JP2017064615A - Process for producing acrylic acid production catalyst, and catalyst thereof, and process for producing acrylic acid using the catalyst - Google Patents

Process for producing acrylic acid production catalyst, and catalyst thereof, and process for producing acrylic acid using the catalyst Download PDF

Info

Publication number
JP2017064615A
JP2017064615A JP2015192074A JP2015192074A JP2017064615A JP 2017064615 A JP2017064615 A JP 2017064615A JP 2015192074 A JP2015192074 A JP 2015192074A JP 2015192074 A JP2015192074 A JP 2015192074A JP 2017064615 A JP2017064615 A JP 2017064615A
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
volume
producing
acrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015192074A
Other languages
Japanese (ja)
Other versions
JP6534328B2 (en
Inventor
徳彦 井口
Norihiko Iguchi
徳彦 井口
俊哉 西口
Toshiya Nishiguchi
俊哉 西口
昌秀 島
Masahide Shima
昌秀 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2015192074A priority Critical patent/JP6534328B2/en
Publication of JP2017064615A publication Critical patent/JP2017064615A/en
Application granted granted Critical
Publication of JP6534328B2 publication Critical patent/JP6534328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a catalyst that is suitable for producing acrylic acid excellent in catalytic performance such as catalytic activity and selectivity when producing acrylic acid from propane and/or acrolein, and a catalyst thereof, and a process for the producing acrylic acid using the catalyst.SOLUTION: There is provided a process for producing a catalyst containing molybdenum and vanadium as essential component for producing acrylic acid by catalytic gas phase oxidation of propane and/or acrolein, in the presence of molecular oxygen or molecular oxygen-containing gas, which includes a calcination step in which a catalyst precursor component containing molybdenum and vanadium is molded into a fixed shape, and then filled into a container partitioned into two or more by partitions and calcined.SELECTED DRAWING: None

Description

本発明はプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造に関する。   The present invention relates to a method for producing a catalyst suitable for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, and the catalyst, and the catalyst. Related to the production of acrylic acid.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、近年では特に、吸水性樹脂の原料としてその重要性が高まっている。一般的にアクリル酸は、プロピレンを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクロレインを製造し、さらに得られたアクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸とする二段酸化方法で製造される。
また、他の製法として、アクリル酸の製造コストを下げることを目的に、近年では、プロピレンよりも安価なプロパンを原料とする方法も開発が進んでおり、プロパンを分子状酸素、または分子状酸素含有ガスの存在下、一段で接触気相酸化してアクリル酸とする方法についても、種々の提案がなされている。
このような、プロパンおよび/またはアクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒として、モリブデン−バナジウム系を中心とした複合酸化物触媒およびその製造方法の検討がなされているが、目的とするアクリル酸の選択率と収率等の触媒性能は必ずしも充分なものではなく、触媒性能の改善を目的として各社から様々な提案がされている。
Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and in recent years, its importance as a raw material for water-absorbing resins is increasing. Generally, acrylic acid is produced by catalytic vapor phase oxidation of propylene in the presence of molecular oxygen or a molecular oxygen-containing gas to produce acrolein, and the resulting acrolein is converted to molecular oxygen or a molecular oxygen-containing gas. It is produced by a two-stage oxidation method in which it is subjected to catalytic gas phase oxidation to acrylic acid in the presence of.
As another production method, in order to reduce the production cost of acrylic acid, in recent years, a method using propane, which is cheaper than propylene, as a raw material has been developed, and propane is molecular oxygen or molecular oxygen. Various proposals have also been made for a method of catalytic vapor phase oxidation to acrylic acid in a single step in the presence of a contained gas.
As a catalyst for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein in the presence of molecular oxygen or molecular oxygen-containing gas, composite oxidation centered on molybdenum-vanadium system However, catalyst performance such as selectivity and yield of the target acrylic acid is not always satisfactory, and various proposals have been made by various companies for the purpose of improving the catalyst performance. Has been.

例えば、特許文献1では、アクロレインを分子状酸素で酸化してアクリル酸を製造する際に用いる少なくともモリブデンとバナジウムとを含有する複合酸化物触媒を製造する方法において、触媒原料を混合、反応させ、蒸発濃縮して得られる触媒前駆体を蒸焼した後、空気雰囲気下で焼成する製造方法が開示されている。   For example, in Patent Document 1, in a method for producing a composite oxide catalyst containing at least molybdenum and vanadium used for producing acrylic acid by oxidizing acrolein with molecular oxygen, the catalyst raw materials are mixed and reacted, A production method is disclosed in which a catalyst precursor obtained by evaporation and concentration is steamed and then fired in an air atmosphere.

特許文献2では、触媒前駆体の供給流をほぼ一定の速度で1以上の焼成区域を通過するようにし、かつ進行方向に対して垂直にガスを流通させ、その際、焼成区域内での温度の時間的最大変動及び局所的最大温度差(温度勾配)をそれぞれ5℃以下に制御した焼成方法が開示されている。   In Patent Document 2, the feed flow of the catalyst precursor is made to pass through one or more calcination zones at a substantially constant speed, and a gas is circulated perpendicular to the traveling direction, at which time the temperature in the calcination zone is determined. Discloses a firing method in which the temporal maximum fluctuation and the local maximum temperature difference (temperature gradient) are controlled to 5 ° C. or less, respectively.

