JPH05315917A - Method for driving gate of igbt - Google Patents

Method for driving gate of igbt

Info

Publication number
JPH05315917A
JPH05315917A JP4115044A JP11504492A JPH05315917A JP H05315917 A JPH05315917 A JP H05315917A JP 4115044 A JP4115044 A JP 4115044A JP 11504492 A JP11504492 A JP 11504492A JP H05315917 A JPH05315917 A JP H05315917A
Authority
JP
Japan
Prior art keywords
voltage
igbt
gate
resistor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4115044A
Other languages
Japanese (ja)
Other versions
JP3049938B2 (en
Inventor
Yoshihiro Matsumoto
吉弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4115044A priority Critical patent/JP3049938B2/en
Priority to CN93105096A priority patent/CN1033253C/en
Priority to DE4315253A priority patent/DE4315253A1/en
Publication of JPH05315917A publication Critical patent/JPH05315917A/en
Application granted granted Critical
Publication of JP3049938B2 publication Critical patent/JP3049938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0406Modifications for accelerating switching in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To relax the time change rate of a voltage between the collector and emitter of an IGBT at the time of turning on the IGBT and to reduce a collector loss at the time of transition and a steady state. CONSTITUTION:A serial-parallel connection constituted by connecting a serial connection between a constant voltage diode ZD1 and a resistor R1 in parallel with a resistor R2 having a resistance value larger than that of the resistor R2 is inserted between a forward bias DC power supply having voltage Ef and a transistor(TR) element Tc1 in a photocoupler and an IGBT gate voltage formed in the gate of the IGBT 1 by the voltage Ef impressed through a gate resistor R3 and the parallel-serial connection and used as an envelope voltage of two kinds of component voltages having final voltage values different from respective time constants is used as a required gate voltage VG.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IGBTのターンオン
時におけるコレクタ・エミッタ間電圧の時間的変化率の
緩和とそのスイッチング時及び定常時コレクタ損失の低
減とを図ったIGBTのゲート駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a gate of an IGBT, in which the rate of change in collector-emitter voltage with time when the IGBT is turned on is relaxed and the collector loss during switching and during steady state is reduced.

【0002】[0002]

【従来の技術】従来のこの種のIGBTのゲート駆動方
法としては、図3の回路図に例示する如きものが知られ
ている。また図4は図3に対応するゲート電圧の動作波
形図である。先ず図3において、1はIGBT(絶縁ゲ
ートバイポーラトランジスタ)、2はフォトカプラであ
り前記IGBTに対するオン/オフ指令信号SD を入力
としその指令内容に応じてトランジスタ要素Tc1とTc2
とを共役動作させるものである。またR7 はゲート抵抗
である。なおVG は前記IGBTに対するゲート制御用
の電圧、Ef とEr とはそれぞれ前記IGBTのゲート
に対する順バイアス用と逆バイアス用の直流電源電圧で
ある。
2. Description of the Related Art As a conventional gate driving method for an IGBT of this type, a method illustrated in the circuit diagram of FIG. 3 is known. FIG. 4 is an operation waveform diagram of the gate voltage corresponding to FIG. First, in FIG. 3, reference numeral 1 is an IGBT (insulated gate bipolar transistor), 2 is a photocoupler, which receives an ON / OFF command signal S D for the IGBT as input, and transistor elements T c1 and T c2 according to the command content.
And are to be conjugated. R 7 is a gate resistance. V G is a gate control voltage for the IGBT, and E f and E r are forward bias and reverse bias DC power supply voltages for the IGBT gate, respectively.

【0003】従って前記信号SD が前記IGBTに対す
るターンオン指令であれば、前記の要素Tc1はオン状態
となり、図4の動作波形図に示す如く、前記ゲート電圧
Gは前記の逆バイアス電圧Er から順バイアス電圧E
f まで前記IGBTのゲート・エミッタ間静電容量Cと
ゲート抵抗R7 の抵抗値との積で規定される時定数のT
G に従って増大することになる。
Therefore, if the signal S D is a turn-on command to the IGBT, the element T c1 is turned on, and the gate voltage V G is the reverse bias voltage E as shown in the operation waveform diagram of FIG. forward bias voltage E from r
Up to f, a time constant T defined by the product of the gate-emitter capacitance C of the IGBT and the resistance value of the gate resistance R 7.
It will increase according to G.

