JP5609285B2 - Method for producing composite oxide catalyst - Google Patents

Method for producing composite oxide catalyst Download PDF

Info

Publication number
JP5609285B2
JP5609285B2 JP2010131931A JP2010131931A JP5609285B2 JP 5609285 B2 JP5609285 B2 JP 5609285B2 JP 2010131931 A JP2010131931 A JP 2010131931A JP 2010131931 A JP2010131931 A JP 2010131931A JP 5609285 B2 JP5609285 B2 JP 5609285B2
Authority
JP
Japan
Prior art keywords
catalyst
silica
mixed slurry
antimony
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010131931A
Other languages
Japanese (ja)
Other versions
JP2011255311A (en
Inventor
烏田 隆志
隆志 烏田
柳田 元男
元男 柳田
宮氣 健一
健一 宮氣
博一 渡辺
博一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010131931A priority Critical patent/JP5609285B2/en
Publication of JP2011255311A publication Critical patent/JP2011255311A/en
Application granted granted Critical
Publication of JP5609285B2 publication Critical patent/JP5609285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、鉄、アンチモン、およびシリカを含有する複合酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a composite oxide catalyst containing iron, antimony, and silica.

アンチモン含有複合酸化物触媒は、有機化合物の酸化反応によるアルデヒド類や不飽和酸の製造、アンモ酸化反応によるニトリル類や青酸の製造に適する触媒として広く知られている。特にアンチモン含有複合酸化物触媒はアンモ酸化反応に有用であり、例えば、プロピレンのアンモ酸化反応によるアクリロニトリル製造やメタノールのアンモ酸化反応による青酸製造等に用いられている。   Antimony-containing composite oxide catalysts are widely known as catalysts suitable for the production of aldehydes and unsaturated acids by the oxidation reaction of organic compounds and the production of nitriles and hydrocyanic acid by an ammoxidation reaction. In particular, the antimony-containing composite oxide catalyst is useful for an ammoxidation reaction, and is used, for example, for the production of acrylonitrile by an ammoxidation reaction of propylene or the production of hydrocyanic acid by an ammoxidation reaction of methanol.

ところで、アクリロニトリルは「流動床アンモ酸化プロセス」として広く知られた方法により、工業的に合成されている。この流動床アンモ酸化プロセスにおいては、触媒の機械的強度が小さいと、触媒の破壊や磨耗等が起こり、安定運転が継続できないことがあった。従って、触媒は機械的強度に優れるほど好ましく、触媒の機械的強度を向上させる技術が求められている。   By the way, acrylonitrile is industrially synthesized by a method widely known as a “fluidized bed ammoxidation process”. In this fluidized bed ammoxidation process, if the mechanical strength of the catalyst is low, the catalyst may be destroyed or worn, and stable operation may not be continued. Therefore, the catalyst is more preferable as it has better mechanical strength, and a technique for improving the mechanical strength of the catalyst is required.

従来、酸化反応およびアンモ酸化反応に用いられる触媒に関しては多くの検討がなされ、これまでに種々の触媒が提案されている。
例えば、特許文献1にはアンチモンと鉄、コバルト、ニッケルよりなる群から選ばれた少なくとも一種の元素との複合酸化物触媒が開示されている。
これらの触媒の改良検討も精力的に行われており、例えば、特許文献2〜11には鉄、アンチモンにテルル、バナジウム、タングステン、モリブデン、リン等を添加した触媒が開示されている。
Conventionally, many studies have been made on catalysts used in oxidation reactions and ammoxidation reactions, and various catalysts have been proposed so far.
For example, Patent Document 1 discloses a composite oxide catalyst of antimony and at least one element selected from the group consisting of iron, cobalt, and nickel.
For example, Patent Documents 2 to 11 disclose catalysts in which tellurium, vanadium, tungsten, molybdenum, phosphorus, or the like is added to iron or antimony.

さらに触媒調製法の改良によって目的生成物収率を向上させる検討も続けられている。例えば、特許文献12〜16にはアンチモンと多価金属化合物を含むスラリーのpHを調整する方法やスラリーを加熱処理する方法等が開示されている。
また、触媒の機械的強度を向上させる手法として、例えば、特許文献17には、アンチモンを主成分とするアクリロニトリル合成用触媒の改良調製法において、シリカゾルおよびヒュームドシリカを原料として用いる方法が開示されている。
Furthermore, investigations for improving the yield of the target product by improving the catalyst preparation method are continued. For example, Patent Documents 12 to 16 disclose a method for adjusting the pH of a slurry containing antimony and a polyvalent metal compound, a method for heat-treating the slurry, and the like.
As a technique for improving the mechanical strength of the catalyst, for example, Patent Document 17 discloses a method of using silica sol and fumed silica as raw materials in an improved preparation method of an acrylonitrile synthesis catalyst mainly composed of antimony. ing.

特公昭38−19111号公報Japanese Examined Patent Publication No. 38-19111 特公昭46−2804号公報Japanese Patent Publication No.46-2804 特公昭47−19765号公報Japanese Patent Publication No. 47-19765 特公昭47−19766号公報Japanese Patent Publication No. 47-19766 特公昭47−19767号公報Japanese Patent Publication No.47-19767 特開昭50−108219号公報JP 50-108219 A 特開昭58−145617号公報JP 58-145617 A 特開平1−257125号公報JP-A-1-257125 特開平3−26342号公報JP-A-3-26342 特開平4−118051号公報JP-A-4-118051 特開2001−114740号公報JP 2001-114740 A 特公昭47−18722号公報Japanese Patent Publication No.47-18722 特開昭49−40288号公報JP 49-40288 A 特開昭52−140490号公報Japanese Patent Laid-Open No. 52-140490 特開昭60−137438号公報JP-A-60-137438 特開平1−265068号公報JP-A-1-265068 特開昭58−11045号公報JP 58-11045 A

しかしながら、これらの特許文献に開示された方法を用いて製造された触媒は、目的生成物の収率向上、および触媒の機械的強度などの物性面においてある程度の効果は見られるものの、必ずしも工業触媒として十分ではなく、更なる触媒性能の向上が望まれている。   However, catalysts produced using the methods disclosed in these patent documents are not necessarily industrial catalysts although some effects are seen in physical properties such as improvement in yield of the target product and mechanical strength of the catalyst. As a result, further improvement in catalyst performance is desired.

本発明は、上記事情に鑑みてなされたものであり、機械的強度に優れ、高収率で目的生成物を製造できる複合酸化物触媒の製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the complex oxide catalyst which is excellent in mechanical strength and can manufacture a target product with a high yield.