特許文献3では、MoV系触媒を得る焼成工程を含むMoV系触媒の製造法であって、
前記焼成工程が、有機物を含む原料に対し、焼成温度と保持時間が特定された第1工程(焼成温度が200〜400℃かつ保持時間が0.5〜10時間)と第2工程(焼成温度が300〜450℃かつ保持時間が0.5〜10時間)に分けた焼成方法が開示されている。
In patent document 3, it is a manufacturing method of the MoV type | system | group catalyst including the baking process which obtains a MoV type | system | group catalyst,
In the firing step, the first step (the firing temperature is 200 to 400 ° C. and the retention time is 0.5 to 10 hours) and the second step (the firing temperature) are specified for the raw material containing the organic matter. Is disclosed at a temperature of 300 to 450 ° C. and a holding time of 0.5 to 10 hours.

特許文献4では、触媒前駆体を焼成器に供給し、触媒構成元素の金属酸化物の融点以上の温度で焼成する工程を含む酸化物触媒の製造方法であって、焼成温度よりも低い融点を有する化合物を生成する酸化物触媒に関して、粒子形状を維持したまま焼成器内における固着を抑制することにより、優れた性能を有する触媒を、大量かつ効率良く製造する方法が開示されている。   In Patent Document 4, a method for producing an oxide catalyst including a step of supplying a catalyst precursor to a calciner and calcining at a temperature equal to or higher than the melting point of the metal oxide of the catalyst constituent element, the melting point being lower than the calcining temperature. With respect to an oxide catalyst that produces a compound having a catalyst, a method for efficiently producing a catalyst having excellent performance in a large amount by suppressing sticking in a calciner while maintaining the particle shape is disclosed.

特開平5−329371号公報JP-A-5-329371 特表2004−508931号公報Japanese translation of PCT publication No. 2004-508931 特開2008−238098号公報JP 2008-238098 A 特開2009−261990号公報JP 2009-261990 A

アクリル酸は全世界で現在数百万トン/年の規模で生産されており、たとえ0.1%でも工業的規模で収率が向上すれば経済的に非常に大きなメリットがもたらされる。故に、工業的実用触媒として、更なるアクリル酸収率の向上や高生産性が望まれている。
かくして、本発明の目的は、プロパンおよび/またはアクロレインからアクリル酸を製造するに際し、触媒活性、選択性等の触媒性能に優れたアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法を提供することにある。該触媒の製造における焼成工程においては、触媒性能は触媒前駆体の充填容器内の温度勾配や焼成雰囲気に強く影響を受けるため、それらの均一性が損なわれた場合、触媒性能に悪影響を与える。
Acrylic acid is currently produced on a scale of millions of tons / year worldwide, and even if it is 0.1%, if the yield is improved on an industrial scale, a very large economic advantage is brought about. Therefore, further improvement in acrylic acid yield and high productivity are desired as industrial practical catalysts.
Thus, an object of the present invention is to produce a catalyst suitable for producing acrylic acid excellent in catalytic performance such as catalytic activity and selectivity when producing acrylic acid from propane and / or acrolein, and the catalyst, The present invention also provides a method for producing acrylic acid using the catalyst. In the calcination step in the production of the catalyst, the catalyst performance is strongly influenced by the temperature gradient in the catalyst precursor filling container and the calcination atmosphere. Therefore, when the uniformity is impaired, the catalyst performance is adversely affected.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、モリブデンおよびバナジウムを必須成分として含有するプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒の製造方法であって、モリブデンおよびバナジウムを含む触媒前駆体成分を一定の形状に成形した後、仕切りにより2以上に区画分けされた容器に充填して焼成する焼成工程を有することで、上記課題が容易に解決できることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have developed propane and / or acrolein containing molybdenum and vanadium as essential components in the presence of molecular oxygen or a molecular oxygen-containing gas. A method for producing a catalyst for producing acrylic acid by oxidation, wherein a catalyst precursor component containing molybdenum and vanadium is formed into a certain shape, and then filled into a container partitioned into two or more by a partition. It has been found that the above-mentioned problem can be easily solved by having a firing step for firing, and the present invention has been achieved.

本発明によれば、上記課題の解決により、プロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造する際に、長期間にわたり安定して高収率で製造できる触媒を提供することができ、該触媒を用いてアクリル酸を高収率で製造することができる。   According to the present invention, by solving the above problems, a catalyst that can be stably produced in a high yield over a long period of time when producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen is provided. Acrylic acid can be produced in high yield using the catalyst.

以下、本発明にかかる触媒の製造方法および該触媒を用いたアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, although the manufacturing method of the catalyst concerning this invention and the manufacturing method of acrylic acid using this catalyst are demonstrated in detail, the scope of the present invention is not restrained by these description, and it is not limited to the following illustrations. The present invention can be changed and implemented as appropriate without departing from the spirit of the invention.