【0004】[0004]

【発明が解決しようとする課題】一般にIGBTのター
ンオン制御においては、そのコレクタ・エミッタ間電圧
CEの時間的変化率dVCE/dtの緩和と、コレクタ電
流ic と前記電圧VCEとの積で与えられるコレクタ損失
C の定常時及びスイッチング時における低減とが求め
られる。しかしながら、もし前記ゲート電圧VG を短時
間に充分に大なる値まで立上げて急速なターンオン動作
を行えば前記損失PC の低減は可能となるが前記変化率
dVCE/dtの増大を招き前記フォトカプラ2の誤動作
等他の機器への悪影響が懸念されることになり、また逆
に前記ゲート電圧VG をその最終値を小にし且つ緩やか
に増大すれば前記変化率dVCE/dtは減少するが前記
損失PC の増大を来すことになる。
In the [0006] Generally IGBT turn control, the product of the relaxation of the temporal change rate dV CE / dt of the collector-emitter voltage V CE, and the voltage V CE and the collector current i c It is required to reduce the collector loss P C given by the above in steady state and switching. However, if the gate voltage V G is raised to a sufficiently large value in a short time and a rapid turn-on operation is performed, the loss P C can be reduced but the change rate dV CE / dt is increased. There is concern that the photo coupler 2 may malfunction such as malfunction, and conversely, if the final value of the gate voltage V G is made small and gradually increased, the rate of change dV CE / dt will be Although it decreases, the loss P C increases.

【0005】因みに上記の模様を図5ないし図7に従っ
て以下に説明する。先ず図5は、ブリッジ構成をなす変
換回路における1相分のアーム構成図であり、IGBT
と逆並列されたフリーホイールダイオードFWDとの組
合わせ即ちIGBT1 とFWD1 ,IGBT2 とFWD
2 とをそれぞれ上下のアーム素子となす構成を示し、ま
た下側アームのFWD2 を経由して電流iFWD が図示実
線の如く通電中に上側アームのIGBT1 をターンオン
させ図示点線の如くコレクタ電流iC が通電を開始した
状態を示すものである。
Incidentally, the above pattern will be described below with reference to FIGS. First, FIG. 5 is an arm configuration diagram of one phase in a conversion circuit having a bridge configuration.
And anti-freewheel diode FWD in anti-parallel, ie, IGBT 1 and FWD 1 , IGBT 2 and FWD
2 and 2 respectively constitute upper and lower arm elements, and the current i FWD is turned on via the lower arm FWD 2 while the current i FWD is energized to turn on the upper arm IGBT 1 and the collector current as shown by the dotted line in the figure. i C shows the state in which energization has started.

【0006】次に図6は、図5に示すIGBT1 のター
ンオン動作時におけるコレクタ電流ic とゲート電圧V
G とコレクタ・エミッタ間電圧VCEとコレクタ損失PC
との動作波形図を示すものであり、ゲート電圧VG が前
記の図4に示す如く変化した場合に対応するものであ
る。なおコレクタ損失PC は前記の電流ic と電圧VCE
との積で与えられるものであり、時刻tn1は前記ターン
オン動作の過渡状態が終わりその定常状態に移行する時
刻を示し、また前記ターンオン動作の開始時点から時刻
n1までと該時刻tn1以降との両期間における前記損失
C の時間積分値である面積S11とS21とはそれぞれ対
応する期間において前記IGBT1 のコレクタにて消費
される電力量を示すものとなる。またθ1 は前記電圧V
CEの時間的減少度合い即ち前記IGBT1 のターンオン
速度に対応する角度を示すものである。また図7は、図
6における前記の逆バイアス用電源電圧Er と時定数T
G とを同一とし前記順バイアス用電源電圧Ef のみを小
となして前記ゲート電圧VGの変化幅を縮小した場合の
前記諸量の動作波形図である。
Next, FIG. 6 shows a collector current i c and a gate voltage V c during turn-on operation of the IGBT 1 shown in FIG.
G and collector-emitter voltage V CE and collector loss P C
6A and 6B are operation waveform charts corresponding to the case where the gate voltage V G changes as shown in FIG. The collector loss P C is the above current i c and voltage V CE.
The time t n1 indicates the time at which the transient state of the turn-on operation ends and shifts to its steady state, and the time t n1 is from the start time of the turn-on operation to the time t n1 and after the time t n1. Areas S 11 and S 21, which are the time-integrated values of the loss P C in both the periods and, indicate the amount of power consumed by the collector of the IGBT 1 in the corresponding periods. Further, θ 1 is the voltage V
It shows the degree of CE temporal decrease, that is, the angle corresponding to the turn-on speed of the IGBT 1 . FIG. 7 shows the reverse bias power supply voltage E r and the time constant T in FIG.
FIG. 7 is an operation waveform diagram of the various quantities when G is made the same and only the forward bias power supply voltage E f is made small to reduce the variation width of the gate voltage V G.