本発明の複合酸化物触媒の製造方法は、鉄、アンチモン、およびシリカを含有する複合酸化物触媒の製造方法であって、少なくとも、鉄とアンチモンとシリカの一部とを混合して混合スラリーを調製し、この混合スラリーを加熱処理する工程と、加熱処理後の混合スラリーに、触媒製造に使用する全シリカ量に対し、モル分率で3〜80%の量のシリカを添加する工程を含み、前記複合酸化物触媒が、下記式(I)で表される組成を有することを特徴とする
Fe10Sb(SiO ・・・(I)
The method for producing a composite oxide catalyst of the present invention is a method for producing a composite oxide catalyst containing iron, antimony, and silica, wherein at least a part of iron, antimony, and silica is mixed to obtain a mixed slurry. Preparing and heat-treating this mixed slurry, and adding to the mixed slurry after the heat treatment 3 to 80% of silica in a molar fraction with respect to the total amount of silica used for catalyst production. seen, before Symbol composite oxide catalyst, characterized by having a composition represented by the following formula (I).
Fe 10 Sb i A a D d E e G g O x (SiO 2 ) y (I)

式中、Fe、Sb、およびSiOはそれぞれ鉄、アンチモン、およびシリカを表し、Aはニッケル、銅、アルミニウム、マンガン、亜鉛、スズ、クロム、コバルト、マグネシウム、カルシウム、ストロンチウム、鉛、バリウム、ニオブ、銀、ジルコニウム、ガリウム、インジウム、タリウム、チタン、およびビスマスからなる群より選ばれた少なくとも一種の元素、Dはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素、Eはリン、ヒ素、ホウ素、ゲルマニウム、およびテルルからなる群より選ばれた少なくとも一種の元素、Gはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群より選ばれた少なくとも一種の元素、Oは酸素を表し、i、a、d、e、g、x、およびyは各元素(シリカの場合はケイ素)の原子比を表し、Fe=10のとき、i=3〜100、a=0.1〜20、d=0〜15、e=0〜20、g=0〜3、x=上記各成分が結合して生成する金属酸化物の酸素の数、y=10〜200である。 Where Fe, Sb, and SiO 2 represent iron, antimony, and silica, respectively, A is nickel, copper, aluminum, manganese, zinc, tin, chromium, cobalt, magnesium, calcium, strontium, lead, barium, niobium , At least one element selected from the group consisting of silver, zirconium, gallium, indium, thallium, titanium, and bismuth, D is at least one element selected from the group consisting of vanadium, molybdenum, and tungsten, and E is phosphorus At least one element selected from the group consisting of arsenic, boron, germanium, and tellurium, G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and O represents oxygen , I, a, d, e, g, x, and y represents the atomic ratio of each element (silicon in the case of silica), and when Fe = 10, i = 3 to 100, a = 0.1 to 20, d = 0 to 15, e = 0 to 20, g = 0 to 3, x = number of oxygen in the metal oxide formed by combining the above components, y = 10 to 200.

本発明によれば、機械的強度に優れ、高収率で目的生成物を製造できる複合酸化物触媒の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in mechanical strength and can provide the manufacturing method of the composite oxide catalyst which can manufacture a target product with a high yield.

以下、本発明について詳細に説明する。
本発明の複合酸化物触媒の製造方法(以下、「本発明の触媒製造方法」ということがある。)は、鉄、アンチモン、およびシリカを含有する複合酸化物触媒の製造方法であって、少なくとも、鉄とアンチモンとシリカの一部とを混合して混合スラリーを調製し、この混合スラリーを加熱処理する工程と、加熱処理後の混合スラリーに、触媒製造に使用する全シリカ量に対し、モル分率で3〜80%の量のシリカを添加する工程を含むことを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing a composite oxide catalyst of the present invention (hereinafter sometimes referred to as “the catalyst production method of the present invention”) is a method for producing a composite oxide catalyst containing iron, antimony, and silica, and includes at least Then, iron, antimony, and a part of silica are mixed to prepare a mixed slurry, and the mixed slurry is subjected to heat treatment, and the mixed slurry after the heat treatment is mixed with the total amount of silica used for catalyst production. It includes a step of adding silica in an amount of 3 to 80% in a fraction.

本発明の触媒製造方法では、まず、少なくとも、鉄とアンチモンとシリカの一部とを含む触媒原料を混合して、加熱処理を行う前の混合スラリーを調製する。
加熱処理前の混合スラリーを調製する際の触媒原料の混合条件および混合順序については制限を受けない。
In the catalyst production method of the present invention, first, a catalyst raw material containing at least iron, antimony, and a part of silica is mixed to prepare a mixed slurry before heat treatment.
There are no restrictions on the mixing conditions and mixing order of the catalyst raw materials when preparing the mixed slurry before the heat treatment.

触媒製造方法に用いる各成分の触媒原料については、特に制限されないが、以下に示すものが挙げられる。
鉄成分の原料としては、例えば、酸化第一鉄、酸化第二鉄、硝酸第一鉄、硝酸第二鉄、硫酸鉄、塩化鉄、鉄有機酸塩、および水酸化鉄等を用いることができるほか、金属鉄を加熱した硝酸に溶解して用いてもよい。
Although it does not restrict | limit especially about the catalyst raw material of each component used for a catalyst manufacturing method, What is shown below is mentioned.
Examples of the raw material for the iron component include ferrous oxide, ferric oxide, ferrous nitrate, ferric nitrate, iron sulfate, iron chloride, iron organic acid salt, and iron hydroxide. In addition, metallic iron may be dissolved in heated nitric acid.

アンチモン成分の原料としては、例えば、三酸化アンチモンや五酸化アンチモン等の酸化物、塩化アンチモンや硫酸アンチモン等を用いることができる。   As the raw material of the antimony component, for example, oxides such as antimony trioxide and antimony pentoxide, antimony chloride, antimony sulfate and the like can be used.

シリカ成分の原料としてはシリカゾルが好ましく、市販のものから適宜選択して用いることができる。
シリカゾルにおけるシリカ粒子の大きさは特に制限されないが、平均粒子径が2〜100nmであることが好ましく、5〜75nmであることがより好ましい。シリカゾルは、シリカ粒子の大きさが均一のものでもよく、数種類の大きさのシリカ粒子が混ざったものでもよい。また、平均粒子やpHなどの異なる複数種のシリカゾルを混合して用いてもよい。
ここで、シリカ粒子の平均粒子径とは、BET法により、シリカ粒子の表面に吸着された窒素の吸着量から求めた値である。
As a raw material for the silica component, silica sol is preferable, which can be appropriately selected from commercially available ones.
The size of the silica particles in the silica sol is not particularly limited, but the average particle diameter is preferably 2 to 100 nm, more preferably 5 to 75 nm. The silica sol may have a uniform silica particle size or may be a mixture of silica particles of several sizes. Further, a plurality of types of silica sols having different average particles and pH may be mixed and used.
Here, the average particle diameter of the silica particles is a value obtained from the adsorption amount of nitrogen adsorbed on the surface of the silica particles by the BET method.

なお、本発明の触媒製造方法により製造しようとする複合酸化物触媒が、鉄、アンチモン、およびシリカ以外の他の触媒成分を含有する場合、これらの触媒成分は、加熱処理前の混合スラリー中に含まれていてもよいし、含まれていなくてもよい。また、後述する加熱処理後の混合スラリーに添加してもよい。
これらの触媒成分の原料については特に制限はなく、各元素の酸化物、または加熱により容易に酸化物になり得る塩化物、硫酸塩、硝酸塩、アンモニウム塩、炭酸塩、水酸化物、有機酸塩、酸素酸、酸素酸塩、ヘテロポリ酸、ヘテロポリ酸塩、またはそれらの混合物等を用いることができる。また、これらを複数種、組み合わせて使用してもよい。
When the composite oxide catalyst to be produced by the catalyst production method of the present invention contains other catalyst components other than iron, antimony, and silica, these catalyst components are contained in the mixed slurry before the heat treatment. It may or may not be included. Moreover, you may add to the mixed slurry after the heat processing mentioned later.
There are no particular restrictions on the raw materials for these catalyst components, and oxides of each element, or chlorides, sulfates, nitrates, ammonium salts, carbonates, hydroxides, and organic acid salts that can easily become oxides upon heating. , Oxygen acids, oxyacid salts, heteropolyacids, heteropolyacid salts, or mixtures thereof can be used. Moreover, you may use these in combination of multiple types.