本発明で製造されるアクリル酸を製造するための触媒は、その触媒活性成分の組成としては、下記一般式(1)で表わされるものが好ましい。
MoaVbWcAdBeCfDgOh(1)
(式中、Moはモリブデン、Vはバナジウム、Wはタングステン、Aはアンチモン、スズから選ばれる少なくとも1種の元素、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ビスマス、テルルおよびニオブから選ばれる少なくとも1種の元素、Cはアルカリ金属およびアルカリ土類金属から選ばれる少なくとも1種の元素、Dはシリコン、アルミニウム、チタン、ジルコニウムおよびセリウムから選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、f、gおよびhは、Mo、V、W、A、B、C、DおよびOの原子数を表し、a=12のとき、2≦b≦14、0≦c≦10、0≦d≦5、0≦e≦12、0≦f≦5、0≦g≦50であり、hは各々の元素の酸化状態によって定まる数値である)
上記触媒活性成分は、この種の調製に一般に用いられている原料を用いることができ、例えば、各元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを用いることもできる。
The catalyst for producing acrylic acid produced in the present invention is preferably represented by the following general formula (1) as the composition of the catalytically active component.
MoaVbWcAdBeCfDgOh (1)
(Wherein Mo is molybdenum, V is vanadium, W is tungsten, A is at least one element selected from antimony and tin, B is chromium, manganese, iron, cobalt, nickel, copper, zinc, bismuth, tellurium and At least one element selected from niobium, C is at least one element selected from alkali metals and alkaline earth metals, D is at least one element selected from silicon, aluminum, titanium, zirconium and cerium, and O Is oxygen, a, b, c, d, e, f, g and h represent the number of atoms of Mo, V, W, A, B, C, D and O, and when a = 12, 2 ≤ b ≤ 14, 0 ≤ c ≤ 10, 0 ≤ d ≤ 5, 0 ≤ e ≤ 12, 0 ≤ f ≤ 5, 0 ≤ g ≤ 50, and h is a numerical value determined by the oxidation state of each element. )
As the catalytic active component, raw materials generally used for this kind of preparation can be used. For example, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts of the respective elements, etc. These salts, aqueous solutions or sols thereof, or compounds containing a plurality of elements can also be used.

これら出発原料を、水等の溶媒に溶解あるいは懸濁させることにより、出発原料混合液を調製する(以後、「原料混合液調製工程」と称する場合がある)。その際の調製方法は、上記出発原料を順次水に混合する方法や、出発原料の種類に応じて複数の水溶液または水性スラリーを調製し、これらを順次混合する方法など、この種の触媒製造に一般的に用いられる方法により調製すればよい。出発原料の混合順序、温度、圧力、pH等については特に制限はなく、出発原料に応じて適宜選択できる。また、適宜、硝酸、アンモニア、硝酸アンモニウム、炭酸アンモニウムなどの含窒素化合物を加えて、pHは4〜10の範囲内で制御するのが好ましい。   A starting material mixture is prepared by dissolving or suspending these starting materials in a solvent such as water (hereinafter, referred to as “raw material mixture preparation step”). The preparation method at that time is for the production of this type of catalyst, such as a method of sequentially mixing the above starting materials into water or a method of preparing a plurality of aqueous solutions or aqueous slurries according to the type of starting materials and sequentially mixing them. What is necessary is just to prepare by the method generally used. There is no restriction | limiting in particular about the mixing order of starting materials, temperature, pressure, pH, etc., According to a starting material, it can select suitably. Moreover, it is preferable to control pH within the range of 4-10, adding nitrogen-containing compounds, such as nitric acid, ammonia, ammonium nitrate, and ammonium carbonate suitably.

次に、得られた出発原料混合液を乾燥させて乾燥物(以下、「触媒前駆体」ともいう)を得る(以後、「原料混合液乾燥工程」と称する場合がある)。具体的には、スプレードライヤー、ドラムドライヤー等を用いて粉末状の乾燥物を得る方法、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の乾燥物を得る方法、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法等が挙げられる。また、減圧による乾燥方法として、例えば、真空乾燥機を用いて、ブロック状または粉末状の乾燥物を得ることもできる。   Next, the obtained starting raw material mixture is dried to obtain a dried product (hereinafter also referred to as “catalyst precursor”) (hereinafter, sometimes referred to as “raw material mixture drying step”). Specifically, a method of obtaining a powdery dried product using a spray dryer, a drum dryer or the like, a block-type or flake-type dried product heated in an air stream using a box-type dryer, a tunnel-type dryer or the like And a method of once concentrating the starting raw material mixture and evaporating to dryness to obtain a cake-like solid, and further subjecting this solid to the above heat treatment. Moreover, as a drying method by reduced pressure, for example, using a vacuum dryer, a block or powdery dried product can be obtained.

得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。その際の前記乾燥物の粉体粒度は、特に限定されないが、成形性に優れる点で500μm以下、好ましくは200μm以下、更には100μm以下が好ましい。   The obtained dried product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as required. The powder particle size of the dried product at that time is not particularly limited, but is preferably 500 μm or less, preferably 200 μm or less, and more preferably 100 μm or less in terms of excellent moldability.

乾燥物を成形する成形工程(以後、単に「成形工程」と称する場合がある)では、その成形方法として、打錠成形機や押出し成形機により一定の形状とする成形法や、一定の形状を有する任意の不活性担体上に担持する造粒法が挙げられる。他にも、出発原料混合液を乾燥させずに液状で用い、長時間かけて加熱しながら所望の担体に吸収あるいは塗布して乾燥担持させる蒸発乾固法により製造することもできる。これらの中でも特に、特開昭63−200839号公報に記載の遠心流動コーティング法や、さらには特開2004−136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。   In a molding process for molding a dried product (hereinafter, sometimes simply referred to as “molding process”), as a molding method, a molding method in which a fixed shape is formed by a tableting molding machine or an extrusion molding machine, or a certain shape is used. Examples thereof include a granulation method in which the particles are supported on an arbitrary inert carrier. In addition, the starting raw material mixture can be used in a liquid state without being dried, and can be produced by an evaporation-drying method in which the starting material mixture is absorbed or applied to a desired carrier while being heated for a long time and dried. Among these, a granulation method for supporting on an inert carrier using a centrifugal fluidized coating method described in JP-A-63-200249 or a rocking mixer method described in JP-A-2004-136267 is particularly preferred. preferable.

