisfy the valence of each component, l = 0 to 200, and e / b = 0.6 to 5, e /(D+f)=0.06-
0.2. )

【0007】本発明においてはモリブデン、ビスマス、
鉄、ニッケル及びカリウムは必須成分であり、それぞれ
上記の組成範囲になければ本発明の目的を達成すること
はできない。特に従来公知の触媒に比べビスマスの少な
い領域でカリウムが多い点に、また同時にニッケルの多
い領域でカリウムが相対的に多い点に好ましい組成範囲
が存在することを見出した点に大きな特徴がある。
In the present invention, molybdenum, bismuth,
Iron, nickel and potassium are essential components, and the objects of the present invention cannot be achieved unless each of the components is within the above-mentioned composition range. In particular, the present invention is characterized in that it has been found that a preferable composition range exists in a region where the amount of potassium is large in a region where bismuth is small as compared with a conventionally known catalyst, and at the same time a region where a potassium is relatively large in a region where nickel is large.

【0008】本発明の組成範囲に調整された触媒を用い
ることにより、単に目的生成物収率が良好であるばかり
ではなく、この系統の触媒に多い微量副生物、特にアク
リル酸の副生が抑制され環境対策上も好ましいこと、触
媒強度が向上し、工業的使用において有利なことなどが
強調される。
By using a catalyst adjusted to the composition range of the present invention, not only the yield of the target product is not only good, but also a small amount of by-products, especially acrylic acid, which are often present in the catalysts of this system are suppressed. It is emphasized that it is preferable in terms of environmental measures, that the catalyst strength is improved, and that it is advantageous in industrial use.

【0009】鉄成分については、前述の特開平4−11
8051号公報と同様に鉄アンチモネートを含有する場
合には、その含有量が多くなると共に必然的にアンチモ
ンを含有することになる。シリカは好ましい物性を付与
するために上記範囲で加える。カリウム含有量の多い領
域ではR成分の添加量が多いと触媒性能が低下する。
The iron component is described in the above-mentioned Japanese Patent Application Laid-Open No.
In the case where iron antimonate is contained as in the case of JP-A-8051, the content increases and antimony is inevitably contained. Silica is added in the above range in order to provide preferable physical properties. In the region where the potassium content is large, the catalyst performance is reduced when the added amount of the R component is large.

【0010】[0010]

【発明の実施形態】本発明の触媒の調製法は、上記の特
許公報等に開示されている従来方法から選択して適用す
ることができる。
DETAILED DESCRIPTION OF THE INVENTION The method for preparing a catalyst of the present invention can be applied by selecting from the conventional methods disclosed in the above-mentioned patent publications.

【0011】本発明の触媒を構成する各元素の出発原料
としては、特に限定されるものではないが、例えばモリ
ブデン成分の原料としては三酸化モリブデンのようなモ
リブデン酸化物、モリブデン酸、パラモリブデン酸アン
モニウム、メタモリブデン酸アンモニウムのようなモリ
ブデン酸またはその塩、リンモリブデン酸、ケイモリブ
デン酸のようなモリブデンを含むヘテロポリ酸またはそ
の塩等、ビスマス成分の原料としては硝酸ビスマス、炭
酸ビスマス、硫酸ビスマス、酢酸ビスマスなどのビスマ
ス塩、三酸化ビスマス、金属ビスマス等、鉄成分の原料
としては金属鉄、酸化第一鉄、酸化第二鉄、四三酸化
鉄、硝酸第一鉄、硝酸第二鉄硫酸鉄、塩化鉄、鉄有機酸
塩および水酸化鉄等、ニッケル成分の原料としては水酸
化ニッケル、酸化ニッケル、硝酸ニッケル等、カリウム
成分の原料としては水酸化カリウム、硝酸カリウム等を
それぞれ単独若しくは混合して用いることができる。そ
の他の元素の原料としては通常は酸化物あるいは焼成す
ることにより酸化物になり得る硝酸塩、炭酸塩、有機酸
塩、水酸化物等またはそれらの混合物が用いられる。
The starting material for each element constituting the catalyst of the present invention is not particularly limited. For example, the starting material for the molybdenum component may be molybdenum oxide such as molybdenum trioxide, molybdic acid, paramolybdic acid. Ammonium, molybdic acid or a salt thereof such as ammonium metamolybdate, phosphomolybdic acid, heteropolyacid containing molybdenum such as silico-molybdic acid or a salt thereof, and the like, as a raw material of the bismuth component, bismuth nitrate, bismuth carbonate, bismuth sulfate, Bismuth salts such as bismuth acetate, bismuth trioxide, bismuth metal, etc. are used as raw materials for iron components such as metallic iron, ferrous oxide, ferric oxide, ferric oxide, ferrous nitrate, and ferric nitrate sulfate. Raw materials for nickel components such as iron chloride, iron organic acid salts and iron hydroxide Kell, nickel nitrate, etc., as the raw material for the potassium component may be used potassium hydroxide, potassium nitrate or the like alone or in combination. As a raw material for the other elements, an oxide or a nitrate, a carbonate, an organic acid salt, a hydroxide, or the like, which can be converted to an oxide by firing, or a mixture thereof is usually used.

【0012】担体としてはシリカを用いるのが好まし
い。その原料にはシリカゾルをい用いるのが便利であ
る。シリカゾルとしてはナトリウム含量の低いものを用
いるのがよい。
It is preferable to use silica as the carrier. It is convenient to use silica sol as the raw material. It is preferable to use a silica sol having a low sodium content.

【0013】本発明では、これらの原料を混合し、乾
燥、焼成することにより目的の触媒を得る。
In the present invention, the desired catalyst is obtained by mixing these raw materials, drying and calcining.

【0014】この時、原料を混合して調製するスラリー
は、特許2749920号に記載の方法に準じて調製す
るのが好ましい。すなわち、そのpHを6以上とし、更
に、原料の混合に際しては、スラリー中にキレート剤を
混合することによってスラリーの粘度を低下させ、操作
性を改善するものである。この場合、使用しやすいキレ
ート剤としては、エチレンジアミン、乳酸、酒石酸、ク
エン酸、グルコン酸等が挙げられる。
At this time, the slurry prepared by mixing the raw materials is preferably prepared according to the method described in Japanese Patent No. 2749920. That is, the pH is adjusted to 6 or more, and at the time of mixing the raw materials, the viscosity of the slurry is reduced by mixing a chelating agent into the slurry to improve the operability. In this case, chelating agents that are easy to use include ethylenediamine, lactic acid, tartaric acid, citric acid, gluconic acid and the like.

【0015】触媒組成中に鉄アンチモネートを含有させ
る場合は、あらかじめ鉄アンチモネートを調製した後に
モリブデン等その他成分と混合してスラリーを形成する
のが好ましい。
When iron antimonate is contained in the catalyst composition, it is preferable that iron antimonate is prepared in advance and then mixed with molybdenum and other components to form a slurry.