混合スラリーを調製する際に使用する溶媒についても制限はなく、例えば、水、エチルアルコール、アセトンなどが挙げられるが、水を用いることが好ましい。また、溶媒中に、別途、硝酸、硫酸や塩酸などの酸や、アンモニア水などのアルカリ液を加えて用いてもよい。   There is no restriction | limiting also about the solvent used when preparing a mixing slurry, For example, although water, ethyl alcohol, acetone, etc. are mentioned, it is preferable to use water. Further, an acid such as nitric acid, sulfuric acid or hydrochloric acid, or an alkaline solution such as aqueous ammonia may be added to the solvent.

次に、混合スラリーの加熱処理を行う。ここで、混合スラリーの加熱処理とは、混合スラリーを80℃以上の温度で30分以上保持する工程のことをいう。
加熱処理温度は、下限は、好ましくは85℃以上、さらに好ましくは90℃以上であり、上限は、特に制限はないが、120℃以下が一般的である。加熱処理温度の下限が80℃未満であると、目的生成物を製造するのに有利と考えられる鉄−アンチモン結晶相の生成が不十分となり、目的生成物の収率が低下する。
加熱処理時間は、30分〜72時間の範囲で行うことができる。加熱処理時間が30分未満であると、目的生成物を製造するのに有利と考えられる鉄−アンチモン結晶相の生成が不十分となり、加熱処理の効果が十分に得られない。一方、加熱処理時間が72時間を超えても、得られる効果は頭打ちとなる。
加熱処理時の圧力は、通常、常圧下で行うが、特に制限を受けず、必要であれば、減圧下、もしくは加圧下で加熱処理を行ってもよい。
Next, the mixed slurry is heated. Here, the heat treatment of the mixed slurry refers to a step of holding the mixed slurry at a temperature of 80 ° C. or higher for 30 minutes or longer.
The lower limit of the heat treatment temperature is preferably 85 ° C or higher, more preferably 90 ° C or higher, and the upper limit is not particularly limited, but is generally 120 ° C or lower. When the lower limit of the heat treatment temperature is less than 80 ° C., the iron-antimony crystal phase considered to be advantageous for producing the target product is insufficiently produced, and the yield of the target product is lowered.
The heat treatment time can be performed in the range of 30 minutes to 72 hours. When the heat treatment time is less than 30 minutes, the production of an iron-antimony crystal phase considered to be advantageous for producing the target product becomes insufficient, and the effect of the heat treatment cannot be sufficiently obtained. On the other hand, even if the heat treatment time exceeds 72 hours, the obtained effect reaches a peak.
The pressure during the heat treatment is usually performed under normal pressure, but is not particularly limited. If necessary, the heat treatment may be performed under reduced pressure or under pressure.

次に、加熱処理後の混合スラリーにシリカ成分の原料を添加する。
複数種類のシリカ成分の原料を使用する場合は、加熱処理後の混合スラリーに別々に添加してもよいし、一緒に添加してもよい。
加熱処理後の混合スラリーにシリカ成分の原料を添加する際の添加条件および添加順序については制限を受けない。
Next, the raw material of the silica component is added to the mixed slurry after the heat treatment.
When using the raw material of a multiple types of silica component, you may add separately to the mixed slurry after heat processing, and may add together.
There are no restrictions on the addition conditions and order of addition of the silica component raw material to the mixed slurry after the heat treatment.

加熱処理後の混合スラリーに添加するシリカの量の割合は、触媒製造に使用する全シリカ量に対し、モル分率で3〜80%の範囲であることが重要であり、下限は5%以上であることが好ましく、上限は70%以下であることが好ましく、60%以下であることがより好ましい。   It is important that the ratio of the amount of silica added to the mixed slurry after the heat treatment is in the range of 3 to 80% in terms of molar fraction with respect to the total amount of silica used for catalyst production, and the lower limit is 5% or more. The upper limit is preferably 70% or less, and more preferably 60% or less.

加熱処理後の混合スラリーに添加するシリカ量の割合が、触媒製造に使用する全シリカ量に対しモル分率で3%以上であれば、得られる触媒の機械的強度が向上する。
一方、加熱処理後の混合スラリーに添加するシリカ量の割合が、触媒製造に使用する全シリカ量に対しモル分率で80%以下であれば、高収率で目的生成物を製造できる触媒が得られる。
If the ratio of the amount of silica added to the mixed slurry after the heat treatment is 3% or more in terms of a molar fraction with respect to the total amount of silica used for catalyst production, the mechanical strength of the resulting catalyst will be improved.
On the other hand, if the ratio of the amount of silica added to the mixed slurry after the heat treatment is 80% or less in terms of molar fraction with respect to the total amount of silica used for catalyst production, a catalyst capable of producing the target product in high yield is obtained. can get.

また、本発明の触媒製造方法により製造しようとする複合酸化物触媒が、鉄、アンチモン、およびシリカ以外の他の触媒成分を含有する場合、これらの触媒成分の原料を加熱処理後の混合スラリーに添加してもよい。添加条件および添加順序については制限を受けない。
なお、上記混合スラリー中には、必ずしも触媒を構成する全ての元素を必要量含有していなくてもよく、該混合スラリーに含有されていない元素成分や、必要量に達していない元素成分の原料は後述する乾燥工程までに各工程で添加してもよく、乾燥後の触媒に含浸する等の方法により添加してもよい。
Further, when the composite oxide catalyst to be produced by the catalyst production method of the present invention contains other catalyst components other than iron, antimony, and silica, the raw materials of these catalyst components are mixed into the mixed slurry after the heat treatment. It may be added. There are no restrictions on the addition conditions and order of addition.
The mixed slurry does not necessarily contain the necessary amount of all the elements constituting the catalyst. Elemental components not contained in the mixed slurry or raw materials of elemental components that do not reach the necessary amount May be added in each step before the drying step described later, or may be added by a method such as impregnating the catalyst after drying.

次に、乾燥工程において、加熱処理後の混合スラリーにシリカを添加した後のスラリーを乾燥して乾燥物(触媒前駆体)を得る。
本発明の触媒製造方法により製造される複合酸化物触媒は、流動層触媒として用いるのが好適であり、その場合には噴霧乾燥により球状の粒子とすることが好ましい。噴霧乾燥の際には、加圧ノズル式、二流体ノズル式、回転円盤式などの噴霧乾燥器が用いられる。
Next, in the drying step, the slurry after adding silica to the mixed slurry after the heat treatment is dried to obtain a dried product (catalyst precursor).
The composite oxide catalyst produced by the catalyst production method of the present invention is preferably used as a fluidized bed catalyst, and in that case, it is preferred to form spherical particles by spray drying. At the time of spray drying, a spray dryer such as a pressure nozzle type, a two-fluid nozzle type, and a rotary disk type is used.