打錠成形機や押出し成形機による成形法の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。
造粒法や蒸発乾固法の場合に使用できる不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状においても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。
In the case of a molding method using a tableting machine or an extrusion molding machine, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.
Examples of inert carriers that can be used in the granulation method and evaporation to dryness method include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, and zeolite. Can be mentioned. There is no restriction | limiting in particular also in the shape, The thing of well-known shapes, such as spherical shape, cylinder shape, and ring shape, can be used.

これら上記の成形工程においては、乾燥物の成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤など、一般に触媒の製造においてこれらの効果を目的として使用される物質(以後、「補助物質」という場合もある)を用いることができ、中でも、造粒法においてはバインダーを使用するのが好ましい。   In these molding processes, molding aids and binders for improving the moldability of the dried product, pore forming agents for forming appropriate pores in the catalyst, etc. are generally aimed at producing these effects. (Hereinafter sometimes referred to as “auxiliary substance”) can be used, and among these, it is preferable to use a binder in the granulation method.

また、補助物質とは別に触媒の機械的強度を向上させる目的で、補強剤を用いることもできる。具体例としては、補強剤として一般的に知られているシリカ、アルミナ、セラミック繊維、ガラス繊維、炭素繊維、鉱物繊維、金属繊維、炭化ケイ素や窒化ケイ素などの各種ウィスカ、などが挙げられ、その結晶構造も多結晶質でも単結晶質でも非晶質でもよい。また、触媒の形状や機械的強度に応じて、繊維径、繊維長、材質等の異なる複数の補強剤を用いてもよい。   In addition to the auxiliary substance, a reinforcing agent can be used for the purpose of improving the mechanical strength of the catalyst. Specific examples include silica, alumina, ceramic fiber, glass fiber, carbon fiber, mineral fiber, metal fiber, various whiskers such as silicon carbide and silicon nitride, which are generally known as reinforcing agents, and the like. The crystal structure may be polycrystalline, monocrystalline or amorphous. A plurality of reinforcing agents having different fiber diameters, fiber lengths, materials, and the like may be used depending on the shape and mechanical strength of the catalyst.

補強剤は、出発原料混合液に添加しておいてもよいし、成形工程時に配合してもよい。上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。焼成工程においては、触媒前駆体を仕切りにより2以上に区画分けされた容器に充填し、焼成することがよく、好ましくは仕切りにより4以上に区画分けされた容器を使用すること、より好ましくは仕切りにより8以上に区画分けされた容器を使用すること、更に好ましくは仕切りにより20以上に区画分けされた容器を使用することである。容器内の区画は、全ての区画が同一の容積でなくてもよく、区画の容積が2種以上存在していてもよい。   The reinforcing agent may be added to the starting raw material mixture, or may be blended during the molding process. The molded body or carrier obtained in the molding process is sent to the subsequent firing process. In the calcination step, the catalyst precursor may be filled into a container divided into two or more by a partition and fired, and preferably a container partitioned into four or more by a partition is used, more preferably a partition. It is to use the container divided into 8 or more by the above, more preferably to use the container divided into 20 or more by the partition. As for the compartments in the container, not all compartments may have the same volume, and two or more compartment volumes may exist.

仕切りにより区画された容積は1区画当たり1.0×10−6以上、2.0×10−2以下にすることがよく、好ましくは1区画当たり2.0×10−6以上、2.0×10−2以下、更に好ましくは1区画当たり1.0×10−5以上、1.5×10−2以下である。 The volume partitioned by the partition is preferably 1.0 × 10 −6 m 3 or more and 2.0 × 10 −2 m 3 or less per partition, and preferably 2.0 × 10 −6 m per partition. 3 or more and 2.0 × 10 −2 m 3 or less, more preferably 1.0 × 10 −5 m 3 or more and 1.5 × 10 −2 m 3 or less per section.

触媒前駆体の充填率は、容器の内容積に対して50体積%以上、100体積%未満がよく、好ましくは容器の内容積に対して60体積%以上、100体積%未満であり、更に好ましくは、70体積%以上、100体積%未満である。
触媒前駆体を容器に充填後、容器に蓋をするほうがよく、蓋には1つ以上の孔があってもよい。
The filling rate of the catalyst precursor may be 50% by volume or more and less than 100% by volume with respect to the inner volume of the container, preferably 60% by volume or more and less than 100% by volume, more preferably with respect to the inner volume of the container. Is 70 volume% or more and less than 100 volume%.
After filling the catalyst precursor into the container, it is better to cover the container, and the cover may have one or more holes.