【0007】図7においては図6の場合に比し、前記角
度に関しθ1 <θ2 となり前記電圧VCEの時間的変化率
dVCE/dtは小となるが、前記損失PC の時刻tn2
降の定常値は大となり従って定常損失の電力量はS21
22の如く増大する。しかしながら、上記の如き従来の
IGBTのゲート駆動方法においては、図3に示す回路
により図4の動作波形図の如く前記ゲート電圧VG に対
し単一の時間変化を行わせるために、前記の時間的変化
率dVCE/dtとコレクタ損失PC とを同時に望ましい
値まで低減させることは困難であった。
Compared to the case of FIG. 6, in FIG. 7, θ 12 with respect to the angle, and the rate of temporal change dV CE / dt of the voltage V CE is small, but the time t of the loss P C is t. The steady-state value after n2 is large, so the steady-state power loss is S 21 <
Increase like S 22 . However, in the conventional IGBT gate driving method as described above, the circuit shown in FIG. 3 causes the gate voltage V G to change in a single time as shown in the operation waveform diagram of FIG. It was difficult to simultaneously reduce the dynamic change rate dV CE / dt and the collector loss P C to desired values.

【0008】上記に鑑み本発明は、IGBTのターンオ
ン時における前記電圧VCEの時間的変化率とその過渡時
及び定常時におけるコレクタ損失の同時低減を図ったゲ
ート駆動方法の提供を目的とするものである。
In view of the above, it is an object of the present invention to provide a gate driving method for simultaneously reducing the rate of change of the voltage V CE at the time of turn-on of the IGBT and the collector loss during the transient and steady states thereof. Is.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のIGBTのゲート駆動方法においては、I
GBTのターンオン制御用に、その時定数とその電圧最
終値とが共に小なる第1の制御電圧と、該第1の制御電
圧に比してその時定数とその電圧最終値とが共に大なる
第2の制御電圧と、該第1と第2両制御電圧の時間的変
化過程においてその値の大なる方のみを選択合成して得
た該両制御電圧の包絡電圧とを形成し、該包絡電圧を以
て所要のターンオン制御用ゲート電圧となすものとし、
更に前記包絡電圧の形成に関し、定電圧ダイオードと第
1の抵抗との直列接続に対して該第1の抵抗に比しその
抵抗値の大なる第2の抵抗を並列に接続し、該直並列接
続を介して所定電圧の直流電源より前記IGBTのゲー
トに給電し、該IGBTのゲートにおいて所要の包絡電
圧を形成させるものとする。
In order to achieve the above object, in the IGBT gate driving method of the present invention, I
For the turn-on control of the GBT, a first control voltage whose time constant and its voltage final value are both smaller, and a second control voltage whose time constant and its voltage final value are both larger than the first control voltage. And the envelope voltage of the two control voltages obtained by selectively combining only the larger one of the control voltages in the time course of the first and second control voltages. It shall be the required turn-on control gate voltage,
Further, regarding the formation of the envelope voltage, a second resistor having a resistance value larger than that of the first resistor is connected in parallel to the series connection of the constant voltage diode and the first resistor, and the serial-parallel diode is connected. It is assumed that a direct current power supply of a predetermined voltage is supplied to the gate of the IGBT via a connection to form a required envelope voltage at the gate of the IGBT.