【0016】このように調製されたスラリーを乾燥、焼
成することによって活性、物性ともに優れた触媒が得ら
れる。本発明の触媒を流動層反応器で用いる場合には、
噴霧乾燥法により造粒するのがよい。乾燥造粒後200
〜500℃で焼成した後、更に500〜650℃で焼成
する。焼成時間は0.1〜20時間でよい。焼成雰囲気
は、酸素含有ガスとするのが好ましい。空気中で行うの
が便利であるが、酸素と窒素、炭酸ガス、水蒸気、有機
化合物等とを適宜混合したガスを用いることもできる。
焼成には、箱型炉、トンネル炉、回転焼成炉、流動焼成
炉などが用いられる。触媒が流動層触媒の場合には、特
にその最終焼成は流動焼成炉を用いるのが好ましい。こ
れにより最終焼成条件の厳密な管理が容易となり、優れ
た性能の流動層触媒を再現性良く製造することができ
る。このようにして製造された流動層触媒の粒径は10
ないし200μmとするのが好ましい。
By drying and calcining the slurry thus prepared, a catalyst having excellent activity and physical properties can be obtained. When using the catalyst of the present invention in a fluidized bed reactor,
The granulation is preferably performed by a spray drying method. 200 after dry granulation
After firing at 500 to 650C, firing is further performed at 500 to 650C. The firing time may be 0.1 to 20 hours. The firing atmosphere is preferably an oxygen-containing gas. Although it is convenient to carry out in air, a gas in which oxygen and nitrogen, carbon dioxide gas, water vapor, an organic compound and the like are appropriately mixed can also be used.
For firing, a box furnace, a tunnel furnace, a rotary firing furnace, a fluidized firing furnace, or the like is used. When the catalyst is a fluidized bed catalyst, it is particularly preferable to use a fluidized calciner for final calcination. This facilitates strict control of the final firing conditions, and makes it possible to produce a fluidized bed catalyst having excellent performance with good reproducibility. The fluidized bed catalyst thus produced has a particle size of 10
To 200 μm.

【0017】本発明のアンモ酸化反応は、原料有機化合
物/アンモニア/酸素=1/0.9〜1.3/1.6〜
2.6(モル比)の範囲で行うのが好ましい。酸素源と
しては空気の利用が工業的に有利である。原料ガスは窒
素、水蒸気等の不活性なガスで希釈したり、純酸素の添
加により酸素濃度を高めて用いることもできる。反応温
度は370〜500℃、反応圧力は常圧〜400kPa
の範囲が好ましい。接触時間は0.1〜20秒に調節す
るのが好ましい。
In the ammoxidation reaction of the present invention, the starting organic compound / ammonia / oxygen = 1 / 0.9-1.3 / 1.6-
It is preferable to carry out in the range of 2.6 (molar ratio). The use of air as an oxygen source is industrially advantageous. The raw material gas may be diluted with an inert gas such as nitrogen or water vapor, or may be used by adding pure oxygen to increase the oxygen concentration. Reaction temperature is 370-500 ° C, reaction pressure is normal pressure-400 kPa
Is preferable. The contact time is preferably adjusted to 0.1 to 20 seconds.

【0018】本発明のアンモ酸化反応に用いることので
きる原料有機化合物としてはプロピレン、イソブテン、
第3級ブタノール、メチル第3級ブチルエーテルなどが
挙げられ、アクリロニトリル、メタクリロニトリルなど
の不飽和ニトリルを生成する。
The starting organic compounds that can be used in the ammoxidation reaction of the present invention include propylene, isobutene,
Tertiary butanol, methyl tertiary butyl ether and the like are mentioned, and they produce unsaturated nitriles such as acrylonitrile and methacrylonitrile.

【0019】[0019]

【実施例】以下、実施例により本発明の効果を具体的に
説明するが、本発明は以下の実施例に限定されるもので
ない。
EXAMPLES Hereinafter, the effects of the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples.

【0020】触媒の活性試験はプロピレンのアンモ酸化
反応を例として次のように行った。触媒を内径25mm
φ、高さ40cmの流動層反応器に指定の接触時間にな
るように充填し、反応温度430℃になるように保持し
た。この反応器中にプロピレン:アンモニア:酸素:水
のモル比が1:1.2:2.1:0.5であるプロピレ
ン、アンモニア、空気及び水蒸気の混合ガスを1時間当
たり6.5l(NTP換算)供給した。反応圧力は20
0kPaとした。実施例中のアクリロニトリル収率、ア
クリル酸収率、原料プロピレンの転化率及びアンモニア
燃焼率は下記の式により定義される。
The activity test of the catalyst was carried out as follows, taking an ammoxidation reaction of propylene as an example. 25mm inner diameter catalyst
A fluidized bed reactor having a diameter of 40 cm and a height of 40 cm was packed so as to have a specified contact time, and maintained at a reaction temperature of 430 ° C. In this reactor, a mixed gas of propylene, ammonia, air and steam having a molar ratio of propylene: ammonia: oxygen: water of 1: 1.2: 2.1: 0.5 was added at 6.5 l / h (NTP). Conversion) supplied. Reaction pressure is 20
0 kPa was set. The acrylonitrile yield, acrylic acid yield, conversion rate of raw material propylene, and ammonia combustion rate in the examples are defined by the following equations.

【0021】アクリロニトリル収率(%)=生成したア
クリロニトリルのモル数/供給されたプロピレンのモル
数×100 アクリル酸収率(%)=生成したアクリル酸のモル数/
供給されたプロピレンのモル数×100 プロピレン転化率(%)=反応したプロピレンのモル数
/供給されたプロピレンのモル数×100 アンモニア燃焼率(%)=100−[(生成物中の窒素
の重量+未反応アンモニア中の窒素の重量)/供給され
たアンモニア中の窒素の重量×100]
Acrylonitrile yield (%) = moles of acrylonitrile produced / moles of propylene fed × 100 Acrylic acid yield (%) = moles of acrylic acid produced /
Number of moles of supplied propylene × 100 Conversion ratio of propylene (%) = Number of moles of propylene reacted / Number of moles of supplied propylene × 100 Ammonia combustion rate (%) = 100 − [(weight of nitrogen in product) + Weight of nitrogen in unreacted ammonia) / weight of nitrogen in supplied ammonia x 100]

【0022】粒子強度は島津製作所製微小圧縮試験器M
CTM−200を用い、径が45〜50μmの粒子30
点の強度を測定し、その平均値を求めた。活性試験の結
果は表1及び表2に、粒子強度測定結果は表3に纏めて
示した。
The particle strength was measured by a micro compression tester M manufactured by Shimadzu Corporation.
Using CTM-200, particles 30 having a diameter of 45 to 50 μm
The intensity of the points was measured and the average value was determined. The results of the activity test are shown in Tables 1 and 2, and the results of the particle strength measurement are shown in Table 3.

【0023】実施例1 組成がMo10Bi0.3Fe0.6Ni6K0.7P
0.2Te0.25(SiO2)40Ox(原子比、x
は他の元素の価数により自然に決まる値であるので、以
後は酸素記述を省略する。)で表される触媒を以下の方
法により調製した。 純水250gに金属テルル粉末
5.68g、パラモリブデン酸アンモニウム4.71
g、35%過酸化水素水16gを加え、95〜100℃
で攪拌し、溶解した。この液を常温まで冷却し、クエン
酸20g、硝酸第二鉄43.1gを溶解した。攪拌しな
がらこの溶液に15%アンモニア水を加えpH9.2と
し、さらにパラモリブデン酸アンモニウム121.0g
を少しずつ加え溶解した。その後15%アンモニア水を
加えpH7.0とした(A液)。
Example 1 The composition was Mo10Bi0.3Fe0.6Ni6K0.7P
0.2Te0.25 (SiO2) 40Ox (atomic ratio, x
Is a value naturally determined by the valence of another element, and hence the description of oxygen is omitted. ) Was prepared by the following method. 5.68 g of metal tellurium powder in 250 g of pure water and 4.71 of ammonium paramolybdate
g, 35% hydrogen peroxide solution 16g, 95 ~ 100 ℃
To dissolve. The solution was cooled to room temperature, and 20 g of citric acid and 43.1 g of ferric nitrate were dissolved. While stirring, 15% aqueous ammonia was added to the solution to adjust the pH to 9.2, and further 121.0 g of ammonium paramolybdate was added.
Was added little by little to dissolve. Thereafter, 15% aqueous ammonia was added to adjust the pH to 7.0 (Solution A).

【0024】別に純水2500gにパラモリブデン酸ア
ンモニウム188.5gを溶解し、次いで85%リン酸
4.10gを加えた。攪拌下、この溶液に硝酸ニッケル
310.5gを純水300gに溶解した溶液、硝酸カリ
ウム12.6gを純水10gに溶解した溶液、硝酸ビス
マス25.9gとクエン酸20gを10%硝酸200g
に溶解した溶液及び20%シリカゾル2138.3gを
順次加えた。さらに15%アンモニア水を添加しpHを
7.7に調整した後、このスラリーを還流下100℃で
2時間加熱処理を行った(B液)。
Separately, 188.5 g of ammonium paramolybdate was dissolved in 2500 g of pure water, and 4.10 g of 85% phosphoric acid was added. Under stirring, a solution of 310.5 g of nickel nitrate in 300 g of pure water, a solution of 12.6 g of potassium nitrate in 10 g of pure water, 25.9 g of bismuth nitrate and 20 g of citric acid in 200 g of 10% nitric acid
And 2138.3 g of a 20% silica sol were sequentially added. Further, the pH was adjusted to 7.7 by adding 15% aqueous ammonia, and the slurry was heated at 100 ° C. for 2 hours under reflux (Solution B).

【0025】攪拌下、B液にA液を混合し、得られたス
ラリーを回転円盤型噴霧乾燥器で入口温度320℃、出
口温度160℃にコントロールしながら噴霧乾燥した。
得られた球状粒子を250℃で加熱処理し、続いて40
0℃で2.5時間、さらに590℃で3時間焼成した。
The solution A was mixed with the solution B under stirring, and the obtained slurry was spray-dried with a rotating disk type spray dryer while controlling the inlet temperature to 320 ° C. and the outlet temperature to 160 ° C.
The obtained spherical particles are heat-treated at 250 ° C.
Baking was performed at 0 ° C. for 2.5 hours and further at 590 ° C. for 3 hours.

【0026】実施例2 組成がMo10Bi0.5Fe0.6Ni6K0.7Z
r0.1La0.1(SiO2)40(原子比)で表さ
れる触媒を実施例1と同様の方法により調製した。ただ
し、ジルコニウム原料としてオキシ硝酸ジルコニウム、
ランタン原料として硝酸ランタンを用いて硝酸ニッケル
の次に順次添加し、最終焼成は600℃とした。
Example 2 The composition is Mo10Bi0.5Fe0.6Ni6K0.7Z
A catalyst represented by r0.1La0.1 (SiO2) 40 (atomic ratio) was prepared in the same manner as in Example 1. However, zirconium oxynitrate as zirconium raw material,
Using lanthanum nitrate as a lanthanum raw material, nickel nitrate was added sequentially, and the final baking was performed at 600 ° C.

【0027】実施例3 組成がMo10Bi0.4Fe0.6Ni5.5K0.
7Cr0.5P0.2Cs0.05(SiO2)40
(原子比)で表される触媒を実施例1と同様の方法によ
り調製した。ただし、クロム原料として硝酸クロムを用
いて硝酸ニッケルの次に、セシウム原料として硝酸セシ
ウムを用いて硝酸カリウムの次にそれぞれ添加した。
Example 3 The composition was Mo10Bi0.4Fe0.6Ni5.5K0.
7Cr0.5P0.2Cs0.05 (SiO2) 40
A catalyst represented by (atomic ratio) was prepared in the same manner as in Example 1. However, it was added after nickel nitrate using chromium nitrate as a chromium raw material and after potassium nitrate using cesium nitrate as a cesium raw material.

【0028】実施例4 組成がMo10Bi0.7Fe0.6Ni6K0.7T
e0.25(SiO2)60(原子比)で表される触媒
を実施例1と同様の方法により調製した。
Example 4 The composition is Mo10Bi0.7Fe0.6Ni6K0.7T
e A catalyst represented by 0.25 (SiO 2) 60 (atomic ratio) was prepared in the same manner as in Example 1.

【0029】実施例5 組成がMo10Bi0.4Fe0.6Ni4K0.7M
g2Na0.05(SiO2)40(原子比)で表され
る触媒を実施例1と同様の方法により調製した。ただ
し、マグネシウム原料として硝酸マグネシウムを用いて
硝酸ニッケルの次に、ナトリウム原料として硝酸ナトリ
ウムを用いて硝酸カリウムの次にそれぞれ添加し、最終
焼成温度は600℃とした。
Example 5 The composition is Mo10Bi0.4Fe0.6Ni4K0.7M
A catalyst represented by g2Na0.05 (SiO2) 40 (atomic ratio) was prepared in the same manner as in Example 1. However, after adding nickel nitrate using magnesium nitrate as a magnesium raw material, and then adding potassium nitrate using sodium nitrate as a sodium raw material, the final firing temperature was 600 ° C.

【0030】実施例6 組成がMo10Bi0.4Fe0.6Ni6K0.7M
n0.5Pr0.1Nd0.1P0.2Rb0.05
(SiO2)40(原子比)で表される触媒を以下の方
法により調製した。純水2500gにパラモリブデン酸
アンモニウム310.8gを溶解し、次いで85%リン
酸4.06gを加えた。攪拌下、この溶液に硝酸ニッケ
ル307.1g、硝酸マンガン25.3g、硝酸カリウ
ム12.5g、硝酸ルビジウム1.30g、硝酸プラセ
オジム7.66g、硝酸ネオジム7.72g、クエン酸
20g及び硝酸ビスマス34.2gを10%硝酸210
gに溶解した溶液及び20%シリカゾル2115.0g
を順次加えた。さらに15%アンモニア水を添加しpH
を7.7に調整した後、このスラリーを還流下100℃
で1.5時間加熱処理を行った。
Example 6 The composition is Mo10Bi0.4Fe0.6Ni6K0.7M
n0.5Pr0.1Nd0.1P0.2Rb0.05
A catalyst represented by (SiO 2) 40 (atomic ratio) was prepared by the following method. 310.8 g of ammonium paramolybdate was dissolved in 2500 g of pure water, and then 4.06 g of 85% phosphoric acid was added. Under stirring, 307.1 g of nickel nitrate, 25.3 g of manganese nitrate, 12.5 g of potassium nitrate, 1.30 g of rubidium nitrate, 7.66 g of praseodymium nitrate, 7.72 g of neodymium nitrate, 20 g of citric acid and 34.2 g of bismuth nitrate were added to this solution. To 10% nitric acid 210
g and solution of 20% silica sol 2115.0 g
Were sequentially added. Add 15% ammonia water and adjust the pH
Was adjusted to 7.7 and the slurry was refluxed at 100 ° C.
For 1.5 hours.

【0031】攪拌下、このスラリーに硝酸第二鉄28.
4g及びクエン酸20gを純水200gに溶解した溶液
を添加し、得られたスラリーを回転円盤型噴霧乾燥器で
入口温度320℃、出口温度160℃にコントロールし
ながら噴霧乾燥した。得られた球状粒子を250℃で加
熱処理し、続いて400℃で2.5時間、さらに560
℃で3時間焼成した。
Under stirring, the slurry was mixed with ferric nitrate.
A solution of 4 g and 20 g of citric acid dissolved in 200 g of pure water was added, and the resulting slurry was spray-dried with a rotating disk type spray dryer while controlling the inlet temperature to 320 ° C and the outlet temperature to 160 ° C. The resulting spherical particles are heat-treated at 250 ° C., followed by 400 ° C. for 2.5 hours,
Calcination was performed at 3 ° C. for 3 hours.

【0032】実施例7 組成がMo10Bi0.4Fe0.4Ni6K0.7C
o0.5Zr0.2Na0.05Cs0.05(SiO
2)40(原子比)で表される触媒を実施例6と同様の
方法により調製した。ただし、コバルト原料として硝酸
コバルト、ジルコニウム原料としてオキシ硝酸ジルコニ
ウムを用いて硝酸ニッケルの次に、ナトリウム原料とし
て硝酸ナトリウム、セシウム原料として硝酸セシウムを
用いて硝酸カリウムの次にそれぞれ添加し、最終焼成温
度は550℃とした。
Example 7 The composition is Mo10Bi0.4Fe0.4Ni6K0.7C
o0.5Zr0.2Na0.05Cs0.05 (SiO
2) A catalyst represented by 40 (atomic ratio) was prepared in the same manner as in Example 6. However, cobalt nitrate was used as a cobalt source, nickel nitrate was used as zirconium oxynitrate as a zirconium source, sodium nitrate was used as a sodium source, and potassium nitrate was used as a cesium source using cesium nitrate. The final firing temperature was 550. ° C.

【0033】実施例8 組成がMo10Bi0.6Fe1.5Ni6K0.6Z
n0.5La0.1Rb0.1(SiO2)50(原子
比)で表される触媒を以下の方法により調製した。純水
2500gにパラモリブデン酸アンモニウム269.3
gを溶解した。攪拌下、この溶液に硝酸ニッケル26
6.1g、硝酸亜鉛22.7g、硝酸カリウム9.25
g、硝酸ルビジウム2.25g、硝酸ランタン6.60
g、クエン酸20g及び硝酸ビスマス44.4gを10
%硝酸210gに溶解した溶液及び20%シリカゾル2
290.7gを順次加えた。さらに15%アンモニア水
を添加しpHを8.0に調整した後、このスラリーを還
流下100℃で1.5時間加熱処理を行った。
Example 8 The composition is Mo10Bi0.6Fe1.5Ni6K0.6Z
A catalyst represented by n0.5La0.1Rb0.1 (SiO2) 50 (atomic ratio) was prepared by the following method. Ammonium paramolybdate 269.3 in 2,500 g of pure water
g was dissolved. Under stirring, add nickel nitrate 26 to this solution.
6.1 g, zinc nitrate 22.7 g, potassium nitrate 9.25
g, rubidium nitrate 2.25 g, lanthanum nitrate 6.60
g, 20 g of citric acid and 44.4 g of bismuth nitrate in 10
Solution in 210 g of 20% nitric acid and 20% silica sol 2
290.7 g were added sequentially. Further, the pH was adjusted to 8.0 by adding 15% aqueous ammonia, and the slurry was heated at 100 ° C. for 1.5 hours under reflux.

【0034】攪拌下、このスラリーに純水200gに硝
酸第二鉄92.4g及びクエン酸20gを溶解した溶液
を添加し、得られたスラリーを回転円盤型噴霧乾燥器で
入口温度320℃、出口温度160℃にコントロールし
ながら噴霧乾燥した。得られた球状粒子を250℃で加
熱処理し、続いて400℃で2.5時間、さらに630
℃で3時間焼成した。
Under stirring, a solution prepared by dissolving 92.4 g of ferric nitrate and 20 g of citric acid in 200 g of pure water was added to the slurry, and the obtained slurry was subjected to a rotating disk type spray dryer at an inlet temperature of 320 ° C. and an outlet temperature of 320 ° C. Spray drying was performed while controlling the temperature at 160 ° C. The obtained spherical particles are heat-treated at 250 ° C., followed by 400 ° C. for 2.5 hours and further 630 ° C.
Calcination was performed at 3 ° C. for 3 hours.

【0035】実施例9 組成がMo10Bi1Fe1Ni6.5K0.6Ce
0.05Te0.1Cs0.1(SiO2)30(原子
比)で表される触媒を実施例8と同様の方法により調製
した。ただし、セリウム原料として硝酸セリウム、セシ
ウム原料として硝酸セシウムを用いて硝酸カリウムの次
に順次加え、最終焼成温度は600℃とした。
Example 9 The composition was Mo10Bi1Fe1Ni6.5K0.6Ce.
A catalyst represented by 0.05Te0.1Cs0.1 (SiO2) 30 (atomic ratio) was prepared in the same manner as in Example 8. However, cerium nitrate was used as a cerium raw material, cesium nitrate was used as a cesium raw material, and potassium nitrate was added sequentially, and the final firing temperature was 600 ° C.

【0036】実施例10 組成がMo10Bi0.3Fe0.6Ni6K0.7S
m0.05Cs0.05(SiO2)40(原子比)で
表される触媒を実施例8と同様の方法により調製した。
ただし、サマリウム原料として硝酸サマリウム、セシウ
ム原料として硝酸セシウムを用いて硝酸カリウムの次に
順次加え、最終焼成温度は610℃とした。
Example 10 The composition was Mo10Bi0.3Fe0.6Ni6K0.7S.
A catalyst represented by m0.05Cs0.05 (SiO2) 40 (atomic ratio) was prepared in the same manner as in Example 8.
However, samarium nitrate was used as a samarium raw material, and cesium nitrate was used as a cesium raw material, followed by potassium nitrate, and the final firing temperature was 610 ° C.