前記充填容器の材質としては金属製が選択されるが、特に焼成時に発生するガスに対する耐腐食性や熱負荷に対する耐熱性の面から、SUS製であることが好ましい。
容器の形状に制限はなく、工業用スケールにおいて、容積は1m以下が好ましい。
焼成温度は360℃〜440℃、更に好ましくは380℃〜420℃である。焼成時間としては1〜24時間が好適であり、更に好ましくは1〜10時間である。焼成炉については、特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。
Metal is selected as the material for the filling container, but it is preferably made of SUS from the standpoint of corrosion resistance against gas generated during firing and heat resistance against heat load.
There is no restriction | limiting in the shape of a container, In an industrial scale, the volume is preferably 1 m 3 or less.
The firing temperature is 360 ° C to 440 ° C, more preferably 380 ° C to 420 ° C. The firing time is preferably 1 to 24 hours, more preferably 1 to 10 hours. The firing furnace is not particularly limited, and a generally used box-type firing furnace or tunnel-type firing furnace may be used.

本発明は、前記した触媒の製造方法において、触媒前駆体を仕切りにより2以上に区画分けされた容器に充填して焼成することを特徴とする。   The present invention is characterized in that, in the above-described catalyst production method, the catalyst precursor is filled in a container divided into two or more by a partition and fired.

容器内を仕切りにて区画分けすることにより、不所望な酸化還元が抑制できるものと考えられる。アンモニア、アンモニウム塩、硝酸塩から選ばれる少なくとも1つの原料を触媒前駆体が含有する場合、焼成時に触媒前駆体から発生するガスは、形態により酸化性や還元性を示し、またガス発生には温度依存性があることが分かっている。製造スケールなど規模の増大により、触媒前駆体の充填容器内の温度勾配がわずかでも生じる場合は、仕切りにより2つ以上に充填容器を区画分けすることによって、容器内温度勾配が小さくなり、発生ガスによる不所望な酸化還元を抑制することが可能となり、触媒性能が向上するものと考えられる。
区画容積について、容積を小さくしていくことで、焼成時に発熱する触媒前駆体の局所的最大温度が低くなり、触媒前駆体への熱的損傷を抑制することができ、さらに容器内の触媒前駆体の温度勾配も小さく、より均一な状態で焼成できる。そのため、焼成工程において、容器内の区画容積を小さくし、焼成することが好ましい。ただし、容積が小さすぎると充填が煩雑にもなるため、触媒前駆体が充填可能なある程度の容積で充填することが好ましい。
It is considered that undesired oxidation-reduction can be suppressed by partitioning the inside of the container with a partition. When the catalyst precursor contains at least one raw material selected from ammonia, ammonium salt, and nitrate, the gas generated from the catalyst precursor at the time of firing exhibits oxidizing and reducing properties depending on the form, and the gas generation depends on temperature. I know that there is sex. If even a slight temperature gradient in the catalyst precursor filling container occurs due to an increase in scale such as the production scale, dividing the filling container into two or more by a partition reduces the temperature gradient in the container and generates gas. It is possible to suppress undesired oxidation-reduction due to the catalyst and improve the catalyst performance.
By reducing the volume of the compartment, the local maximum temperature of the catalyst precursor that generates heat during calcination is lowered, thermal damage to the catalyst precursor can be suppressed, and the catalyst precursor in the vessel can be suppressed. The temperature gradient of the body is small, and it can be fired in a more uniform state. For this reason, in the firing step, it is preferable to reduce the compartment volume in the container and perform firing. However, since the filling becomes complicated if the volume is too small, it is preferable to fill the catalyst precursor with a certain volume that can be filled.

触媒前駆体の充填容器への充填率において、同容積で充填率を高くした場合に、容器内の空間体積が減少することで、容器内の酸素量も減少し、適度な酸化状態となると推測される。そのため、焼成工程において、容器内のさらに区画内の触媒前駆体の充填率は高くした状態で焼成することが好ましい。   It is estimated that when the filling rate of the catalyst precursor into the filled container is increased at the same volume, the amount of oxygen in the container is reduced by reducing the space volume in the container, resulting in an appropriate oxidation state. Is done. Therefore, in the firing step, firing is preferably performed in a state where the filling rate of the catalyst precursor in the compartment in the container is further increased.

本発明のアクリル酸製造用触媒を用いてプロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造するのに用いられる反応器については特段の制限はなく、固定床反応器、流動床反応器、移動床反応器のいずれも用いることができるが、通常、固定床反応器が用いられる。   The reactor used for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen using the catalyst for producing acrylic acid of the present invention is not particularly limited, and is a fixed bed reactor. Either a fluidized bed reactor or a moving bed reactor can be used, but a fixed bed reactor is usually used.

触媒を反応器に充填する場合には、単一な触媒である必要はなく、例えば、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。   When the catalyst is charged into the reactor, it is not necessary to be a single catalyst. For example, a plurality of types of catalysts having different activities can be used and charged in the order of different activities, or a part of the catalyst can be inactivated. It may be diluted with a carrier or the like.

また、本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロパンおよび/またはアクロレイン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを200〜400℃の温度範囲で0.1〜1.0MPaの圧力下、300〜8,000h−1(STP)の空間速度で酸化触媒に接触させればよい。 In addition, the reaction conditions in the present invention are not particularly limited, and any conditions that are generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propane and / or acrolein, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume. Preferably, a mixed gas consisting of 0 to 25% by volume of water vapor and the balance of an inert gas such as nitrogen is 300 to 8,000 h −1 under a pressure of 0.1 to 1.0 MPa in a temperature range of 200 to 400 ° C. What is necessary is just to contact an oxidation catalyst with the space velocity of (STP).