【0010】[0010]

【作用】前記の如く、IGBTのターンオン制御時に単
一の時間変化を行うゲート電圧VG を印加する場合に
は、該IGBTのコレクタ損失PC とコレクタ・エミッ
タ間電圧VCEの時間的変化率dVCE/dtとを共に低減
させることは困難である。これは前記ゲート電圧VG
その最終値と変動時定数とが規定されて単一の時間変化
を行うことに起因するものであり、もし前記ターンオン
動作の過渡時と定常時とにおいてそれぞれに適当な時間
変化を行うゲート電圧VG を印加するならば前記のコレ
クタ損失PC と電圧VCEの時間的変化率との同時低減が
可能となるものである。
As described above, when a single gate voltage V G is applied during turn-on control of the IGBT, the rate of change of the collector loss P C and collector-emitter voltage V CE of the IGBT with time is applied. It is difficult to reduce both dV CE / dt. This is because the gate voltage V G makes a single time change with its final value and the fluctuation time constant being defined, and if the turn-on operation is transient and steady, it is appropriate. If the gate voltage V G that changes with time is applied, the collector loss P C and the rate of time change of the voltage V CE can be simultaneously reduced.

【0011】上記に従い本発明は、その時定数と最終電
圧値との異なる2組の制御電圧それぞれの時間的変化過
程においてその値の大なる方のみを選択合成することに
より該両制御電圧の包絡電圧を形成し、且つ前記2組の
制御電圧における該包絡電圧構成部分の時間的変化模様
が前記IGBTのターンオン動作の過渡時と定常時とに
対し最適となるように定数選択を行うものである。
According to the above, according to the present invention, the envelope voltage of both control voltages is selected and synthesized by selectively synthesizing only the larger one of the two control voltages having different time constants and final voltage values. And the constants are selected so that the temporal change pattern of the envelope voltage components in the two sets of control voltages is optimum for the transient state and the steady state of the turn-on operation of the IGBT.

【0012】図8の動作波形図は前記IGBTのターン
オン制御時のゲート電圧となる前記包絡電圧の形成模様
を示すものであって、実線で示す包絡電圧VG を点線で
示す制御電圧VG1と一点鎖線で示す制御電圧VG2とによ
り形成するものであり、該両制御電圧に関し電圧VG2
時定数と最終電圧値とをそれぞれ電圧VG1におけるもの
よりも適当に大となすことにより図示時刻tn3の以前と
以後の両期間における優先電圧をそれぞれ前記の電圧V
G1とVG2となし、該両優先電圧の合成電圧として前記包
絡電圧VG を得る模様を示すものである。
The operation waveform diagram of FIG. 8 shows the formation pattern of the envelope voltage serving as the gate voltage during the turn-on control of the IGBT. The envelope voltage V G shown by the solid line and the control voltage V G1 shown by the dotted line. It is formed by the control voltage V G2 indicated by the alternate long and short dash line, and the time constant and the final voltage value of the voltage V G2 are appropriately larger than those at the voltage V G1 for both control voltages, as shown in the figure. Prioritized voltages in both the period before t n3 and the period after t n3 are respectively the above-mentioned voltage V
G1 and V G2 are not shown, and the envelope voltage V G is obtained as a combined voltage of both priority voltages.

【0013】[0013]

【実施例】以下本発明の第1と第2の実施例をそれぞれ
図1と図2とに示す回路図により説明する。なお該両図
においては図3に示す従来技術の実施例の場合と同一機
能の構成要素に対しては同一の表示符号を付している。
先ず図1は、図3に示す回路図において、順バイアス用
電源とフォトカプラ2におけるトランジスタ要素Tc1
ゲート抵抗R7 とを経由する1のIGBTに対するゲー
ト電圧VG の給電経路に関し、定電圧ダイオードZD1
と抵抗R1 との直列接続に対し該抵抗R1 に比して大な
る抵抗値を有する抵抗R2 を並列に接続した直並列接続
を前記順バイアス用電源と前記要素Tc1のコレクタとの
間に追加挿入すると共に、抵抗R7 を抵抗R3 により置
換した回路構成をなしたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first and second embodiments of the present invention will be described below with reference to the circuit diagrams shown in FIGS. 1 and 2, respectively. In both figures, the same reference numerals are attached to the components having the same functions as in the case of the embodiment of the prior art shown in FIG.
First, in FIG. 1, in the circuit diagram shown in FIG. 3, a constant voltage is applied to a power supply path of the gate voltage V G for one IGBT via the forward bias power supply, the transistor element T c1 and the gate resistance R 7 in the photocoupler 2. Diode ZD 1
And a resistor R 1 connected in series, a resistor R 2 having a resistance value larger than that of the resistor R 1 is connected in parallel to form a series-parallel connection between the forward bias power source and the collector of the element T c1 . A circuit configuration is formed in which the resistor R 7 is replaced by the resistor R 3 while additionally inserted between them.