【0037】実施例11 組成がMo10Bi0.2Fe8Ni6.25K0.7
Sb7.7W0.1P0.49B0.49(SiO2)
40(原子比)で表される触媒を以下の方法により調製
した。61%硝酸892gに純水808gを混合した溶
液に電解鉄粉99.3gを少量ずつ加えて溶解し、さら
に三酸化アンチモン粉末285.0gを加えた。このス
ラリーをよく攪拌しながら100℃で2時間加熱処理を
行った。スラリーの固形分のX線回折測定を行ったとこ
ろ鉄アンチモネートの存在が認められた。このスラリー
にオルトホウ酸7.70gを純水150gに溶解した溶
液及び85%リン酸14.3gを順次加えた。これを回
転円盤型噴霧乾燥器で入口温度320℃、出口温度16
0℃にコントロールしながら噴霧乾燥した。得られた球
状粒子を250℃で加熱処理し、続いて400℃で2.
5時間、さらに950℃で3時間焼成した。得られた粒
子を粉砕し、ホウ素、リン含有鉄アンチモネート粉末を
得た。
Example 11 The composition was Mo10Bi0.2Fe8Ni6.25K0.7.
Sb7.7W0.1P0.49B0.49 (SiO2)
A catalyst represented by 40 (atomic ratio) was prepared by the following method. 99.3 g of electrolytic iron powder was added little by little to a solution in which 808 g of 61% nitric acid and 808 g of pure water were mixed and dissolved, and 285.0 g of antimony trioxide powder was further added. This slurry was heated at 100 ° C. for 2 hours while being well stirred. X-ray diffraction measurement of the solid content of the slurry revealed the presence of iron antimonate. A solution of 7.70 g of orthoboric acid dissolved in 150 g of pure water and 14.3 g of 85% phosphoric acid were sequentially added to the slurry. This was sprayed with a rotating disk type spray dryer at an inlet temperature of 320 ° C and an outlet temperature of 16 ° C.
Spray drying was performed while controlling at 0 ° C. The obtained spherical particles are heat-treated at 250 ° C. and subsequently at 400 ° C.
Baking was performed for 5 hours and further at 950 ° C. for 3 hours. The obtained particles were pulverized to obtain a boron- and phosphorus-containing iron antimonate powder.

【0038】純水2500gにパラモリブデン酸アンモ
ニウム224.2gを溶解した。攪拌下、この溶液に硝
酸ニッケル230.8g、硝酸カリウム8.99g及び
硝酸ビスマス12.3gを10%硝酸210gに溶解し
た溶液、パラタングステン酸アンモニウム3.31g及
び20%シリカゾル1525.6gを順次加えた。得ら
れたスラリーを15%アンモニア水でpH7.7に調整
した後、還流下100℃で1.5時間加熱処理を行っ
た。
224.2 g of ammonium paramolybdate was dissolved in 2500 g of pure water. Under stirring, a solution of 230.8 g of nickel nitrate, 8.99 g of potassium nitrate and 12.3 g of bismuth nitrate in 210 g of 10% nitric acid, 3.31 g of ammonium paratungstate and 1525.6 g of 20% silica sol were sequentially added to this solution. . The resulting slurry was adjusted to pH 7.7 with 15% aqueous ammonia, and then heated at 100 ° C. under reflux for 1.5 hours.

【0039】攪拌下、このスラリーに硝酸第二鉄51.
3g及びクエン酸20gを純水200gに溶解した溶液
及び先に調製したホウ素、リン含有鉄アンチモネート粉
末227.9gを順次加えた。得られたスラリーを回転
円盤型噴霧乾燥器で入口温度320℃、出口温度160
℃にコントロールしながら噴霧乾燥した。得られた球状
粒子を250℃で加熱処理し、続いて400℃で2.5
時間、さらに600℃で3時間焼成した。
Under stirring, ferric nitrate was added to the slurry.
A solution in which 3 g and 20 g of citric acid were dissolved in 200 g of pure water, and 227.9 g of a boron- and phosphorus-containing iron antimonate powder previously prepared were sequentially added. The obtained slurry was subjected to a rotating disk type spray dryer at an inlet temperature of 320 ° C. and an outlet temperature of 160 ° C.
Spray drying was performed while controlling the temperature at 0 ° C. The obtained spherical particles are heat-treated at 250 ° C., followed by 2.5 ° C. at 400 ° C.
Baked at 600 ° C. for 3 hours.

【0040】実施例12 組成がMo10Bi0.3Fe4.5Ni6K0.5S
b4V0.05Nb0.1Pr0.1Nd0.1P0.
47B0.27Rb0.1(SiO2)40(原子比)
で表される触媒を以下の方法により調製した。純水25
00gにパラモリブデン酸アンモニウム257.3gを
溶解し、次いで85%リン酸3.36gを加えた。攪拌
下、この溶液に硝酸ニッケル254.2g、硝酸カリウ
ム7.37g、硝酸ルビジウム2.15g、硝酸プラセ
オジム6.34g、硝酸ネオジム6.39g及び硝酸ビ
スマス21.2gを10%硝酸210gに溶解した溶
液、メタバナジン酸アンモニウム0.85gを純水10
0gに溶解した溶液、酸化ニオブ1.94g及び20%
シリカゾル1750.0gを順次加えた。得られたスラ
リーを15%アンモニア水でpH7.7に調整した後、
還流下100℃で2時間加熱処理を行った。
Example 12 The composition was Mo10Bi0.3Fe4.5Ni6K0.5S.
b4V0.05Nb0.1Pr0.1Nd0.1P0.
47B0.27Rb0.1 (SiO2) 40 (atomic ratio)
Was prepared by the following method. Pure water 25
257.3 g of ammonium paramolybdate was dissolved in 00 g, and then 3.36 g of 85% phosphoric acid was added. Under stirring, a solution obtained by dissolving 254.2 g of nickel nitrate, 7.37 g of potassium nitrate, 2.15 g of rubidium nitrate, 6.34 g of praseodymium nitrate, 6.39 g of neodymium nitrate and 21.2 g of bismuth nitrate in 210 g of 10% nitric acid, 0.85 g of ammonium metavanadate is added to pure water 10
Solution in 0 g, 1.94 g niobium oxide and 20%
1750.0 g of silica sol was added sequentially. The resulting slurry was adjusted to pH 7.7 with 15% aqueous ammonia,
Heat treatment was performed at 100 ° C. for 2 hours under reflux.

【0041】攪拌下、このスラリーに硝酸第二鉄41.
2g及びクエン酸20gを純水200gに溶解した溶液
及び実施例11と同様にして調製したホウ素、リン含有
鉄アンチモネート粉末143.0gを順次加えた。得ら
れたスラリーを回転円盤型噴霧乾燥器で入口温度320
℃、出口温度160℃にコントロールしながら噴霧乾燥
した。得られた球状粒子を250℃で加熱処理し、続い
て400℃で2.5時間、さらに570℃で3時間焼成
した。
Under stirring, ferric nitrate was added to the slurry.
A solution of 2 g and 20 g of citric acid dissolved in 200 g of pure water and 143.0 g of a boron- and phosphorus-containing iron antimonate powder prepared in the same manner as in Example 11 were sequentially added. The obtained slurry was fed to a rotary disk type spray dryer at an inlet temperature of 320.
The spray drying was performed while controlling the temperature at 160 ° C. and the outlet temperature at 160 ° C. The obtained spherical particles were heat-treated at 250 ° C., and subsequently calcined at 400 ° C. for 2.5 hours and further at 570 ° C. for 3 hours.