噴霧乾燥に際して、噴霧乾燥機の乾燥室内に流通させる熱風の温度は、乾燥室内への導入口付近における温度の下限は、好ましくは130℃以上、より好ましくは140℃以上であり、上限は、好ましくは400℃以下、より好ましくは350℃以下である。また、乾燥室出口付近における温度の下限は、好ましくは100℃以上、より好ましくは110℃以上であり、上限は、好ましくは220℃以下、より好ましくは200℃以下である。更には、導入口付近における温度と乾燥室出口付近における温度との差が20〜220℃に保たれていることが好ましく、30〜210℃に保たれていることがより好ましい。
上記の各温度が所定の範囲にない場合には、得られる触媒の活性や目的生成物の収率が低下したり、触媒のかさ密度、触媒の機械的強度等が低下したりする等の問題が生じる場合がある。
At the time of spray drying, the temperature of the hot air circulated in the drying chamber of the spray dryer is preferably 130 ° C. or higher, more preferably 140 ° C. or higher, and preferably the upper limit of the temperature in the vicinity of the inlet to the drying chamber. Is 400 ° C. or lower, more preferably 350 ° C. or lower. Further, the lower limit of the temperature in the vicinity of the drying chamber outlet is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and the upper limit is preferably 220 ° C. or lower, more preferably 200 ° C. or lower. Furthermore, the difference between the temperature in the vicinity of the inlet and the temperature in the vicinity of the drying chamber outlet is preferably maintained at 20 to 220 ° C, more preferably 30 to 210 ° C.
When each of the above temperatures is not within a predetermined range, the activity of the obtained catalyst and the yield of the target product are reduced, the bulk density of the catalyst, the mechanical strength of the catalyst, etc. are reduced. May occur.

次に、焼成工程において乾燥物(触媒前駆体)を焼成して、鉄、アンチモン、およびシリカを含有する複合酸化物触媒を得る。
本発明においては、焼成を2回以上に分けて実施することが好ましい。焼成を2回以上に分けて行うことで、目的生成物収率がより向上しやすくなる。
最後に実施する焼成を最終焼成、最終焼成に先立って実施する焼成を仮焼成とすると、最終焼成の温度下限は、好ましくは550℃以上、より好ましくは570℃以上であり、上限は、好ましくは1100℃以下、より好ましくは1000℃以下である。温度が下限より低い場合には十分な触媒性能が発現せず、目的生成物収率が低下する場合がある。逆に上限より高い場合には目的生成物収率が低下したり、触媒の活性が過小となったりする場合がある。また、アンモ酸化反応おいてはアンモニア燃焼性が著しく増大し、アンモニア原単位が低下する場合があり好ましくない。
Next, in the firing step, the dried product (catalyst precursor) is fired to obtain a composite oxide catalyst containing iron, antimony, and silica.
In the present invention, the firing is preferably carried out in two or more times. By performing the baking in two or more times, the target product yield is more likely to be improved.
When the final firing is the final firing, and the preliminary firing is performed prior to the final firing, the lower temperature limit of the final firing is preferably 550 ° C. or higher, more preferably 570 ° C. or higher, and the upper limit is preferably It is 1100 degrees C or less, More preferably, it is 1000 degrees C or less. If the temperature is lower than the lower limit, sufficient catalytic performance may not be exhibited, and the target product yield may be reduced. On the other hand, if it is higher than the upper limit, the yield of the target product may be reduced, or the activity of the catalyst may be excessively low. Further, in the ammoxidation reaction, ammonia combustibility is remarkably increased, and the ammonia basic unit may be lowered, which is not preferable.

また、最終焼成の時間の下限は、好ましくは0.1時間以上、より好ましくは0.5時間以上である。焼成時間が下限より短い場合には十分な触媒性能が発現せず、目的生成物収率が低下する場合がある。上限は特に制限はないが、必要以上に時間を延長しても得られる効果は一定以上にはならないため、通常、20時間以内である。   Further, the lower limit of the final firing time is preferably 0.1 hour or longer, more preferably 0.5 hour or longer. If the calcination time is shorter than the lower limit, sufficient catalyst performance may not be exhibited, and the target product yield may decrease. The upper limit is not particularly limited, but the effect obtained even if the time is extended more than necessary does not become a certain level, and is usually within 20 hours.

一方、仮焼成の温度は200〜490℃の範囲が好ましい。
最終焼成および仮焼成には汎用の焼成炉を用いることができるが、ロータリーキルン、流動焼成炉等が特に好ましく用いられる。この際用いるガス雰囲気は、酸素を含んだ酸化性ガス雰囲気でも、例えば窒素等の不活性ガス雰囲気でも良いが、空気を用いるのが便利である。
On the other hand, the temperature for temporary baking is preferably in the range of 200 to 490 ° C.
A general-purpose firing furnace can be used for final firing and temporary firing, but a rotary kiln, fluidized firing furnace, and the like are particularly preferably used. The gas atmosphere used at this time may be an oxidizing gas atmosphere containing oxygen or an inert gas atmosphere such as nitrogen, but it is convenient to use air.

このようにして製造される触媒の平均粒径は、5〜200μmの範囲であることが好ましく、10〜150μmの範囲がより好ましい。得られる触媒の粒径分布を所望の範囲とするためには、噴霧乾燥の条件を適宜調整すればよい。
触媒の平均粒径は、レーザ回折・散乱法により測定される値(平均メディアン径)である。
The average particle size of the catalyst thus produced is preferably in the range of 5 to 200 μm, more preferably in the range of 10 to 150 μm. In order to make the particle size distribution of the resulting catalyst within a desired range, the spray drying conditions may be adjusted as appropriate.
The average particle diameter of the catalyst is a value (average median diameter) measured by a laser diffraction / scattering method.

本発明の触媒製造方法により製造される複合酸化物触媒としては、少なくとも鉄、アンチモン、およびシリカを含有するものであれば特に限定されないが、下記一般式(I)で表される組成を有することが好ましい。触媒が下記一般式(I)で表される組成であれば、目的生成物収率が向上するなど、本発明の効果が十分に発現する。
Fe10Sb(SiO ・・・(I)
The composite oxide catalyst produced by the catalyst production method of the present invention is not particularly limited as long as it contains at least iron, antimony, and silica, but has a composition represented by the following general formula (I). Is preferred. If the catalyst is a composition represented by the following general formula (I), the effects of the present invention will be sufficiently manifested, for example, the target product yield will be improved.
Fe 10 Sb i A a D d E e G g O x (SiO 2 ) y (I)

式中、Fe、Sb、およびSiOはそれぞれ鉄、アンチモン、およびシリカを表し、Aはニッケル、銅、アルミニウム、マンガン、亜鉛、スズ、クロム、コバルト、マグネシウム、カルシウム、ストロンチウム、鉛、バリウム、ニオブ、銀、ジルコニウム、ガリウム、インジウム、タリウム、チタン、およびビスマスからなる群より選ばれた少なくとも一種の元素、Dはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素、Eはリン、ヒ素、ホウ素、ゲルマニウム、およびテルルからなる群より選ばれた少なくとも一種の元素、Gはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群より選ばれた少なくとも一種の元素、Oは酸素を表し、i、a、d、e、g、x、およびyは各元素(シリカの場合はケイ素)の原子比を表し、Fe=10のとき、i=3〜100、a=0.1〜20、d=0〜15、e=0〜20、g=0〜3、x=上記各成分が結合して生成する金属酸化物の酸素の数、y=10〜200である。 Where Fe, Sb, and SiO 2 represent iron, antimony, and silica, respectively, A is nickel, copper, aluminum, manganese, zinc, tin, chromium, cobalt, magnesium, calcium, strontium, lead, barium, niobium , At least one element selected from the group consisting of silver, zirconium, gallium, indium, thallium, titanium, and bismuth, D is at least one element selected from the group consisting of vanadium, molybdenum, and tungsten, and E is phosphorus At least one element selected from the group consisting of arsenic, boron, germanium, and tellurium, G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and O represents oxygen , I, a, d, e, g, x, and y represents the atomic ratio of each element (silicon in the case of silica), and when Fe = 10, i = 3 to 100, a = 0.1 to 20, d = 0 to 15, e = 0 to 20, g = 0 to 3, x = number of oxygen in the metal oxide formed by combining the above components, y = 10 to 200.