【0014】今、抵抗R1 を経由する経路と抵抗R2
経由する経路とをそれぞれ第1と第2の経路とすれば該
第1の経路の順バイアス用電源電圧は該第2の経路のそ
れよりも定電圧ダイオードZD1 のツェナ電圧分だけ小
となる。また該両経路は前記IGBTのゲート・エミッ
タ間静電容量Cと抵抗R3 とを共有し且つ抵抗R1 の抵
抗値が抵抗R2 のそれよりも小なるため、前記第1の経
路の時定数TG1は前記第2の経路の時定数TG2よりも小
となる。ここに、前記静電容量Cの両端電圧は前記IG
BTのゲート電圧VG となるものであり、前記第1の経
路によるゲート電圧をVG1とし同様に前記第2の経路に
よるものをVG2とすれば、該両電圧による包絡電圧VG
は,前記の図8に示すものと同様に,時刻tn3の以前と
以後の両期間における優先電圧をそれぞれ前記の電圧V
G1とVG2となすものとして得ることができる。
Now, assuming that the path passing through the resistor R 1 and the path passing through the resistor R 2 are the first and second paths, respectively, the power supply voltage for forward bias of the first path is the second path. It is smaller than that by the Zener voltage of the constant voltage diode ZD 1 . In addition, both paths share the gate-emitter electrostatic capacitance C of the IGBT and the resistance R 3, and the resistance value of the resistance R 1 is smaller than that of the resistance R 2. Therefore, in the case of the first path, The constant T G1 is smaller than the time constant T G2 of the second path. Here, the voltage across the capacitance C is the IG
Is to be a gate voltage V G of BT, the first if what the gate voltage due Similarly the second path and V G1 and V G2 by the route, the envelope voltage V G according to both said voltage
In the same manner as shown in FIG. 8, the priority voltage in both the period before and after the time t n3 is the voltage V
It can be obtained as what constitutes G1 and V G2 .

【0015】次に図2は、図1に示す回路に対して信号
電流増幅用のバッファトランジスタT1 とT2 とを追加
し、これに伴い定電圧ダイオードZD2 と抵抗R4 〜R
6 とを含む回路構成の変更を行ったものであり、その回
路動作に関しては図1の回路による場合と同様となる。
Next, in FIG. 2, buffer transistors T 1 and T 2 for amplifying a signal current are added to the circuit shown in FIG. 1, and along with this, a constant voltage diode ZD 2 and resistors R 4 to R 4.
The circuit configuration including 6 is changed, and the circuit operation is similar to that of the circuit of FIG.

【0016】[0016]