反応ガスとしては、プロパンおよび/またはアクロレイン、分子状酸素および不活性ガスからなる混合ガスはもちろんのこと、グリセリンの脱水反応や、プロピレンの酸化反応によって得られるアクロレイン含有の混合ガスも使用可能である。また、この混合ガスに必要に応じ、空気または酸素などを添加することもできる。   As the reaction gas, not only a mixed gas composed of propane and / or acrolein, molecular oxygen and an inert gas, but also an acrolein-containing mixed gas obtained by a dehydration reaction of glycerin or an oxidation reaction of propylene can be used. . In addition, air or oxygen can be added to the mixed gas as necessary.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例におけるアクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率(モル%)
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸選択率(モル%)
=(生成したアクリル酸のモル数)/(反応したアクロレインのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be referred to as “parts”. The acrolein conversion, acrylic acid selectivity and acrylic acid yield in the examples and comparative examples were determined by the following formulas.
Acrolein conversion (mol%)
= (Mole number of reacted acrolein) / (Mole number of supplied acrolein) × 100
Acrylic acid selectivity (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of reacted acrolein) × 100
Acrylic acid yield (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of acrolein supplied) × 100

<実施例1>
[触媒調製]
純水1000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム23.2部、パラタングステン酸アンモニウム16.6部を溶解した。別に純水100部を加熱撹拌しながら、硝酸銅19.4部を溶解した。得られた2つの溶液を混合し、さらに三酸化アンチモン6.2部および酸化アルミニウム9.7部を添加して、出発原料混合液を得た。この出発原料混合液を噴霧乾燥させた後、得られた乾燥物を250μm以下に篩分けし、触媒前駆体の粉体を得た。遠心流動コーティング装置に平均粒径4mmのα−アルミナ球形担体を投入し、次いで純水を担体に含浸させてから、触媒前駆体の粉末を担体に担持させた後、約90℃の熱風で乾燥して担持物を得た。得られた担持物の一部を仕切りにより30に区画分けされた容器(400mm×210mm×100mmの直方体、一区画容積が2.8×10−4)内の仕切られた区画に70体積%充填した。その後、3mmφの孔を有した蓋を容器に被せ、酸素濃度を10容量%に合わせた箱型焼成炉で室温から2℃/分で昇温し、400℃で6時間焼成して触媒1を得た。この触媒1の担持率は30質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo124.2Sb0.91.3Cu1.7Al3.5
なお、担持率は下記式により求めた。
担持率(質量%)=(担持された触媒粉体の質量(g))/(用いた担体の質量(g))×100
<Example 1>
[Catalyst preparation]
While heating and stirring 1000 parts of pure water, 100 parts of ammonium paramolybdate, 23.2 parts of ammonium metavanadate, and 16.6 parts of ammonium paratungstate were dissolved therein. Separately, 19.4 parts of copper nitrate was dissolved while 100 parts of pure water was heated and stirred. The obtained two solutions were mixed, and further 6.2 parts of antimony trioxide and 9.7 parts of aluminum oxide were added to obtain a starting material mixture. After this starting material mixture was spray-dried, the resulting dried product was sieved to 250 μm or less to obtain catalyst precursor powder. An α-alumina spherical support having an average particle diameter of 4 mm is put into a centrifugal fluid coating apparatus, and then impregnated with pure water, and then the catalyst precursor powder is supported on the support and then dried with hot air of about 90 ° C. Thus, a supported product was obtained. A volume of 70 parts in a partitioned compartment in a container (400 mm × 210 mm × 100 mm rectangular parallelepiped, one compartment volume is 2.8 × 10 −4 m 3 ) partly divided into 30 parts by a partition. % Loading. Thereafter, a lid having a 3 mmφ hole was put on the container, the temperature was raised from room temperature at 2 ° C./min in a box-type calcining furnace adjusted to 10% by volume, and the catalyst 1 was calcined at 400 ° C. for 6 hours. Obtained. The supported rate of the catalyst 1 was 30% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 4.2 Sb 0.9 W 1.3 Cu 1.7 Al 3.5
The loading rate was determined by the following formula.
Support rate (mass%) = (mass of supported catalyst powder (g)) / (mass of used carrier (g)) × 100

[酸化反応]
全長300mm、内径18mmのSUS製U字反応管に、層長が100mmとなるように触媒1を充填し、アクロレイン2容量%、酸素3容量%、水蒸気10容量%、窒素85容量%の混合ガスを空間速度5000hr−1(STP)で導入し、アクロレイン酸化反応を行った。反応温度はアクロレインの転化率が93.5%前後となるように調節した。その反応結果を表1に示す。
[Oxidation reaction]
A SUS U-shaped reaction tube with a total length of 300 mm and an inner diameter of 18 mm is filled with catalyst 1 so that the layer length becomes 100 mm, and a mixed gas of 2% acrolein, 3% oxygen, 10% steam, and 85% nitrogen by volume. Was introduced at a space velocity of 5000 hr −1 (STP) to carry out acrolein oxidation reaction. The reaction temperature was adjusted so that the conversion rate of acrolein was about 93.5%. The reaction results are shown in Table 1.

<実施例2>
実施例1において、得られた担持物の一部を仕切りにより20に区画分けされた容器(550mm×400mm×100mmの直方体、一区画容積が1.1×10−3)内の仕切られた区画に70体積%充填したこと、及び10mmφの孔を有した蓋を使用した以外は実施例1と同様に調製し、触媒2を得た。この触媒2の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒2を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 2>
In Example 1, a part of the obtained carrier was partitioned into 20 partitions (550 mm × 400 mm × 100 mm rectangular parallelepiped, one partition volume 1.1 × 10 −3 m 3 ). A catalyst 2 was prepared in the same manner as in Example 1 except that 70% by volume was filled in the compartment and a lid having a 10 mmφ hole was used. The supporting rate of the catalyst 2 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 2, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例3>
実施例2において、得られた担持物の一部を仕切りにより8に区画分けされた容器(550mm×400mm×100mmの直方体、一区画容積が2.8×10−3)内の仕切られた区画に40体積%充填し、蓋を使用しないこと以外は実施例2と同様に調製し、触媒3を得た。この触媒3の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒3を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 3>
In Example 2, a part of the obtained carrier was partitioned into 8 partitions (550 mm × 400 mm × 100 mm rectangular parallelepiped, one partition volume being 2.8 × 10 −3 m 3 ). The catalyst 3 was obtained in the same manner as in Example 2 except that 40% by volume was filled in the compartment and the lid was not used. The supporting rate of the catalyst 3 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 3, an acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
実施例2において、得られた担持物の一部を仕切りにより8に区画分けされた容器(550mm×400mm×100mmの直方体、一区画容積が2.8×10−3)内の仕切られた区画に50体積%充填したこと以外は実施例2と同様に調製し、触媒4を得た。この触媒4の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒4を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 4>
In Example 2, a part of the obtained carrier was partitioned into 8 partitions (550 mm × 400 mm × 100 mm rectangular parallelepiped, one partition volume being 2.8 × 10 −3 m 3 ). The catalyst 4 was prepared in the same manner as in Example 2 except that 50% by volume was filled in the compartment. The supporting rate of the catalyst 4 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 4, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例5>
実施例4において、得られた担持物の一部を同容器内、同容積の同区画に60体積%充填したこと以外は実施例4と同様に調製し、触媒5を得た。この触媒5の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒5を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 5>
In Example 4, a catalyst 5 was obtained in the same manner as in Example 4 except that 60% by volume of a part of the obtained support was filled in the same volume and the same volume in the same compartment. The supporting rate of the catalyst 5 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 5, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例6>
実施例4において、得られた担持物の一部を同容器内、同容積の同区画に70体積%充填したこと以外は実施例4と同様に調製し、触媒6を得た。この触媒6の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒6を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 6>
In Example 4, a catalyst 6 was obtained in the same manner as in Example 4 except that 70% by volume of a part of the obtained support was filled in the same compartment and the same volume. The supporting rate of the catalyst 6 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 6, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例7>
実施例4において、得られた担持物の一部を同容器内、同容積の同区画に90体積%充填したこと以外は実施例4と同様に調製し、触媒7を得た。この触媒7の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒7を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 7>
In Example 4, a catalyst 7 was obtained in the same manner as in Example 4 except that 90% by volume of a part of the obtained support was filled in the same volume and the same volume in the same compartment. The supporting rate of the catalyst 7 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 7, an acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例8>
実施例2において、得られた担持物の一部を仕切りにより4に区画分けされた容器(550mm×400mm×100mmの直方体、一区画容積が5.5×10−3)内の仕切られた区画に70体積%充填したこと以外は実施例2と同様に調製し、触媒8を得た。この触媒8の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒8を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 8>
In Example 2, a part of the obtained support was partitioned into four partitions (550 mm × 400 mm × 100 mm rectangular parallelepiped, one partition volume of 5.5 × 10 −3 m 3 ). The catalyst 8 was prepared in the same manner as in Example 2 except that 70% by volume was filled in the compartment. The supporting rate of the catalyst 8 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 8, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例9>
実施例2において、得られた担持物の一部を仕切りにより2に区画分けされた容器(550mm×400mm×100mmの直方体、一区画容積が1.1×10−2)内の仕切られた区画に70体積%充填したこと以外は実施例2と同様に調製し、触媒9を得た。この触媒9の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒9を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 9>
In Example 2, a part of the obtained carrier was partitioned into two partitions (550 mm × 400 mm × 100 mm rectangular parallelepiped, one partition volume 1.1 × 10 −2 m 3 ). The catalyst 9 was prepared in the same manner as in Example 2 except that 70% by volume was filled in the compartment. The supporting rate of the catalyst 9 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 9, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
実施例2において、得られた担持物の一部を容器(550mm×400mm×100mmの直方体)内に70体積%充填したこと以外は実施例2と同様に調製し、触媒10を得た。この触媒10の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒10を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 1>
In Example 2, a catalyst 10 was obtained in the same manner as in Example 2 except that 70% by volume of a part of the obtained support was filled in a container (550 mm × 400 mm × 100 mm rectangular parallelepiped). The loading ratio of the catalyst 10 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 10, acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 2017064615
Figure 2017064615

Claims (5)