触媒を前記組成にするためには、例えば、混合スラリーを調製する際の触媒原料の添加量を適宜選択する方法や、混合スラリーの調製から焼成までの工程で添加する原料の添加量を適宜選択する方法などが挙げられる。   In order to make the catalyst have the above-mentioned composition, for example, a method of appropriately selecting the amount of the catalyst raw material added when preparing the mixed slurry, or an appropriate amount of raw material added in the steps from preparation of the mixed slurry to firing The method of doing is mentioned.

触媒の組成は、ICP(誘導結合高周波プラズマ)発光分析法、蛍光X線分析法、原子吸光分析法等により元素分析を行うことにより確認できる。著しく揮発性の高い元素を用いない場合は、触媒製造時に用いた各原料の仕込み量から算出しても差し支えない。   The composition of the catalyst can be confirmed by conducting elemental analysis by ICP (inductively coupled radio frequency plasma) emission analysis, fluorescent X-ray analysis, atomic absorption analysis or the like. In the case where an extremely volatile element is not used, it may be calculated from the amount of each raw material used at the time of catalyst production.

このように、本発明によれば、触媒を製造する過程においてシリカの添加の時機とその量を定めることで、すなわち、鉄とアンチモンとシリカの一部とを混合して混合スラリーを調製し、この混合スラリーを加熱処理した後、この加熱処理後の混合スラリーに、触媒製造に使用する全シリカ量に対しモル分率で3%〜80%の量のシリカを添加することで、驚くべきことに、機械的強度に優れ、高収率で目的生成物を製造できる複合酸化物触媒が得られる。   Thus, according to the present invention, by determining the timing and amount of silica addition in the process of producing the catalyst, that is, mixing iron, antimony and a part of silica to prepare a mixed slurry, After this mixed slurry is heat-treated, it is surprising to add 3 to 80% of silica in a molar fraction with respect to the total amount of silica used for catalyst production. In addition, a composite oxide catalyst having excellent mechanical strength and capable of producing a target product with high yield can be obtained.

なお、触媒の機械的強度は、圧縮強度試験機等の測定機を用い、触媒の圧縮強度を測定することで評価できる。なお圧縮強度の測定には、通常、45〜50μmに篩別した触媒を用いる場合が多い。この際、任意に選択した50個程度の触媒について測定を行えば十分である。   The mechanical strength of the catalyst can be evaluated by measuring the compressive strength of the catalyst using a measuring machine such as a compressive strength tester. In addition, for the measurement of compressive strength, a catalyst sieved to 45 to 50 μm is usually used in many cases. At this time, it is sufficient to measure about about 50 arbitrarily selected catalysts.

本発明により製造される複合酸化物触媒を用い、有機化合物のアンモ酸化反応によるニトリル類等の製造を行うには、流動層反応器を用いることが好ましい。流動層反応器に複合酸化物触媒を充填し、触媒層に、原料有機化合物、アンモニア、および酸素を含有する原料ガスを供給することにより実施できる。   In order to produce nitriles and the like by an ammoxidation reaction of an organic compound using the composite oxide catalyst produced according to the present invention, it is preferable to use a fluidized bed reactor. This can be carried out by filling the fluidized bed reactor with a composite oxide catalyst and supplying a raw material gas containing a raw material organic compound, ammonia, and oxygen to the catalyst layer.

原料ガスとしては、特に限定されないが、有機化合物/アンモニア/酸素が1/1.1〜1.5/1.5〜3(モル比)の範囲の原料ガスが好ましい。
酸素源としては空気を用いるのが便利である。原料ガスは水蒸気、窒素、二酸化炭素等の不活性ガスや、飽和炭化水素等で希釈して用いてもよく、また、酸素濃度を高めて用いてもよい。
アンモ酸化反応の反応温度は370〜500℃、反応圧力は常圧から500kPaの範囲内が好ましい。
見掛けの接触時間は、0.1〜20秒であることが好ましい。
Although it does not specifically limit as source gas, The source gas of the range whose organic compound / ammonia / oxygen is 1 / 1.1-1.5 / 1.5-3 (molar ratio) is preferable.
It is convenient to use air as the oxygen source. The source gas may be used after being diluted with an inert gas such as water vapor, nitrogen or carbon dioxide, saturated hydrocarbon or the like, or may be used with an increased oxygen concentration.
The reaction temperature of the ammoxidation reaction is preferably 370 to 500 ° C., and the reaction pressure is preferably within the range of normal pressure to 500 kPa.
The apparent contact time is preferably 0.1 to 20 seconds.

以下、本発明を実施例、比較例により具体的に説明するが、本発明は実施例に限定されるものではない。
下記の実施例および比較例中の「部」は質量部を意味する。
なお、実施例および比較例で得られた触媒の組成は、触媒の製造に用いた各原料の仕込み量から求めた。
また、各例で得られた触媒の活性試験および機械的強度の評価は、以下の手順で実施した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to an Example.
In the following examples and comparative examples, “parts” means parts by mass.
In addition, the composition of the catalyst obtained by the Example and the comparative example was calculated | required from the preparation amount of each raw material used for manufacture of a catalyst.
Moreover, the activity test of the catalyst obtained in each example and evaluation of mechanical strength were implemented in the following procedures.

(1)触媒の活性試験
触媒の活性を評価するため、下記の要領でプロピレンのアンモ酸化反応によるアクリロニトリルの製造を行った。
触媒流動部の内径が55mm、高さが2000mmである流動層反応器に、触媒と原料ガスの見掛け接触時間が表1の通りとなるように触媒を充填した。その際の接触時間は下記の式により求めた。
接触時間(秒)=見掛け嵩密度基準の触媒容積(mL)/反応条件に換算した供給原料ガス量(mL/秒)
(1) Catalyst activity test In order to evaluate the activity of the catalyst, acrylonitrile was produced by the ammoxidation reaction of propylene in the following manner.
A fluidized bed reactor having an inner diameter of 55 mm and a height of 2000 mm in the catalyst fluidized part was filled with the catalyst so that the apparent contact time between the catalyst and the raw material gas was as shown in Table 1. The contact time in that case was calculated | required by the following formula.
Contact time (seconds) = apparent volume density based catalyst volume (mL) / feed gas amount converted to reaction conditions (mL / second)