【0042】比較例1 組成がMo10Bi0.08Fe0.6Ni6K0.7
P0.2Te0.25(SiO2)40で表される触媒
を実施例1と同様の方法により調製した。ビスマスの含
有量を原子比でモリブデン10に対し0.1より少なく
し、 e/b(eはカリウム、bはビスマスの原子比)
を5より大きくしたところ、アクリロニトリル収率は低
下した。
Comparative Example 1 The composition was Mo10Bi0.08Fe0.6Ni6K0.7
A catalyst represented by P0.2Te0.25 (SiO2) 40 was prepared in the same manner as in Example 1. The content of bismuth is set to be less than 0.1 with respect to molybdenum at an atomic ratio of e / b (e is potassium, b is atomic ratio of bismuth)
Was made larger than 5, the acrylonitrile yield decreased.

【0043】比較例2 組成がMo10Bi1.5Fe0.6Ni6K0.7P
0.2Te0.25(SiO2)40で表される触媒を
実施例1と同様の方法により調製した。ビスマスの含有
量を原子比でモリブデン10に対し1.2より多くし、
e/b(eはカリウム、bはビスマスの原子比)を
0.6より小さくしたところアクリロニトリル収率は低
下した。
Comparative Example 2 The composition was Mo10Bi1.5Fe0.6Ni6K0.7P
A catalyst represented by 0.2Te0.25 (SiO2) 40 was prepared in the same manner as in Example 1. Increasing the content of bismuth to more than 1.2 in terms of atomic ratio with respect to molybdenum 10;
When e / b (e is the atomic ratio of potassium and b is the atomic ratio of bismuth) was made smaller than 0.6, the acrylonitrile yield decreased.

【0044】比較例3 組成がMo10Bi0.3Fe0.6Ni2K0.7M
g2Na0.05(SiO2)40で表される触媒を実
施例1と同様の方法により調製した。ニッケルの含有量
を原子比でモリブデン10に対し3より少なくしたとこ
ろ、アクリロニトリル収率は低下した。
Comparative Example 3 The composition was Mo10Bi0.3Fe0.6Ni2K0.7M
A catalyst represented by g2Na0.05 (SiO2) 40 was prepared in the same manner as in Example 1. When the content of nickel was made less than 3 in terms of atomic ratio with respect to 10 of molybdenum, the acrylonitrile yield was reduced.

【0045】比較例4 組成がMo10Bi0.3Fe0.6Ni10K0.7
P0.2Te0.25(SiO2)40で表される触媒
を実施例1と同様の方法により調製した。ニッケルの含
有量を原子比でモリブデン10に対し8より多くしたと
ころ、アクリロニトリル収率は低下した。
Comparative Example 4 The composition was Mo10Bi0.3Fe0.6Ni10K0.7
A catalyst represented by P0.2Te0.25 (SiO2) 40 was prepared in the same manner as in Example 1. When the content of nickel was set to be greater than 8 in terms of atomic ratio with respect to molybdenum 10, the acrylonitrile yield decreased.

【0046】比較例5 組成がMo10Bi0.3Fe0.6Ni6K0.1P
0.2Te0.25(SiO2)40で表される触媒を
実施例1と同様の方法により調製した。カリウムの含有
量を原子比でモリブデン10に対し0.3より少なく
し、e/b(eはカリウム、bはビスマスの原子比)を
0.6より小さくしたところ、アクリロニトリル収率は
低下した。
Comparative Example 5 The composition was Mo10Bi0.3Fe0.6Ni6K0.1P
A catalyst represented by 0.2Te0.25 (SiO2) 40 was prepared in the same manner as in Example 1. When the content of potassium was made smaller than 0.3 with respect to molybdenum at an atomic ratio of 10 and the ratio of e / b (e was an atomic ratio of potassium and b was an atomic ratio of bismuth) was made smaller than 0.6, the acrylonitrile yield was reduced.

【0047】比較例6 組成がMo10Bi0.3Fe0.6Ni6K1.5P
0.2Te0.25(SiO2)40で表される触媒を
実施例1と同様の方法により調製した。カリウムの含有
量を原子比でモリブデン10に対し1より多くし、e/
(d+f)(eはカリウム、dはニッケル、fはA成分
の原子比)を0.2より大きくしたところ、アクリロニ
トリル収率は低下した。
Comparative Example 6 The composition was Mo10Bi0.3Fe0.6Ni6K1.5P
A catalyst represented by 0.2Te0.25 (SiO2) 40 was prepared in the same manner as in Example 1. The content of potassium is set to be more than 1 with respect to molybdenum 10 in atomic ratio, and e /
When (d + f) (e is potassium, d is nickel, and f is the atomic ratio of the A component) was larger than 0.2, the acrylonitrile yield decreased.

【0048】比較例7 組成がMo10Bi0.7Fe0.6Ni6K0.4T
e0.25(SiO2)60(原子比)で表される触媒
を実施例1と同様の方法により調製した。e/b(eは
カリウム、bはビスマスの原子比)を0.6より小さく
したところ、アクリロニトリル収率は低下した。
Comparative Example 7 The composition was Mo10Bi0.7Fe0.6Ni6K0.4T
e A catalyst represented by 0.25 (SiO 2) 60 (atomic ratio) was prepared in the same manner as in Example 1. When e / b (e is the atomic ratio of potassium and b is the atomic ratio of bismuth) was made smaller than 0.6, the acrylonitrile yield decreased.

【0049】比較例8 組成がMo10Bi0.4Fe0.4Ni6K0.3C
o0.5Zr0.2Na0.05Cs0.05(SiO
2)40(原子比)で表される触媒を実施例7と同様の
方法により調製した。e/(d+f)(eはカリウム、
dはニッケル、fはA成分の原子比)を0.06より小
さくしたところ、アクリロニトリル収率は低下した。
Comparative Example 8 The composition was Mo10Bi0.4Fe0.4Ni6K0.3C
o0.5Zr0.2Na0.05Cs0.05 (SiO
2) A catalyst represented by 40 (atomic ratio) was prepared in the same manner as in Example 7. e / (d + f) (e is potassium,
When d was nickel and f was the atomic ratio of the A component) smaller than 0.06, the acrylonitrile yield was reduced.

【0050】比較例9 組成がMo10Bi0.2Fe0.6Ni6K0.7S
m0.05Cs0.5(SiO2)40(原子比)で表
される触媒を実施例10と同様の方法により調製した。
R成分の含有量を原子比でモリブデン10に対し0.3
より多くしたところ、アクリロニトリル収率は低下し
た。
Comparative Example 9 The composition was Mo10Bi0.2Fe0.6Ni6K0.7S
A catalyst represented by m0.05Cs0.5 (SiO2) 40 (atomic ratio) was prepared in the same manner as in Example 10.
The content of the R component is set to 0.3 with respect to molybdenum 10 in atomic ratio.
With more, the acrylonitrile yield decreased.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【発明の効果】本発明は、アンモ酸化反応により不飽和
ニトリルを製造する際に、モリブデン、ビスマス、鉄、
ニッケル及びカリウムを必須成分として含有し、かつビ
スマスとニッケル及びA成分に対しカリウムの含有量を
かなり多いところに設定した金属酸化物触媒を用いるこ
とによって、不飽和ニトリル収率と共に有用な副生青酸
の収率も高めることができる。また、モリブデンを比較
的多く含む触媒であるにも係わらずアンモニア燃焼性が
小さくアンモニアの効率が高く、アルデヒド、酸、NO
x等の副生物が少なく、収率向上効果と共に環境対策上
も大きな効果を有する。更に流動層触媒として用いると
きには、実用上その強度が特に重要であるが、本発明の
触媒は比較的低い焼成温度で十分な強度を有する。
According to the present invention, when an unsaturated nitrile is produced by an ammoxidation reaction, molybdenum, bismuth, iron,
By using a metal oxide catalyst containing nickel and potassium as essential components and setting the content of potassium with respect to bismuth and the nickel and A components to be considerably high, useful by-product hydrocyanic acid can be obtained together with unsaturated nitrile yield. Can also be increased. Further, despite the fact that the catalyst contains a relatively large amount of molybdenum, it has a low ammonia flammability and a high efficiency of ammonia, and can be used for aldehydes, acids, NO
It has few by-products such as x, and has a great effect on environmental measures as well as a yield improving effect. Further, when used as a fluidized bed catalyst, its strength is particularly important in practical use, but the catalyst of the present invention has sufficient strength at a relatively low calcination temperature.

フロントページの続き Fターム(参考) 4G069 AA01 AA08 AA15 BA25A BB04A BB04B BB12B BB14B BC02A BC02B BC03A BC03B BC04A BC05A BC05B BC06A BC06B BC09A BC10A BC10B BC12A BC13A BC16A BC17A BC18A BC21A BC22A BC23A BC24A BC24B BC25A BC25B BC26A BC26B BC31A BC32A BC35A BC35B BC36A BC38A BC40A BC41A BC41B BC42A BC42B BC43A BC43B BC44A BC44B BC45A BC46A BC50A BC51A BC51B BC54A BC55A BC55B BC56A BC58A BC58B BC59A BC59B BC60A BC60B BC62A BC64A BC65A BC66A BC66B BC67A BC67B BC68A BC68B BC71A BC72A BC73A BC73B BC74A BC75A BD03A BD03B BD05A BD05B BD07A BD07B CB54 DA08 EA04Y FB15 FB30 FB57 FC09 4H006 AA02 AC54 BA02 BA03 BA04 BA05 BA06 BA07 BA08 BA09 BA10 BA11 BA12 BA13 BA14 BA16 BA19 BA20 BA21 BA22 BA23 BA24 BA25 BA26 BA27 BA30 BA31 BA35 BA81 BA82 BE14 BE30 BE60 4H039 CA70 CD10 CL50 Continued on the front page F-term (reference) 4G069 AA01 AA08 AA15 BA25A BB04A BB04B BB12B BB14B BC02A BC02B BC03A BC03B BC04A BC05A BC05B BC06A BC06B BC09A BC10A BC10B BC12A BC13A BC16A BC31 BC18 BCA BC A BC BC A BC A BC BC BC40A BC41A BC41B BC42A BC42B BC43A BC43B BC44A BC44B BC45A BC46A BC50A BC51A BC51B BC54A BC55A BC55B BC56A BC58A BC58B BC59A BC59B BC60A BC60B BC62A BC64A BC65A BC66A BC66B BC67A BC67B BC68A BC68B BC71A BC72A BC73A BC73B BC74A BC75A BD03A BD03B BD05A BD05B BD07A BD07B CB54 DA08 EA04Y FB15 FB30 FB57 FC09 4H006 AA02 AC54 BA02 BA03 BA04 BA05 BA06 BA07 BA08 BA09 BA10 BA11 BA12 BA13 BA14 BA16 BA19 BA20 BA21 BA22 BA23 BA24 BA25 BA26 BA27 BA30 BA31 BA35 BA81 BA82 BE14 BE30 BE60 4H039 CA70 CD10 CL50

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アンモ酸化により不飽和ニトリルを製造
するに際し、下記の実験式で表される組成を有する金属
酸化物触媒を用いる不飽和ニトリル製造法。 MoaBibFecNidKeAfBgChQiRjO
k(SiO2)l (式中、Mo、Bi、Fe、Ni、K、O及びSiはそ
れぞれモリブデン、ビスマス、鉄、ニッケル、カリウ
ム、酸素及びケイ素を示し、Aはマグネシウム、カルシ
ウム、ストロンチウム、バリウム、マンガン、コバル
ト、亜鉛からなる群より選ばれた少なくとも一種の元
素、Bはカドミウム、アルミニウム、ガリウム、スズ、
鉛、アンチモン、チタン、ジルコニウム、バナジウム、
クロム及びタングステンからなる群より選ばれた少なく
とも一種の元素、Cは銅、銀、インジウム、ゲルマニウ
ム、ニオブ、タンタル、レニウム、ルテニウム、オスミ
ウム、ロジウム、イリジウム、パラジウム、白金、トリ
ウム、イットリウム、ランタン、セリウム、プラセオジ
ム、ネオジム、サマリウム、ユウロピウム及びガドリニ
ウムからなる群より選ばれた少なくとも一種の元素、Q
はリン、ホウ素及びテルルからなる群より選ばれた少な
くとも一種の元素、Rはリチウム、ナトリウム、ルビジ
ウム及びセシウムからなる群より選ばれた少なくとも一
種の元素を表す。ただし添字a、b、c、d、e、f、
g、h、i、j、k及びlは各元素の原子比を表し、a
=10のときb=0.1〜1.2、c=0.1〜15、
d=3〜8、e=0.3〜0.8、f=0〜5、g=0
〜8、h=0〜2、i=0〜2、j=0〜0.3、k=
前記各成分の原子価を満足するのに必要な酸素原子数、
l=0〜200であり、かつe/b=0.6〜5、e/
(d+f)=0.06〜0.2である。)
1. An unsaturated nitrile production method using a metal oxide catalyst having a composition represented by the following empirical formula when producing an unsaturated nitrile by ammoxidation. MoaBibFecNidKeAfBgChQiRjO
k (SiO2) l (wherein, Mo, Bi, Fe, Ni, K, O, and Si represent molybdenum, bismuth, iron, nickel, potassium, oxygen, and silicon, respectively, and A represents magnesium, calcium, strontium, barium, Manganese, cobalt, at least one element selected from the group consisting of zinc, B is cadmium, aluminum, gallium, tin,
Lead, antimony, titanium, zirconium, vanadium,
At least one element selected from the group consisting of chromium and tungsten, C is copper, silver, indium, germanium, niobium, tantalum, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, thorium, yttrium, lanthanum, cerium , At least one element selected from the group consisting of praseodymium, neodymium, samarium, europium and gadolinium, Q
Represents at least one element selected from the group consisting of phosphorus, boron and tellurium, and R represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium. Where subscripts a, b, c, d, e, f,
g, h, i, j, k and l represent the atomic ratio of each element, and a
= 10, b = 0.1-1.2, c = 0.1-15,
d = 3-8, e = 0.3-0.8, f = 0-5, g = 0
-8, h = 0-2, i = 0-2, j = 0-0.3, k =
The number of oxygen atoms required to satisfy the valence of each component,
l = 0 to 200, and e / b = 0.6 to 5, e / b
(D + f) = 0.06 to 0.2. )
【請求項2】 金属酸化物触媒が、少なくともモリブデ
ン、ビスマス、鉄、ニッケル及びカリウム原料成分とキ
レート剤とを含む、pHが6以上の水性スラリーを噴霧
乾燥、焼成することにより調製された流動層触媒である
ことを特徴とする請求項1記載の不飽和ニトリル製造
法。
2. A fluidized bed prepared by spray-drying and calcining an aqueous slurry having a pH of 6 or more, wherein the metal oxide catalyst contains at least molybdenum, bismuth, iron, nickel and potassium raw materials and a chelating agent. The method for producing an unsaturated nitrile according to claim 1, wherein the method is a catalyst.
【請求項3】 金属酸化物触媒が、最終焼成において流
動焼成炉を用いて調製された流動層触媒であることを特
徴とする請求項1または2に記載の不飽和ニトリル製造
法。
3. The process for producing an unsaturated nitrile according to claim 1, wherein the metal oxide catalyst is a fluidized bed catalyst prepared by using a fluidized-bed kiln in the final baking.
【請求項4】 不飽和ニトリルがアクリロニトリルであ
ることを特徴とする請求項1、2及び3のいずれか1項
に記載の不飽和ニトリル製造法。
4. The method for producing an unsaturated nitrile according to claim 1, wherein the unsaturated nitrile is acrylonitrile.
JP11233133A 1999-03-26 1999-08-19 Production of unsaturated nitrile Pending JP2000344724A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11233133A JP2000344724A (en) 1999-03-26 1999-08-19 Production of unsaturated nitrile
PCT/JP2000/001139 WO2000058272A1 (en) 1999-03-26 2000-02-28 Process for producing unsaturated nitrile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-84531 1999-03-26
JP8453199 1999-03-26
JP11233133A JP2000344724A (en) 1999-03-26 1999-08-19 Production of unsaturated nitrile

Publications (1)

Publication Number Publication Date
JP2000344724A true JP2000344724A (en) 2000-12-12

Family

ID=26425556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11233133A Pending JP2000344724A (en) 1999-03-26 1999-08-19 Production of unsaturated nitrile

Country Status (2)

Country Link
JP (1) JP2000344724A (en)
WO (1) WO2000058272A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265431A (en) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk Method for stopping ammoxidation reaction
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2003064041A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile and hydrocyanic acid
JP2003064043A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of hydrocyanic acid
JP2003064042A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile
JP2007185636A (en) * 2006-01-16 2007-07-26 Daiyanitorikkusu Kk Method for manufacturing catalyst for fluidized bed and method for producing nitriles
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP2013522037A (en) * 2010-03-23 2013-06-13 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Process for the preparation of an improved mixed metal oxide ammoxidation catalyst
CN104549340A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Fluidized bed Catalyst for preparation of unsaturated nitrile by ammonium oxidation
WO2022108323A1 (en) * 2020-11-17 2022-05-27 주식회사 엘지화학 Ammoxidation catalyst, method for producing same, and method for producing acrylonitrile using ammoxidation catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055844B (en) * 2013-01-16 2015-01-14 湖北工业大学 Preparation method for catalyst composition for efficiently treating methylene blue dye wastewater
CN111729667A (en) * 2020-07-13 2020-10-02 包头稀土研究院 Rare earth SCR catalyst and preparation method thereof
CN116462305B (en) * 2023-05-30 2024-06-21 湖南科美洁环保科技有限公司 Method for treating leachate sewage by Fenton method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747920B2 (en) * 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction
JP3522087B2 (en) * 1997-07-18 2004-04-26 ダイヤニトリックス株式会社 Usage of Molybdenum-Containing Oxide Fluidized Bed Catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265431A (en) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk Method for stopping ammoxidation reaction
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2003064041A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile and hydrocyanic acid
JP2003064043A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of hydrocyanic acid
JP2003064042A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile
JP2007185636A (en) * 2006-01-16 2007-07-26 Daiyanitorikkusu Kk Method for manufacturing catalyst for fluidized bed and method for producing nitriles
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP2013522037A (en) * 2010-03-23 2013-06-13 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Process for the preparation of an improved mixed metal oxide ammoxidation catalyst
CN104549340A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Fluidized bed Catalyst for preparation of unsaturated nitrile by ammonium oxidation
WO2022108323A1 (en) * 2020-11-17 2022-05-27 주식회사 엘지화학 Ammoxidation catalyst, method for producing same, and method for producing acrylonitrile using ammoxidation catalyst

Also Published As

Publication number Publication date
WO2000058272A1 (en) 2000-10-05

Similar Documents

Publication Publication Date Title
JP2950851B2 (en) Iron / antimony / phosphorus-containing metal oxide catalyst composition and method for producing the same
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP2008110345A (en) Improved catalyst for production of acrylonitrile and hydrogen cyanide
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP2003117397A (en) Production method of catalyst for ammoxidation
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP3819192B2 (en) Production method of acrylonitrile
JP2013169482A (en) Catalyst for producing acrylonitrile, method of producing the same, and method of producing acrylonitrile using the same
JP2000344724A (en) Production of unsaturated nitrile
JP2841324B2 (en) Method for producing methacrolein
WO2001028984A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
JP2001246260A (en) Method for preparing heteropolyacid-based catalyst and method for producing methacrylic acid
JP3680115B2 (en) Catalyst composition for producing unsaturated nitrile
EP0032012A2 (en) Oxidation and ammoxidation catalysts and their use
CN107282060B (en) Acrylonitrile catalyst for ammoxidation process
KR101785181B1 (en) Catalyst for acrylonitrile production and method for producing acrylonitrile
JP2520279B2 (en) Method for producing acrylonitrile
JP3872268B2 (en) Production process of hydrogen cyanide
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP3505547B2 (en) Method for producing acrylonitrile
JP2002239388A (en) Catalyst for use in producing methacrolein and/or methacrylic acid, method for manufacturing the same and method for manufacturing methacrolein and/or methacrylic acid
CN107398287B (en) Catalyst for acrylonitrile synthesis
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
CN107282064B (en) Catalyst for producing acrylonitrile

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102