モリブデンおよびバナジウムを必須成分として含有するプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒を製造する方法において、モリブデンおよびバナジウムを含む触媒前駆体成分を一定の形状に成形した後、仕切りにより2以上に区画分けされた容器に充填して焼成する焼成工程を有することを特徴とするアクリル酸製造用触媒の製造方法。   In a method for producing a catalyst for producing acrylic acid by catalytic vapor phase oxidation of propane and / or acrolein containing molybdenum and vanadium as essential components in the presence of molecular oxygen or a molecular oxygen-containing gas, A method for producing a catalyst for acrylic acid production, comprising a step of forming a catalyst precursor component containing vanadium into a certain shape and then filling and firing the vessel into two or more containers partitioned by a partition. 区画分けされた容器において、1区画当たりの容積が1.0×10−6以上、2.0×10−2以下であることを特徴とする請求項1に記載の触媒の製造方法。 2. The catalyst production according to claim 1, wherein the compartmented container has a volume per compartment of 1.0 × 10 −6 m 3 or more and 2.0 × 10 −2 m 3 or less. Method. 焼成工程において、触媒前駆体を一定の形状に成形した後、容器の内容積に対して50体積%以上、100体積%未満に充填して焼成することを特徴とする請求項1または2に記載の触媒の製造方法。   3. The firing process according to claim 1, wherein in the firing step, the catalyst precursor is molded into a certain shape, and then filled to 50 volume% or less and less than 100 volume% with respect to the inner volume of the container, and fired. A method for producing the catalyst. 請求項1〜3のいずれかに記載の製造方法により得られるアクリル酸製造用触媒。   The catalyst for acrylic acid manufacture obtained by the manufacturing method in any one of Claims 1-3. 請求項4に記載のアクリル酸製造用触媒を用いることを特徴とするアクリル酸の製造方法。   A method for producing acrylic acid, wherein the catalyst for producing acrylic acid according to claim 4 is used.
JP2015192074A 2015-09-29 2015-09-29 Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst Active JP6534328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192074A JP6534328B2 (en) 2015-09-29 2015-09-29 Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192074A JP6534328B2 (en) 2015-09-29 2015-09-29 Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2017064615A true JP2017064615A (en) 2017-04-06
JP6534328B2 JP6534328B2 (en) 2019-06-26

Family

ID=58493319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192074A Active JP6534328B2 (en) 2015-09-29 2015-09-29 Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP6534328B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317713A (en) * 1992-05-14 1993-12-03 Mitsubishi Rayon Co Ltd Preparation of catalyst for synthesizing acrylic acid
JPH05329371A (en) * 1992-05-28 1993-12-14 Sumitomo Chem Co Ltd Manufacture of acrolein oxide catalyst
JPH0710802A (en) * 1993-06-28 1995-01-13 Sumitomo Chem Co Ltd Production of acrylic acid
JPH09241209A (en) * 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd Production of acrylic acid
JP2008238098A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method for preparing composite oxide catalyst
JP2009261990A (en) * 2007-07-17 2009-11-12 Asahi Kasei Chemicals Corp Method for manufacturing oxide catalyst
WO2012105543A1 (en) * 2011-01-31 2012-08-09 旭化成ケミカルズ株式会社 Mixed solution production device and mixed solution preparation method
JP2015097977A (en) * 2013-11-18 2015-05-28 日立造船株式会社 Denitration catalyst and manufacturing method thereof
JP2015166088A (en) * 2007-03-01 2015-09-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing catalyst consisting of support body and catalytically active material applied on the carrier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317713A (en) * 1992-05-14 1993-12-03 Mitsubishi Rayon Co Ltd Preparation of catalyst for synthesizing acrylic acid
JPH05329371A (en) * 1992-05-28 1993-12-14 Sumitomo Chem Co Ltd Manufacture of acrolein oxide catalyst
JPH0710802A (en) * 1993-06-28 1995-01-13 Sumitomo Chem Co Ltd Production of acrylic acid
JPH09241209A (en) * 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd Production of acrylic acid
JP2015166088A (en) * 2007-03-01 2015-09-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing catalyst consisting of support body and catalytically active material applied on the carrier
JP2008238098A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method for preparing composite oxide catalyst
JP2009261990A (en) * 2007-07-17 2009-11-12 Asahi Kasei Chemicals Corp Method for manufacturing oxide catalyst
WO2012105543A1 (en) * 2011-01-31 2012-08-09 旭化成ケミカルズ株式会社 Mixed solution production device and mixed solution preparation method
JP2015097977A (en) * 2013-11-18 2015-05-28 日立造船株式会社 Denitration catalyst and manufacturing method thereof

Also Published As

Publication number Publication date
JP6534328B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
US8716523B2 (en) Catalyst for use in production of methacrylic acid and method for manufacturing the same
KR102422025B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2011074083A (en) Method for catalytic gas-phase oxidation of acrolein into acrylic acid
KR101819465B1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
KR102612311B1 (en) Method for producing acrolein, methacrolein, acrylic acid or methacrylic acid
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5582708B2 (en) Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst
JP2016168588A (en) Catalyst for manufacturing methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP5831329B2 (en) Composite oxide catalyst
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP2005169311A (en) Production method for complex oxide catalyst
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP6534328B2 (en) Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP2005161309A (en) Method for manufacturing compound oxide catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP6628661B2 (en) Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5582709B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP2004002323A (en) Method for producing unsaturated aldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150