【発明の効果】本発明によれば、IGBTのゲート駆動
方法に関し、該IGBTのターンオン制御用にその時定
数とその電圧最終値とが共に小なる第1の制御電圧と、
該第1の制御電圧に比してその時定数とその電圧最終値
とが共に大なる第2の制御電圧と、該第1と第2両制御
電圧の時間的変化過程においてその値の大なる方のみを
選択合成して得た該両制御電圧の包絡電圧とを形成し、
該包絡電圧を以てターンオン制御用の所要のゲート電圧
となすと共に、該包絡電圧の形成に関し、定電圧ダイオ
ードと第1の抵抗との直列接続に対して該第1の抵抗に
比しその抵抗値の大なる第2の抵抗を並列に接続し、該
直並列接続を介して所定電圧の直流電源より前記IGB
Tのゲートに給電することにより、前記IGBTのター
ンオン時におけるコレクタ・エミッタ間電圧の時間的変
化率の緩和とその過渡及び定常状態におけるコレクタ損
失の低減とを図ることができる。
According to the present invention, a method for driving an IGBT gate is provided, in which a first control voltage whose time constant and its voltage final value are both small for turn-on control of the IGBT,
A second control voltage whose time constant and its voltage final value are both greater than those of the first control voltage, and whichever is greater in the time course of the first and second control voltages. To form an envelope voltage of the both control voltages obtained by selectively combining only
The envelope voltage is used as a required gate voltage for turn-on control, and with respect to the formation of the envelope voltage, the resistance value of the constant voltage diode and the first resistor is smaller than that of the first resistor with respect to the series connection of the constant voltage diode and the first resistor. A large second resistor is connected in parallel, and the IGB is connected to the DC power supply of a predetermined voltage via the series-parallel connection.
By supplying power to the gate of T, it is possible to reduce the rate of change of the collector-emitter voltage with time when the IGBT is turned on and reduce the collector loss in the transient and steady state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】従来技術の実施例を示す回路図FIG. 3 is a circuit diagram showing a prior art embodiment.

【図4】図3に対応するゲート電圧の動作波形図FIG. 4 is an operation waveform diagram of a gate voltage corresponding to FIG.

【図5】ブリッジ構成における1相分のアーム構成図FIG. 5 is an arm configuration diagram for one phase in a bridge configuration.

【図6】IGBTターンオン時のic ,VG ,VCE,P
C 諸量の動作波形図(その1)
FIG. 6 shows i c , V G , V CE , and P when the IGBT is turned on.
Waveform chart of various C quantities (1)

【図7】IGBTターンオン時のic ,VG ,VCE,P
C 諸量の動作波形図(その2)
FIG. 7 shows i c , V G , V CE and P at the time of turning on the IGBT.
Operation waveform diagram of various C quantities (Part 2)

【図8】包絡電圧として形成されるゲート電圧の動作波
形図
FIG. 8 is an operation waveform diagram of a gate voltage formed as an envelope voltage.

【符号の説明】[Explanation of symbols]

1 IGBT(絶縁ゲートバイポーラトランジスタ) 2 フォトカプラ Rn 抵抗(n=1,2,‥‥7) Tc1 フォトカプラ2のトランジスタ要素 Tc2 フォトカプラ2のトランジスタ要素 T1 信号電流増幅用バッファトランジスタ T2 信号電流増幅用バッファトランジスタ ZD1 定電圧ダイオード ZD2 定電圧ダイオード Ef 順バイアス用直流電源電圧 Er 逆バイアス用直流電源電圧1 IGBT (Insulated Gate Bipolar Transistor) 2 Photocoupler R n Resistance (n = 1, 2, ... 7) T c1 Transistor element of photocoupler T c2 Transistor element of photocoupler T 1 Signal current amplification buffer transistor T 2 Signal current amplification buffer transistor ZD 1 Constant voltage diode ZD 2 Constant voltage diode E f Forward bias DC power supply voltage E r Reverse bias DC power supply voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】IGBTのターンオン制御用に、その時定
数とその電圧最終値とが共に小なる第1の制御電圧と、
該第1の制御電圧に比してその時定数とその電圧最終値
とが共に大なる第2の制御電圧と、該第1と第2両制御
電圧の時間的変化過程においてその値の大なる方のみを
選択合成して得た該両制御電圧の包絡電圧とを形成し、
該包絡電圧を以て所要のターンオン制御用ゲート電圧と
なすことを特徴とするIGBTのゲート駆動方法。
1. A first control voltage having a small time constant and a final voltage value for turn-on control of an IGBT,
A second control voltage whose time constant and its voltage final value are both greater than those of the first control voltage, and whichever is greater in the time course of the first and second control voltages. To form an envelope voltage of the both control voltages obtained by selectively combining only
A method of driving a gate of an IGBT, wherein a required turn-on control gate voltage is obtained by using the envelope voltage.
【請求項2】請求項1記載のIGBTのゲート駆動方法
において、前記包絡電圧の形成に関し、定電圧ダイオー
ドと第1の抵抗との直列接続に対して該第1の抵抗に比
しその抵抗値の大なる第2の抵抗を並列に接続し、該直
並列接続を介して所定電圧の直流電源より前記IGBT
のゲートに給電し該IGBTのゲートにおいて所要の包
絡電圧を形成させることを特徴とするIGBTのゲート
駆動方法。
2. The method of driving an IGBT according to claim 1, wherein in regard to the formation of the envelope voltage, a resistance value of a constant voltage diode and a first resistor connected in series with respect to the first resistor is higher than that of the first resistor. Of the second resistor is connected in parallel, and the IGBT is connected from the DC power source of a predetermined voltage through the series-parallel connection.
The gate driving method of the IGBT, characterized in that a required envelope voltage is formed in the gate of the IGBT by feeding the gate of the IGBT.
JP4115044A 1992-05-08 1992-05-08 IGBT gate drive method Expired - Fee Related JP3049938B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4115044A JP3049938B2 (en) 1992-05-08 1992-05-08 IGBT gate drive method
CN93105096A CN1033253C (en) 1992-05-08 1993-05-06 Circuit and method for driving IGBT
DE4315253A DE4315253A1 (en) 1992-05-08 1993-05-07 Control circuit for insulated-gate bipolar transistor - includes opto-coupler with forward and reverse bias voltages and two time constants giving different control voltages at gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115044A JP3049938B2 (en) 1992-05-08 1992-05-08 IGBT gate drive method