酸素源として空気を用い、組成がプロピレン:アンモニア:酸素=1:1.1:2.3(モル比)である原料ガスを、ガス線速度17cm/秒で触媒層に送入した。反応圧力は200kPa、反応温度は460℃とした。
反応生成物の定量にはガスクロマトグラフィーを用い、反応開始から4時間後のプロピレン転化率およびアクリロニトリル収率を求めた。その際のプロピレン転化率およびアクリロニトリル収率は下記の式により求めた。
プロピレン転化率(%)={(供給したプロピレンの炭素質量−未反応プロピレンの炭素質量)/供給したプロピレンの炭素質量}×100
アクリロニトリル収率(%)=(生成したアクリロニトリルの炭素質量/供給したプロピレンの炭素質量)×100
Air was used as an oxygen source, and a raw material gas having a composition of propylene: ammonia: oxygen = 1: 1.1: 2.3 (molar ratio) was fed into the catalyst layer at a gas linear velocity of 17 cm / sec. The reaction pressure was 200 kPa, and the reaction temperature was 460 ° C.
Gas chromatography was used to quantify the reaction product, and the propylene conversion rate and acrylonitrile yield 4 hours after the start of the reaction were determined. The propylene conversion rate and acrylonitrile yield at that time were determined by the following formula.
Propylene conversion rate (%) = {(carbon mass of supplied propylene−carbon mass of unreacted propylene) / carbon mass of supplied propylene} × 100
Acrylonitrile yield (%) = (carbon mass of produced acrylonitrile / carbon mass of supplied propylene) × 100

(2)触媒の機械的強度の評価
篩別した45〜50μmの触媒から任意に採取した50個の触媒について、圧縮強度試験機(島津製作所社製「島津MCTM−200」)を用い、以下の測定条件で個々の圧縮強度を測定し、その平均値を触媒の機械的強度とした。
・上部加圧圧子:(ダイヤモンド製の500μm平面圧子)
・下部加圧板:SUS板
・負荷速度:7.1mN/秒
(2) Evaluation of the mechanical strength of the catalyst About 50 catalysts arbitrarily collected from the sieved 45-50 μm catalyst, using a compressive strength tester (“Shimadzu MCTM-200” manufactured by Shimadzu Corporation), the following: The individual compressive strength was measured under the measurement conditions, and the average value was taken as the mechanical strength of the catalyst.
・ Upper pressure indenter: (500 μm flat indenter made of diamond)
・ Lower pressure plate: SUS plate ・ Loading speed: 7.1 mN / sec

[実施例1]
以下の手順にて触媒を製造した。
63質量%の硝酸4000部に、鉄粉末383.7部を溶解した。攪拌を行いながら、この溶液に純水3000部を添加した。この溶液を60℃に加熱した後、30質量%シリカ6536.0部、三酸化アンチモン粉末1802.7部、純水200部にパラモリブデン酸アンモニウム121.3部を溶解したモリブデン溶液を順次添加し、混合スラリーを調製した。
この混合スラリーに15質量%アンモニア水を添加して、pH2.2に調整し、得られた混合スラリーを還流下、98℃で4時間加熱処理を行った。
次いで、加熱処理後の混合スラリーを80℃まで冷却し、硝酸銅・3水和物332.0部、硝酸クロム・9水和物123.7部、硝酸ニッケル・6水和物99.9部、硝酸ルビジウム5.1部、85質量%リン酸63.4部、ホウ酸63.7部、テルル酸220.9部、30質量%シリカ344.0部を順次添加した。加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で5%であった。
この混合スラリーをホモジナイザーを用いて微粒化処理した。
微粒化処理後の混合スラリーを噴霧乾燥器により乾燥し、球状の乾燥粒子を得た。次いで、得られた乾燥粒子を250℃で2時間、450℃で2時間焼成し、最終的に流動焼成炉を用いて750℃で4時間流動焼成して触媒を得た。
得られた触媒の組成は、以下の通りであった。
Fe10Sb18CuCr0.45Ni0.5Mo1.00.81.5Te1.4Rb0.05(SiO50
ここで、xは、上記各成分が結合して生成する金属酸化物の酸素の数である。
[Example 1]
The catalyst was produced by the following procedure.
In 4000 parts of 63 mass% nitric acid, 383.7 parts of iron powder was dissolved. While stirring, 3000 parts of pure water was added to this solution. After heating this solution to 60 ° C., a molybdenum solution in which 121.3 parts of ammonium paramolybdate was dissolved in 6536.0 parts of 30% by mass silica, 1802.7 parts of antimony trioxide powder, and 200 parts of pure water was sequentially added. A mixed slurry was prepared.
15% by mass aqueous ammonia was added to the mixed slurry to adjust to pH 2.2, and the resulting mixed slurry was heated at 98 ° C. for 4 hours under reflux.
Subsequently, the mixed slurry after the heat treatment is cooled to 80 ° C., and 332.0 parts of copper nitrate trihydrate, 123.7 parts of chromium nitrate nonahydrate, 99.9 parts of nickel nitrate hexahydrate Then, 5.1 parts of rubidium nitrate, 63.4 parts of 85% by weight phosphoric acid, 63.7 parts of boric acid, 220.9 parts of telluric acid, and 344.0 parts of 30% by weight silica were sequentially added. The ratio of the amount of silica added to the mixed slurry after the heat treatment was 5% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.
The mixed slurry was atomized using a homogenizer.
The mixed slurry after the atomization treatment was dried by a spray drier to obtain spherical dry particles. Next, the obtained dry particles were calcined at 250 ° C. for 2 hours and at 450 ° C. for 2 hours, and finally fluidly calcined at 750 ° C. for 4 hours using a fluidized calciner to obtain a catalyst.
The composition of the obtained catalyst was as follows.
Fe 10 Sb 18 Cu 2 Cr 0.45 Ni 0.5 Mo 1.0 P 0.8 B 1.5 Te 1.4 Rb 0.05 O x (SiO 2 ) 50
Here, x is the number of oxygen in the metal oxide formed by combining the above components.

得られた触媒について、活性試験を実施した。なお接触時間を2.7秒とした。また、活性試験後の触媒について、(2)に示した機械的強度の評価を実施した。結果を表1に示す。   The obtained catalyst was subjected to an activity test. The contact time was 2.7 seconds. Further, the mechanical strength shown in (2) was evaluated for the catalyst after the activity test. The results are shown in Table 1.

[実施例2]
実施例1において、加熱処理前の混合スラリーの調製に用いたシリカ量を5160.0部に、加熱処理後の混合スラリーに添加したシリカ量を1720.0部に変更した以外は、実施例1と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で25%であった。
[Example 2]
Example 1 except that the amount of silica used in the preparation of the mixed slurry before the heat treatment was changed to 5160.0 parts and the amount of silica added to the mixed slurry after the heat treatment was changed to 1720.0 parts in Example 1. A catalyst was produced in the same manner as above, and each evaluation was performed. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 25% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.

[実施例3]
以下の手順にて触媒を製造した。
攪拌している純水3000部に、63質量%の硝酸3000部を添加して硝酸溶液を調製した。この硝酸溶液を60℃に加熱後、硝酸第二鉄・9水和物2953.7部を添加し溶解させた。この溶液に、40質量%シリカ4200.4部、三酸化アンチモン粉末1865.0部、純水200部にパラモリブデン酸アンモニウム56.8部、メタバナジン酸アンモニウム0.86部を溶解したモリブデン−バナジウム混合溶液、50質量%メタタングステン酸アンモニウム液84.8部を順次添加し、混合スラリーを調製した。
この混合スラリーに15質量%アンモニア水を添加して、pH2.2に調整し、得られた混合スラリーを還流下、98℃で4時間加熱処理を行った。
次いで、加熱処理後の混合スラリーを80℃まで冷却し、硝酸ニッケル・6水和物42.5部、硝酸銅・3水和物53.0部、硝酸マグネシウム28.1部、85質量%リン酸227.6部、テルル酸302.2部、40質量%シリカ741.2部を順次添加した。加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で15%であった。
この混合スラリーをホモジナイザーを用いて微粒化処理した。
微粒化処理後の混合スラリーを噴霧乾燥器により乾燥し、球状の乾燥粒子を得た。次いで、得られた乾燥粒子を250℃で2時間、450℃で2時間焼成し、最終的に流動焼成炉を用いて800℃で4時間流動焼成して触媒を得た。
得られた触媒の組成は、以下の通りであった。
Fe10Sb17.5Ni0.2Cu0.3Mg0.15Mo0.440.250.01Te1.82.7(SiO45
ここで、xは、上記各成分が結合して生成する金属酸化物の酸素の数である。
[Example 3]
The catalyst was produced by the following procedure.
A nitric acid solution was prepared by adding 3000 parts of 63 mass% nitric acid to 3000 parts of pure water being stirred. After heating this nitric acid solution to 60 ° C., 2953.7 parts of ferric nitrate nonahydrate was added and dissolved. This solution was mixed with molybdenum-vanadium in which 4200.4 parts by weight of silica, 1865.0 parts of antimony trioxide powder, 56.8 parts of ammonium paramolybdate and 0.86 parts of ammonium metavanadate were dissolved in 200 parts of pure water. The solution and 84.8 parts of a 50 mass% ammonium metatungstate solution were sequentially added to prepare a mixed slurry.
15% by mass aqueous ammonia was added to the mixed slurry to adjust to pH 2.2, and the resulting mixed slurry was heated at 98 ° C. for 4 hours under reflux.
Next, the mixed slurry after the heat treatment was cooled to 80 ° C., 42.5 parts of nickel nitrate hexahydrate, 53.0 parts of copper nitrate trihydrate, 28.1 parts of magnesium nitrate, 85 mass% phosphorus 227.6 parts of acid, 302.2 parts of telluric acid, and 741.2 parts of 40% by mass silica were sequentially added. The ratio of the amount of silica added to the mixed slurry after the heat treatment was 15% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.
The mixed slurry was atomized using a homogenizer.
The mixed slurry after the atomization treatment was dried by a spray drier to obtain spherical dry particles. Next, the obtained dry particles were calcined at 250 ° C. for 2 hours and 450 ° C. for 2 hours, and finally fluidly calcined at 800 ° C. for 4 hours using a fluid calcining furnace to obtain a catalyst.
The composition of the obtained catalyst was as follows.
Fe 10 Sb 17.5 Ni 0.2 Cu 0.3 Mg 0.15 Mo 0.44 W 0.25 V 0.01 Te 1.8 P 2.7 O x (SiO 2 ) 45
Here, x is the number of oxygen in the metal oxide formed by combining the above components.

得られた触媒について、活性試験を実施した。なお接触時間を2.8秒とした。また、活性試験後の触媒について、(2)に示した機械的強度の評価を実施した。結果を表1に示す。   The obtained catalyst was subjected to an activity test. The contact time was 2.8 seconds. Further, the mechanical strength shown in (2) was evaluated for the catalyst after the activity test. The results are shown in Table 1.

[実施例4]
実施例3において、加熱処理前の混合スラリーの調製に用いたシリカ量を2470.8部に、加熱処理後の混合スラリーに添加したシリカ量を2470.8部に変更した以外は、実施例3と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で50%であった。
[Example 4]
In Example 3, the amount of silica used for the preparation of the mixed slurry before the heat treatment was changed to 2470.8 parts, and the amount of silica added to the mixed slurry after the heat treatment was changed to 2470.8 parts. A catalyst was produced in the same manner as above, and each evaluation was performed. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 50% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.

[比較例1]
実施例1において、加熱処理前の混合スラリーの調製に用いたシリカ量を6880.0部に変更し、加熱処理後の混合スラリーにシリカを添加しなかった以外は、実施例1と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で0%であった。
[Comparative Example 1]
In Example 1, the amount of silica used for the preparation of the mixed slurry before the heat treatment was changed to 6880.0 parts, and the catalyst was the same as in Example 1 except that no silica was added to the mixed slurry after the heat treatment. Were manufactured and each evaluation was carried out. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 0% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.

[比較例2]
実施例1において、加熱処理前の混合スラリーの調製にシリカを用いず、加熱処理後の混合スラリーに添加したシリカ量を6880.0部に変更した以外は、実施例1と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で100%であった。
[Comparative Example 2]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that silica was not used for preparation of the mixed slurry before the heat treatment, and the amount of silica added to the mixed slurry after the heat treatment was changed to 6880.0 parts. Each evaluation was conducted. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 100% in terms of mole fraction with respect to the total amount of silica used in the production of the catalyst.

[比較例3]
実施例3において、加熱処理前の混合スラリーの調製に用いたシリカ量を4892.2部に、加熱処理後の混合スラリーに添加したシリカ量を49.4部に変更した以外は、実施例3と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で1%であった。
[Comparative Example 3]
In Example 3, the amount of silica used for the preparation of the mixed slurry before the heat treatment was changed to 4892.2 parts, and the amount of silica added to the mixed slurry after the heat treatment was changed to 49.4 parts, Example 3 A catalyst was produced in the same manner as above, and each evaluation was performed. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 1% in terms of mole fraction with respect to the total amount of silica used in the production of the catalyst.

[比較例4]
実施例3において、加熱処理前の混合スラリーの調製に用いたシリカ量を247.1部に、加熱処理後の混合スラリーに添加したシリカ量を4694.5部に変更した以外は、実施例3と同様に触媒を製造し、各評価を実施した。結果を表1に示す。
この触媒の製造において、加熱処理後の混合スラリーに添加したシリカ量の割合は、本触媒製造に使用した全シリカ量に対しモル分率で95%であった。
[Comparative Example 4]
In Example 3, the amount of silica used for the preparation of the mixed slurry before the heat treatment was changed to 247.1 parts, and the amount of silica added to the mixed slurry after the heat treatment was changed to 4694.5 parts, Example 3 A catalyst was produced in the same manner as above, and each evaluation was performed. The results are shown in Table 1.
In the production of this catalyst, the ratio of the amount of silica added to the mixed slurry after the heat treatment was 95% in terms of molar fraction with respect to the total amount of silica used in the production of the catalyst.

Figure 0005609285
Figure 0005609285

表1から明らかなように、実施例1〜4で得られた複合酸化物触媒は、いずれも触媒の機械的強度が高く、かつ高収率でアクリロニトリルを製造できた。
一方、比較例1で得られた複合酸化物触媒は、実施例1および2で得られた複合酸化物触媒と同じ組成であるにもかかわらず、実施例1および2で得られた触媒と比較してアクリロニトリルの収率の点では問題はなかったが、触媒の機械的強度が低かった。
また、比較例2で得られた複合酸化物触媒は、実施例1および2で得られた複合酸化物触媒と同じ組成であるにもかかわらず、実施例1および2で得られた触媒と比較して触媒の機械的強度の点では問題はなかったが、アクリロニトリルの収率が低かった。
As is clear from Table 1, all of the composite oxide catalysts obtained in Examples 1 to 4 had high catalyst mechanical strength and were able to produce acrylonitrile in a high yield.
On the other hand, although the composite oxide catalyst obtained in Comparative Example 1 has the same composition as the composite oxide catalyst obtained in Examples 1 and 2, it is compared with the catalyst obtained in Examples 1 and 2. Although there was no problem in terms of the yield of acrylonitrile, the mechanical strength of the catalyst was low.
In addition, the composite oxide catalyst obtained in Comparative Example 2 was compared with the catalyst obtained in Examples 1 and 2 even though the composite oxide catalyst obtained in Examples 1 and 2 had the same composition. Although there was no problem in terms of the mechanical strength of the catalyst, the yield of acrylonitrile was low.

同様に、比較例3で得られた複合酸化物触媒は、実施例3および4で得られた複合酸化物触媒と同じ組成であるにもかかわらず、実施例3および4で得られた触媒と比較してアクリロニトリルの収率の点では問題はなかったが、触媒の機械的強度が低かった。
また、比較例4で得られた複合酸化物触媒は、実施例3および4で得られた複合酸化物触媒と同じ組成であるにもかかわらず、実施例3および4で得られた触媒と比較して触媒の機械的強度の点では問題はなかったが、アクリロニトリルの収率が低かった。
Similarly, although the composite oxide catalyst obtained in Comparative Example 3 has the same composition as the composite oxide catalyst obtained in Examples 3 and 4, the catalyst obtained in Examples 3 and 4 In comparison, there was no problem in terms of the yield of acrylonitrile, but the mechanical strength of the catalyst was low.
Further, the composite oxide catalyst obtained in Comparative Example 4 was the same as the composite oxide catalyst obtained in Examples 3 and 4, but compared with the catalyst obtained in Examples 3 and 4. Although there was no problem in terms of the mechanical strength of the catalyst, the yield of acrylonitrile was low.

本発明により製造した複合酸化物触媒は、触媒の機械的強度が高く、かつ有機化合物の酸化反応によるアルデヒド類や不飽和酸の製造、アンモ酸化反応によるニトリル類や青酸の製造において高い収率で目的生成物を製造することができる。よって、その工業的価値は大きい。   The composite oxide catalyst produced according to the present invention has high mechanical strength of the catalyst, and has a high yield in the production of aldehydes and unsaturated acids by oxidation reaction of organic compounds, and in the production of nitriles and hydrocyanic acid by ammoxidation reaction. The desired product can be produced. Therefore, its industrial value is great.

Claims (1)

鉄、アンチモン、およびシリカを含有する複合酸化物触媒の製造方法であって、
少なくとも、鉄とアンチモンとシリカの一部とを混合して混合スラリーを調製し、この混合スラリーを加熱処理する工程と、
加熱処理後の混合スラリーに、触媒製造に使用する全シリカ量に対し、モル分率で3〜80%の量のシリカを添加する工程を含み、
前記複合酸化物触媒が、下記式(I)で表される組成を有することを特徴とする複合酸化物触媒の製造方法。
Fe 10 Sb (SiO ・・・(I)
(式中、Fe、Sb、およびSiO はそれぞれ鉄、アンチモン、およびシリカを表し、Aはニッケル、銅、アルミニウム、マンガン、亜鉛、スズ、クロム、コバルト、マグネシウム、カルシウム、ストロンチウム、鉛、バリウム、ニオブ、銀、ジルコニウム、ガリウム、インジウム、タリウム、チタン、およびビスマスからなる群より選ばれた少なくとも一種の元素、Dはバナジウム、モリブデン、およびタングステンからなる群より選ばれた少なくとも一種の元素、Eはリン、ヒ素、ホウ素、ゲルマニウム、およびテルルからなる群より選ばれた少なくとも一種の元素、Gはリチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群より選ばれた少なくとも一種の元素、Oは酸素を表し、i、a、d、e、g、x、およびyは各元素(シリカの場合はケイ素)の原子比を表し、Fe=10のとき、i=3〜100、a=0.1〜20、d=0〜15、e=0〜20、g=0〜3、x=上記各成分が結合して生成する金属酸化物の酸素の数、y=10〜200である。)
A method for producing a composite oxide catalyst containing iron, antimony, and silica, comprising:
At least a step of mixing iron, antimony, and a part of silica to prepare a mixed slurry, and heat-treating the mixed slurry;
The mixed slurry after the heat treatment, the total amount of silica used in the catalyst preparation, see contains the step of adding from 3 to 80% of the amount of silica in a molar fraction,
The said complex oxide catalyst has a composition represented by following formula (I), The manufacturing method of the complex oxide catalyst characterized by the above-mentioned.
Fe 10 Sb i A a D d E e G g O x (SiO 2 ) y (I)
(Wherein Fe, Sb, and SiO 2 represent iron, antimony, and silica, respectively, and A represents nickel, copper, aluminum, manganese, zinc, tin, chromium, cobalt, magnesium, calcium, strontium, lead, barium, At least one element selected from the group consisting of niobium, silver, zirconium, gallium, indium, thallium, titanium, and bismuth, D is at least one element selected from the group consisting of vanadium, molybdenum, and tungsten, E is At least one element selected from the group consisting of phosphorus, arsenic, boron, germanium, and tellurium, G is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and O is oxygen. I, a, d, e, g, x, and Y represents the atomic ratio of each element (silicon in the case of silica), and when Fe = 10, i = 3 to 100, a = 0.1 to 20, d = 0 to 15, e = 0 to 20, (g = 0-3, x = number of oxygen in the metal oxide produced by combining the above components, y = 10-200)
JP2010131931A 2010-06-09 2010-06-09 Method for producing composite oxide catalyst Active JP5609285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131931A JP5609285B2 (en) 2010-06-09 2010-06-09 Method for producing composite oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131931A JP5609285B2 (en) 2010-06-09 2010-06-09 Method for producing composite oxide catalyst

Publications (2)

Publication Number Publication Date
JP2011255311A JP2011255311A (en) 2011-12-22
JP5609285B2 true JP5609285B2 (en) 2014-10-22

Family

ID=45472099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131931A Active JP5609285B2 (en) 2010-06-09 2010-06-09 Method for producing composite oxide catalyst

Country Status (1)

Country Link
JP (1) JP5609285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029412B2 (en) * 2012-10-05 2016-11-24 コスモ石油株式会社 Oxidative dehydrogenation catalyst, method for producing the same, and method for producing alkadiene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747920B2 (en) * 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction

Also Published As

Publication number Publication date
JP2011255311A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP4242197B2 (en) Catalyst for acrylonitrile synthesis
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
KR101735862B1 (en) Process for production of composite oxide catalyst
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
CN110557941B (en) Catalyst, method for producing catalyst, and method for producing acrylonitrile
JP5707841B2 (en) Method for producing fluidized bed catalyst and method for producing acrylonitrile
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP6439819B2 (en) Method for producing acrylonitrile
JP5042658B2 (en) Method for producing catalyst for producing acrylonitrile, and method for producing acrylonitrile
JP5609285B2 (en) Method for producing composite oxide catalyst
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP5020514B2 (en) Method for producing fluidized bed catalyst and method for producing nitriles
JP5609254B2 (en) Method for producing composite oxide catalyst
JP5011177B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2014061511A (en) Catalyst for producing acrylonitrile, method for producing the same, and method for producing acrylonitrile
JP6237497B2 (en) Method for producing fluidized bed catalyst and method for producing nitrile compound
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
JPH11309374A (en) Production of molybdenum-containing oxide catalyst
JPWO2014129566A1 (en) Method for producing catalyst for producing acrylonitrile and method for producing acrylonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R151 Written notification of patent or utility model registration

Ref document number: 5609285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250