Publications (2)

Publication Number Publication Date
JPH05315917A true JPH05315917A (en) 1993-11-26
JP3049938B2 JP3049938B2 (en) 2000-06-05

Family

ID=14652802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115044A Expired - Fee Related JP3049938B2 (en) 1992-05-08 1992-05-08 IGBT gate drive method

Country Status (3)

Country Link
JP (1) JP3049938B2 (en)
CN (1) CN1033253C (en)
DE (1) DE4315253A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049536C (en) * 1997-01-20 2000-02-16 深圳市华为电气股份有限公司 Gate drive method and circuit of high-power IGBT in full-bridge circuit
JP2012090435A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Drive circuit and semiconductor device equipped with the same
US11133796B2 (en) 2016-03-11 2021-09-28 Ford Global Technologies, Llc Dynamic IGBT gate drive to reduce switching loss

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949213A (en) * 1988-11-16 1990-08-14 Fuji Electric Co., Ltd. Drive circuit for use with voltage-drive semiconductor device

Also Published As

Publication number Publication date
JP3049938B2 (en) 2000-06-05
DE4315253A1 (en) 1993-11-11
CN1033253C (en) 1996-11-06
CN1081796A (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US8427225B2 (en) Gate driving circuit
JP2004229057A (en) Gate drive
JP3550453B2 (en) Inverter device
JPH0393457A (en) Drive circuit for voltage driving type element
JPH1075164A (en) Gate drive circuit for voltage control-type switching element
JPH05315917A (en) Method for driving gate of igbt
US5291069A (en) Bipolar H write driver
JPH08149796A (en) Drive circuit for voltage driven switch element
JPS5838066B2 (en) Transistor chopper control device
JPH0633715Y2 (en) Transistor-transistor logic circuit
US7215093B2 (en) Motor drive circuit and motor drive method that can positively perform a brake operation
JP4136287B2 (en) Driver circuit
US20020105747A1 (en) Magnetic record writing circuit
US5850158A (en) Actively regulated totem pole TTL output stage
US6377088B1 (en) Sharp transition push-pull drive circuit with switching signal input circuit
JP4396059B2 (en) Control device for voltage-driven semiconductor elements connected in series
US4727264A (en) Fast, low-power, low-drop driver circuit
JP4581231B2 (en) Gate drive circuit for voltage driven semiconductor device
US5204550A (en) Output stage having reduced current consumption
JPH01183214A (en) Off gate circuit of power switching element
JP2758477B2 (en) Portable information devices
JP2586601B2 (en) Current mirror circuit
JP2815434B2 (en) Output circuit device
JPH0424655Y2 (en)
JP2805949B2 (en) Switching output circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees