JPH05312026A - Exhaust control device for engine - Google Patents

Exhaust control device for engine

Info

Publication number
JPH05312026A
JPH05312026A JP11930192A JP11930192A JPH05312026A JP H05312026 A JPH05312026 A JP H05312026A JP 11930192 A JP11930192 A JP 11930192A JP 11930192 A JP11930192 A JP 11930192A JP H05312026 A JPH05312026 A JP H05312026A
Authority
JP
Japan
Prior art keywords
catalyst
lean
oxygen
temperature
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11930192A
Other languages
Japanese (ja)
Other versions
JP3154110B2 (en
Inventor
Fumihiko Saito
史彦 斉藤
Masanori Misumi
正法 三角
Tomoki Watanabe
友己 渡辺
Hajime Suetsugu
元 末次
Yoshihiko Imamura
善彦 今村
Junichi Taga
淳一 田賀
Kazuhiko Hashimoto
一彦 橋本
Ichiji Kataoka
一司 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP11930192A priority Critical patent/JP3154110B2/en
Publication of JPH05312026A publication Critical patent/JPH05312026A/en
Application granted granted Critical
Publication of JP3154110B2 publication Critical patent/JP3154110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To keep high purification efficiency of NOx by suppressing bad influence to a lean operation and increase of an external load, and preventing deterioration of a lean NOx catalyst which may be caused by oxygen adsorption. CONSTITUTION:During lean operation, it is judged whether a catalyst resisting temperature T0 is exceeded by a value which is obtained by a presumed temperature increasing rate T2 due to temperature-increasing operation to a catalyst temperature T1 11 periodically by a CPU 12 or not (S13). When the resisting temperature T is exceeded, a temperature-increasing operation is executed by catalyst heating 19 (S14). Other than the resultant periodical reduction of adsorbed oxygen, it is reduced every time when a multiplied value of an oxygen rate passing through a lean NOx catalyst exceeds a specified value. Operation can be carried out with an air-fuel ratio being temperarily shifted to rich instead of heating of the catalyst as a reduction means for the adsorption oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気系にいわゆるリーン
NOx触媒を備えたエンジンの排気制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust control device having an exhaust system provided with a so-called lean NOx catalyst.

【0002】[0002]

【従来の技術】従来から特開平3ー225013号公報
に記載されているように、空燃比が理論空燃比よりも大
きいリーン空燃比領域でエンジン排気ガス中のNOxを
浄化する触媒として、遷移金属あるいは貴金属を担持せ
しめたゼオライトからなり、酸化雰囲気中、HCの存在
下で排気ガス中のNOxを還元する触媒いわゆるリーン
NOx触媒を排気系に備えたエンジンが知られている。
2. Description of the Related Art As described in Japanese Patent Laid-Open No. 3-225013, a transition metal is used as a catalyst for purifying NOx in engine exhaust gas in a lean air-fuel ratio region where the air-fuel ratio is larger than the theoretical air-fuel ratio. Alternatively, an engine is known in which an exhaust system is provided with a so-called lean NOx catalyst which is made of zeolite supporting a noble metal and which reduces NOx in exhaust gas in the presence of HC in an oxidizing atmosphere.

【0003】また、例えば実開平2−94316号公報
に記載されているように、排気系に触媒を備えたエンジ
ンにおいて、触媒温度を所定温度以上に維持するための
触媒加熱手段を備えたものがある。
Further, as described in, for example, Japanese Utility Model Publication No. 2-94316, an engine having a catalyst in its exhaust system is provided with a catalyst heating means for maintaining the catalyst temperature above a predetermined temperature. is there.

【0004】[0004]

【発明が解決しようとする課題】リーンNOx触媒は排
気ガス成分中のHCとNOxを吸着してNOxを還元し
浄化するものであるが、酸素を吸着すると劣化し浄化性
能が著しく低下する。ただし、この酸素吸着による劣化
はあくまで一時的な劣化であって、触媒を加熱するとか
リッチ混合気を送るなどの手段によって回復が可能であ
る。しかし、リーンNOx触媒のこのような酸素吸着に
よる劣化が顕著となってから触媒性能回復の操作を実行
するのでは、回復に必要な時間が長くなってリーン運転
への悪影響がでるし、例えば触媒加熱による外部負荷が
大きくなるという問題が発生する。
The lean NOx catalyst adsorbs HC and NOx in the exhaust gas component to reduce and purify NOx, but if oxygen is adsorbed, it deteriorates and the purifying performance remarkably deteriorates. However, this deterioration due to oxygen adsorption is only temporary deterioration and can be recovered by means such as heating the catalyst or sending a rich air-fuel mixture. However, if the operation for recovering the catalyst performance is executed after the deterioration of the lean NOx catalyst due to such oxygen adsorption becomes remarkable, the time required for the recovery becomes long and the lean operation is adversely affected. There is a problem that the external load due to heating increases.

【0005】本発明は上記問題点に鑑みてなされたもの
であって、リーン運転への悪影響および外部負荷の増大
を抑えつつ酸素吸着によるリーンNOx触媒の劣化を防
いで高いNOx浄化率を維持できるようにすることを目
的とする。
The present invention has been made in view of the above problems, and can prevent deterioration of the lean NOx catalyst due to oxygen adsorption and maintain a high NOx purification rate while suppressing adverse effects on lean operation and an increase in external load. The purpose is to do so.

【0006】[0006]

【課題を解決するための手段】この出願の発明はエンジ
ンの排気制御装置に係るものであって、第1の発明は、
少なくとも空燃比が理論空燃比より大きいリーン空燃比
領域で排気ガス中のNOxを還元浄化するリーンNOx
触媒を備えたエンジンにおいて、リーンNOx触媒に吸
着された酸素を低減する吸着酸素低減手段と、エンジン
のリーン空燃比領域での運転を検出するリーン運転検出
手段と、リーン運転検出手段の出力を受け、リーン運転
継続中、所定周期で吸着酸素低減手段による吸着酸素の
低減を実行する低減実行手段を備えたことを特徴とす
る。ここで、吸着酸素低減手段としては、リーンNOx
触媒を加熱する触媒加熱手段を用いることができ、その
際、リーンNOx触媒の温度を検出する触媒温度検出手
段と、この触媒温度検出手段の出力を受け、リーンNO
x触媒の温度が所定温度以上にならないことを条件に前
記低減実行手段を作動させる実行制限手段を設けるとよ
い。
The invention of this application relates to an exhaust control system for an engine. The first invention is
Lean NOx for reducing and purifying NOx in exhaust gas in a lean air-fuel ratio region in which at least the air-fuel ratio is larger than the theoretical air-fuel ratio
In an engine equipped with a catalyst, an adsorbed oxygen reducing means for reducing oxygen adsorbed on the lean NOx catalyst, a lean operation detecting means for detecting an operation of the engine in a lean air-fuel ratio region, and an output of the lean operation detecting means are received. During the lean operation, the reduction means for reducing the adsorbed oxygen by the adsorbed oxygen reduction means is provided in a predetermined cycle. Here, lean NOx is used as the adsorbed oxygen reducing means.
A catalyst heating means for heating the catalyst can be used, in which case the catalyst temperature detecting means for detecting the temperature of the lean NOx catalyst and the output of this catalyst temperature detecting means are used to receive the lean NOx.
It is advisable to provide execution limiting means for operating the reduction executing means on condition that the temperature of the x catalyst does not exceed a predetermined temperature.

【0007】また、この出願の第2の発明は、空燃比が
理論空燃比より大きいリーン空燃比領域で排気ガス中の
NOxを還元浄化するリーンNOx触媒を備えたエンジ
ンにおいて、リーンNOx触媒に吸着された酸素を低減
する吸着酸素低減手段と、リーンNOx触媒を通過する
酸素量を検出する酸素量検出手段と、この酸素量検出手
段により検出された酸素量の積算値を演算する酸素量積
算値演算手段と、酸素量積算値演算手段の出力を受け、
積算値が所定値以上になった時に吸着酸素低減手段によ
る吸着酸素の低減を実行する低減実行手段を備えたこと
を特徴とする。ここで、吸着酸素低減手段としては、や
はりリーンNOx触媒を加熱する触媒加熱手段を用いる
ことができ、その際、リーンNOx触媒の温度を検出す
る触媒温度検出手段と、この触媒温度検出手段の出力を
受けてリーンNOx触媒の温度が所定温度以上にならな
いことを条件に前記低減実行手段を作動させる実行制限
手段を設けるとよい。
The second invention of the present application is an engine equipped with a lean NOx catalyst for reducing and purifying NOx in exhaust gas in a lean air-fuel ratio region where the air-fuel ratio is larger than the stoichiometric air-fuel ratio, and is adsorbed on the lean NOx catalyst. Adsorbed oxygen reducing means for reducing the amount of oxygen stored, oxygen amount detecting means for detecting the amount of oxygen passing through the lean NOx catalyst, and integrated oxygen amount value for calculating an integrated value of the oxygen amount detected by the oxygen amount detecting means. Receiving the output of the calculation means and the oxygen amount integrated value calculation means,
It is characterized by further comprising reduction executing means for executing the reduction of the adsorbed oxygen by the adsorbed oxygen reducing means when the integrated value exceeds a predetermined value. Here, as the adsorbed oxygen reducing means, a catalyst heating means for heating the lean NOx catalyst can also be used. At that time, a catalyst temperature detecting means for detecting the temperature of the lean NOx catalyst and an output of the catalyst temperature detecting means. In response to this, it is preferable to provide execution limiting means for operating the reduction executing means on the condition that the temperature of the lean NOx catalyst does not rise above a predetermined temperature.

【0008】また、上記第1の発明および第2の発明に
おいて、吸着酸素低減手段はエンジンを一時的にリッチ
空燃比で運転する一時リッチ運転手段とすることもでき
る。図1の(a)は上記第1の発明の全体構成図、
(b)は上記第2の発明の全体構成図である。
Further, in the above-mentioned first and second inventions, the adsorbed oxygen reducing means may be a temporary rich operating means for temporarily operating the engine at a rich air-fuel ratio. FIG. 1A is an overall configuration diagram of the first invention,
(B) is a whole block diagram of the said 2nd invention.

【0009】[0009]

【作用】上記第1の発明によれば、リーン運転継続中は
所定周期で加熱手段,一時リッチ運転手段等の吸着酸素
低減手段が作動し、それによって、リーンNOx触媒に
吸着された酸素が触媒劣化が顕著となる前に離脱低減さ
れ、触媒性能が回復する。その際、吸着酸素低減手段と
してリーンNOx触媒を加熱する触媒加熱手段を備えた
ものでは、リーンNOx触媒の温度が所定温度以上にな
らないことを条件に加熱が実行される。このように劣化
を待たずに周期的に回復操作が行われることにより、短
い回復操作で高い浄化性能が維持でき、そのためリーン
運転への悪影響が少なくなり、また、外部負荷の増大が
抑えられる。また、触媒加熱に制約が加えられることに
よって触媒温度が耐熱限界を超えるのが防止される。
According to the first aspect of the present invention, the adsorbed oxygen reducing means such as the heating means and the temporary rich operating means operate at a predetermined cycle during the lean operation continuing, whereby the oxygen adsorbed on the lean NOx catalyst is catalyzed. Desorption is reduced and catalyst performance is restored before deterioration becomes significant. At that time, in the case where the catalyst heating means for heating the lean NOx catalyst is provided as the adsorbed oxygen reducing means, the heating is executed on condition that the temperature of the lean NOx catalyst does not reach the predetermined temperature or higher. By performing the recovery operation periodically without waiting for the deterioration in this manner, high purification performance can be maintained with a short recovery operation, so that the adverse effect on lean operation is reduced and the increase in external load is suppressed. In addition, the restriction of catalyst heating prevents the catalyst temperature from exceeding the heat resistance limit.

【0010】また、上記第2の発明によれば、リーンN
Ox触媒を通過する酸素量の積算値が所定値以上になる
毎に加熱手段,一時リッチ運転手段等の吸着酸素低減手
段が作動し、それによって、リーンNOx触媒に吸着さ
れた酸素が触媒劣化が顕著となる前に離脱低減され、触
媒性能が回復する。この場合も、吸着酸素低減手段とし
てリーンNOx触媒を加熱する触媒加熱手段を備えたも
のにおいてはリーンNOx触媒の温度が所定温度以上に
ならない時にのみ加熱が実行される。そして、やはりこ
のように劣化を待たずに周期的に回復操作が行われるこ
とにより、短い回復操作で高い浄化性能が維持でき、そ
のためリーン運転への悪影響が少なくなり、また、触媒
加熱に制約が加えられることによって触媒温度が耐熱限
界を超えるのが防止される。
According to the second aspect of the invention, the lean N
Each time the integrated value of the amount of oxygen passing through the Ox catalyst becomes equal to or greater than a predetermined value, the adsorbed oxygen reducing means such as the heating means and the temporary rich operating means are activated, whereby the oxygen adsorbed on the lean NOx catalyst is deteriorated. Detachment is reduced before it becomes noticeable, and the catalyst performance is restored. Also in this case, in the case where the catalyst heating means for heating the lean NOx catalyst is provided as the adsorbed oxygen reducing means, the heating is executed only when the temperature of the lean NOx catalyst does not reach the predetermined temperature or higher. Also, as described above, since the recovery operation is periodically performed without waiting for the deterioration as described above, the high purification performance can be maintained by the short recovery operation, so that the adverse effect on the lean operation is reduced and the catalyst heating is restricted. When added, the catalyst temperature is prevented from exceeding the heat resistance limit.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図2は本発明の一実施例のシステム図であ
る。図において1はエンジンであって、エンジン1の吸
気通路2にはサージタンク3が形成され、サージタンク
3の上流にはスロットル弁4が、下流には燃料噴射弁5
が設けられている。また、吸気通路2の入口はエアクリ
ーナ6に接続され、エアクリーナ6の直下流にはエアフ
ローメータ7が設置されている。
FIG. 2 is a system diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes an engine, a surge tank 3 is formed in an intake passage 2 of the engine 1, a throttle valve 4 is provided upstream of the surge tank 3, and a fuel injection valve 5 is provided downstream thereof.
Is provided. Further, the inlet of the intake passage 2 is connected to the air cleaner 6, and an air flow meter 7 is installed immediately downstream of the air cleaner 6.

【0013】一方、エンジン1の排気通路8には空燃比
が理論空燃比より希薄なリーン運転時にNOxを還元浄
化するリーンNOx触媒9が設けられている。そして、
このリーンNOx触媒9には触媒加熱用のヒータ10が
設けられ、また、触媒温度を検出する温度センサ11が
設置されている。
On the other hand, the exhaust passage 8 of the engine 1 is provided with a lean NOx catalyst 9 for reducing and purifying NOx during lean operation in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. And
The lean NOx catalyst 9 is provided with a heater 10 for heating the catalyst, and a temperature sensor 11 for detecting the catalyst temperature.

【0014】上記燃料噴射弁5の制御はマイクロコンピ
ュータにより構成されたコントロールユニット12によ
って行う。そのため、コントロールユニット12にはデ
ィストリビュータ13に付設された回転センサからエン
ジン回転数信号が入力され、エアフローメータ7から吸
入空気量信号が入力される。また、リーンNOx触媒9
の上流側に設置された酸素濃度センサ17から酸素濃度
信号がコントロールユニット12に入力され,リーンN
Ox触媒9に設置された温度センサ11から触媒温度信
号が入力される。
The control of the fuel injection valve 5 is performed by the control unit 12 which is composed of a microcomputer. Therefore, the engine speed signal is input to the control unit 12 from the rotation sensor attached to the distributor 13, and the intake air amount signal is input from the air flow meter 7. In addition, the lean NOx catalyst 9
An oxygen concentration signal is input to the control unit 12 from an oxygen concentration sensor 17 installed on the upstream side of the
A catalyst temperature signal is input from a temperature sensor 11 installed on the Ox catalyst 9.

【0015】エンジン1の運転状態が所定のリーンF/
Bゾーンにある時、エンジン回転数と吸入空気量に基づ
いて燃料の基本噴射量が設定され、それに水温等による
各種補正と酸素濃度信号に基づいたフィードバック補正
が加えられて最終噴射量が算出される。そして、この最
終噴射量に相当する制御パルスが上記燃料噴射弁5に印
加され、それによってエンジン1の空燃比がリーン設定
の目標値に制御される。
The operating state of the engine 1 is a predetermined lean F /
When in zone B, the basic injection amount of fuel is set based on the engine speed and the intake air amount, and various corrections such as water temperature and feedback correction based on the oxygen concentration signal are added to calculate the final injection amount. It Then, a control pulse corresponding to this final injection amount is applied to the fuel injection valve 5, whereby the air-fuel ratio of the engine 1 is controlled to the lean set target value.

【0016】また、エンジン1がリーン定常運転に入る
と、タイマーが作動してリーン運転の継続時間が計測さ
れる。そして、リーン運転継続中、所定時間毎にヒータ
10に通電され、それによってリーンNOx触媒9が一
時的に加熱される。また、この触媒加熱は触媒温度が耐
熱限界を超えない範囲で実行される。
When the engine 1 enters the lean steady operation, the timer operates to measure the duration of the lean operation. Then, while the lean operation is continued, the heater 10 is energized at predetermined time intervals, whereby the lean NOx catalyst 9 is temporarily heated. Further, this catalyst heating is executed within a range in which the catalyst temperature does not exceed the heat resistance limit.

【0017】リーンNOx触媒9の浄化性能は図3に示
すような特性を有するものであって、温度に対しNOx
浄化率が山なりに変化する。また、触媒がフレッシュな
状態での特性曲線に対して、酸素吸着による触媒劣化が
進むと低温側で浄化性能が発揮できなくなって特性曲線
が図で左側がそげた形に変化し、さらに劣化が進むと浄
化性能が発揮できなくなる低温領域がさらに広がってい
く。一方、リーンNOx触媒の内部での化学反応は図4
に示すような特性を示すものであって、少なくとも触媒
の耐熱限界範囲内においてはNOx還元反応が低下し始
める温度よりさらに高温側(図に矢印A−Aで示す側)
でHCおよびCOの酸化反応が活発化する。図4で斜線
を引いた領域は触媒の耐熱限界を超えた領域である。し
たがって、リーンNOx触媒9は常時はNOx浄化率が
ピークとなる温度領域で使用するものであるが、触媒温
度を一時的に図4の矢印A−Aで示す高温領域まで昇温
させることによって、HCおよびCOの活発化した酸化
反応で吸着酸素が離脱される。その結果、NOx浄化率
の特性は、例えば図5に破線で示すように劣化が進んだ
状態であったものが実線のように復帰し、一点鎖線で示
すフレッシュ状態までは戻らないまでも十分高い浄化性
能が維持できる。
The purification performance of the lean NOx catalyst 9 has the characteristics shown in FIG.
The purification rate changes in mountains. In addition, when the catalyst deteriorates due to oxygen adsorption, the purification performance cannot be exhibited at the low temperature side compared to the characteristic curve in the fresh state of the catalyst, and the characteristic curve changes to a curved shape on the left side in the figure, further deterioration. As it progresses, the low temperature range where purification performance cannot be exhibited will further expand. On the other hand, the chemical reaction inside the lean NOx catalyst is shown in Fig. 4.
The temperature is higher than the temperature at which the NOx reduction reaction begins to decrease, at least within the heat resistance limit range of the catalyst (the side indicated by the arrow AA in the figure).
The oxidation reaction of HC and CO is activated. The shaded region in FIG. 4 is the region that exceeds the heat resistance limit of the catalyst. Therefore, the lean NOx catalyst 9 is always used in a temperature range where the NOx purification rate reaches its peak, but by temporarily raising the catalyst temperature to a high temperature range shown by the arrow AA in FIG. Adsorbed oxygen is released by the activated oxidation reaction of HC and CO. As a result, the characteristics of the NOx purification rate are sufficiently high, for example, the state in which deterioration has progressed as shown by the broken line in FIG. 5 returns as shown by the solid line, and does not return to the fresh state shown by the dashed line. Purification performance can be maintained.

【0018】なお、図2のシステム図では排気通路8に
リーンNOx触媒9を単に配置したものを示したが、リ
ーンNOx触媒は熱により劣化するため、これを防ぐに
は排気系にリーンNOx触媒をバイパスするバイパス通
路を設けるとともに、そのバイパス通路にバイパスバル
ブを設け、排気ガス温度が高い高回転高負荷時等におい
ては理論空燃比での運転に切り換えると同時にバイパス
バルブを開いて、バイパス通路を介し下流の三元触媒に
直接排気ガスを流すようにする。また、その場合に、V
型エンジンでは、図8に示すように各バンクの排気通路
8a,8bにそれぞれ三元触媒14a,14bを配置す
るとともに、リーンNOx触媒9は両バンクに共通と
し、バイパス通路15a,15bはバンク毎に設けてそ
れぞれにバイパスバルブ16a,16bを配置するよう
にする。
Although the lean NOx catalyst 9 is simply arranged in the exhaust passage 8 in the system diagram of FIG. 2, the lean NOx catalyst is deteriorated by heat. To prevent this, the lean NOx catalyst is added to the exhaust system. In addition to providing a bypass passage for bypassing the bypass passage, a bypass valve is provided in the bypass passage to switch to operation at the stoichiometric air-fuel ratio at the time of high rotation and high load where exhaust gas temperature is high. Exhaust gas is allowed to flow directly to the downstream three-way catalyst via this. In that case, V
In the engine, the three-way catalysts 14a and 14b are arranged in the exhaust passages 8a and 8b of each bank as shown in FIG. 8, the lean NOx catalyst 9 is shared by both banks, and the bypass passages 15a and 15b are provided for each bank. And the bypass valves 16a and 16b are respectively arranged.

【0019】図6は上記実施例における劣化回復の処理
を実行するフローチャートである。S11〜S15はそ
の各ステップを示す。
FIG. 6 is a flow chart for executing the deterioration recovery process in the above embodiment. S11 to S15 indicate the respective steps.

【0020】図6のフローチャートでは、スタートし
て、S11でリーン運転かどうかを判定する。そして、
リーン運転でなければそのままリターンし、リーン運転
ということであれば、S12で経過時間t0をリーン時
間t1ずつ増加させたものが周期判定の基準時間t2を超
えたかどうかを判定し、これが基準時間t2を越えるま
ではS11へ戻ってS11〜S12を繰り返し、基準時
間t2を超えるとS13に進む。
In the flowchart of FIG. 6, after starting, it is determined in S11 whether or not the lean operation is performed. And
If it is not lean operation, it returns as it is, and if it is lean operation, it is determined whether or not the increment of the elapsed time t 0 by the lean time t 1 in S12 exceeds the reference time t 2 of the cycle determination. until it exceeds the reference time t 2 is repeated S11~S12 returns to S11, the process proceeds to S13 exceeds the reference time t 2.

【0021】S13では触媒温度T1に上記昇温操作に
よる予想温度上昇分T2を加えたものが触媒耐熱温度T0
より低くなるかどうかを判定し、耐熱温度T0以上とな
るというときはS11へ戻ってS11〜S13を繰り返
す。そして、耐熱温度T0より低くなるというときはS
14へ進んでで触媒加熱による昇温操作を実行し、S1
5で上記経過時間t0を零に戻してリターンする。
[0021] S13, that the catalyst temperature T 1 of addition of predicted temperature increase T 2 by the Atsushi Nobori operation the catalyst heat resistance temperature T 0
If it becomes lower than the heat resistant temperature T 0 , it returns to S11 and repeats S11 to S13. When the temperature becomes lower than the heat resistant temperature T 0 , S
14, the temperature raising operation by heating the catalyst is executed, and S1
At 5, the elapsed time t 0 is returned to zero and the process returns.

【0022】また、上記実施例では吸着酸素を離脱低減
させる劣化回復の手段としてヒータで触媒を加熱する手
段を用いたが、劣化回復の手段としては、他に、エンジ
ンを一時的に空燃比リッチな状態で運転する手段を用い
ることも可能である。このリッチ運転による劣化回復は
例えばアイドル運転時に行うようにする。それは、アイ
ドル運転時にはNOx発生量が極端に少ないため、空燃
比をリッチにすることによるエミッションの悪化が少な
いという理由による。
Further, in the above embodiment, the means for heating the catalyst by the heater is used as the deterioration recovery means for reducing the desorption of adsorbed oxygen. However, as the deterioration recovery means, the engine may be temporarily air-fuel ratio rich. It is also possible to use a means for operating in such a state. The deterioration recovery by the rich operation is performed during the idle operation, for example. This is because the amount of NOx generated is extremely small during idle operation, and therefore the emission is less deteriorated by making the air-fuel ratio rich.

【0023】図7は上記のように一時的に空燃比リッチ
の状態でエンジンを運転することにより吸着酸素を離脱
させる制御を実行するフローチャートである。S21〜
S25はその各ステップを示す。
FIG. 7 is a flow chart for executing the control for temporarily removing the adsorbed oxygen by operating the engine in the air-fuel ratio rich state as described above. S21-
S25 indicates each step.

【0024】図7のフローチャートでは、スタートし
て、S21でリーン運転かどうかを判定する。そして、
リーン運転でなければそのままリターンし、リーン運転
ということであれば、S22で経過時間t0をリーン時
間t1ずつ増加させたものが周期判定の基準時間t2を超
えたかどうかを判定し、これが基準時間t2を越えるま
ではS21へ戻ってS21〜S22を繰り返し、規準時
間t2を超えるとS23へ進む。
In the flow chart of FIG. 7, after starting, it is determined in S21 whether lean operation is being performed. And
If it is not lean operation, it returns as it is, and if it is lean operation, it is determined whether or not the increment of the elapsed time t 0 by the lean time t 1 in S22 exceeds the reference time t 2 of the cycle determination. until it exceeds the reference time t 2 is repeated S21~S22 returns to S21, the process proceeds to S23 exceeds the criteria time t 2.

【0025】S23では触媒温度T1に上記リッチ運転
による予想温度上昇分を加えたものが触媒耐熱温度T0
より低くなるかどうかを判定し、耐熱温度T0以上にな
るというときはS21へ戻ってS21〜S24を繰り返
す。そして、耐熱温度T0より低くなるというときは、
S24へ進んで空燃比(A/F)リッチによる運転を実
行し、S25で上記経過時間t0を零に戻してリターン
する。
At S23, the catalyst heat resistance temperature T 0 is obtained by adding the expected temperature rise due to the rich operation to the catalyst temperature T 1.
If it becomes lower than the heat resistant temperature T 0 , it returns to S21 and repeats S21 to S24. And when it becomes lower than the heat resistant temperature T 0 ,
The routine proceeds to S24, where the air-fuel ratio (A / F) rich operation is executed, and at S25, the elapsed time t 0 is reset to zero and the routine returns.

【0026】上記実施例ではリーン運転継続中に所定時
間経過したことを条件に周期的に吸着酸素の低減を実行
しているが、他に、リーンNOx触媒を通過する酸素量
の積算値が所定値以上になる毎に吸着酸素低減を実行す
ることも可能である。
In the above embodiment, the adsorbed oxygen is periodically reduced under the condition that a predetermined time has elapsed while the lean operation is continued, but in addition, the integrated value of the amount of oxygen passing through the lean NOx catalyst is predetermined. It is also possible to carry out the reduction of adsorbed oxygen each time the value is exceeded.

【0027】図9は、リーンNOx触媒を通過する酸素
量の積算値が所定値以上になる毎に触媒加熱によって吸
着酸素低減を実行する場合の劣化回復処理を示すフロー
チャートである。S31〜S35はその各ステップを示
す。
FIG. 9 is a flow chart showing a deterioration recovery process when adsorbed oxygen reduction is performed by heating the catalyst every time the integrated value of the amount of oxygen passing through the lean NOx catalyst becomes a predetermined value or more. S31 to S35 show the respective steps.

【0028】図9のフローチャートにおいて、スタート
すると、S31で酸素濃度積算値O0を検出積算量O1
つ増加させたものが基準積算値O2以上となったかどう
かを判定し、基準積算値O2以上となるまではそのまま
リターンし、基準積算値O2以上となったらS32へ進
む。
In the flowchart of FIG. 9, when starting, it is determined whether or not the value obtained by increasing the oxygen concentration integrated value O 0 by the detected integrated amount O 1 in S31 becomes the reference integrated value O 2 or more. It returns as it is until it becomes 2 or more, and when it becomes the reference integrated value O 2 or more, it proceeds to S32.

【0029】S32では触媒温度T1に加熱操作による
予想温度上昇分T2を加えたものが触媒耐熱温度T0より
低くなるかどうかを判定し、耐熱温度T0以上となると
いうときはS31へ戻ってS31〜S32を繰り返す。
そして、T1+T2がT0より低くなるときは、S33へ
進んで触媒の加熱による昇温を実行し、次いで、S34
で検出積算量O1から昇温効果による予想離脱酸素量O4
を引いた値が昇温終了基準積算値O3より小さくなるか
どうかを判定して、昇温終了基準積算値O3より小さく
ならないというときはS33に戻ってS33〜S34を
繰り返す。そして、昇温終了基準積算値O3より小さく
なるというときにはS35へ進んで上記昇温終了基準積
算値O3を新たな酸素濃度積算値O0としてリターンす
る。
In S32, it is judged whether or not a value obtained by adding the expected temperature increase T 2 due to the heating operation to the catalyst temperature T 1 is lower than the catalyst heat resistant temperature T 0 , and if it is higher than the heat resistant temperature T 0 , the process proceeds to S31. It returns and repeats S31-S32.
When T 1 + T 2 becomes lower than T 0 , the process proceeds to S33, the temperature is raised by heating the catalyst, and then S34
From the detected integrated amount O 1 to the expected desorbed oxygen amount O 4 due to the temperature rise effect.
It determines whether the value obtained by subtracting smaller than the end reference integrated value O 3 warm to, the term does not become smaller than the end reference integrated value O 3 heating repeat the S33~S34 back to S33. When the temperature rise end reference integrated value O 3 is smaller than the temperature rise end reference integrated value O 3 , the process proceeds to S35, and the temperature increase end reference integrated value O 3 is returned as a new oxygen concentration integrated value O 0 .

【0030】また、このようにリーンNOx触媒を通過
する酸素量の積算値が所定値以上になる毎に吸着酸素低
減を実行する場合にも、吸着酸素低減手段としてはヒー
タによる触媒の加熱昇温以外に、やはり空燃比を一時的
にリッチにして運転する手段を用いることもできる。
Also, when the adsorbed oxygen reduction is executed every time the integrated value of the amount of oxygen passing through the lean NOx catalyst becomes a predetermined value or more, the adsorbed oxygen reducing means serves as a heater to raise the temperature of the catalyst. In addition to this, it is also possible to use a means for operating while temporarily making the air-fuel ratio rich.

【0031】[0031]

【発明の効果】本発明は以上のように構成されているの
で、リーン運転への悪影響および外部負荷の増大を最小
限に抑えつつ、酸素吸着によるリーンNOx触媒の劣化
を防いで高いNOx浄化率を維持するようにできる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, while suppressing adverse effects on lean operation and increase in external load to a minimum, deterioration of the lean NOx catalyst due to oxygen adsorption is prevented and a high NOx purification rate is achieved. Can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成図FIG. 1 is an overall configuration diagram of the present invention.

【図2】本発明の一実施例のシステム図FIG. 2 is a system diagram of an embodiment of the present invention.

【図3】本発明の一実施例におけるリーンNOx触媒の
温度とNOx浄化率の関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the temperature of the lean NOx catalyst and the NOx purification rate in one embodiment of the present invention.

【図4】本発明の一実施例におけるリーンNOx触媒の
温度とNOx,HCおよびCOの各浄化性能との関係を
示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the temperature of the lean NOx catalyst and the purification performance of NOx, HC and CO in one embodiment of the present invention.

【図5】本発明の一実施例における劣化回復の効果を示
す特性図
FIG. 5 is a characteristic diagram showing an effect of deterioration recovery in one embodiment of the present invention.

【図6】本発明の一実施例における劣化回復の処理を実
行するフローチャート
FIG. 6 is a flowchart for executing deterioration recovery processing according to an embodiment of the present invention.

【図7】本発明の他の実施例における劣化回復の処理を
実行するフローチャート
FIG. 7 is a flowchart for executing deterioration recovery processing according to another embodiment of the present invention.

【図8】本発明の各実施例におけるリーンNOx触媒を
含む排気系の変形配列図
FIG. 8 is a modified arrangement diagram of an exhaust system including a lean NOx catalyst in each example of the present invention.

【図9】本発明の更に他の実施例における劣化検出の処
理を実行するフローチャート
FIG. 9 is a flow chart for executing deterioration detection processing according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 5 燃料噴射弁 9 リーンNOx触媒 10 ヒータ 11 温度センサ 12 コントロールユニット 1 Engine 5 Fuel Injection Valve 9 Lean NOx Catalyst 10 Heater 11 Temperature Sensor 12 Control Unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 301 G 7536−3G (72)発明者 末次 元 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 今村 善彦 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 田賀 淳一 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 橋本 一彦 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 片岡 一司 広島県安芸郡府中町新地3番1号 マツダ 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location F02D 45/00 301 G 7536-3G (72) Inventor Suetsugu Gen 3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture No. 1 in Mazda Co., Ltd. (72) Inventor Yoshihiko Imamura No. 3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. (72) No. 3 Shinchi in Fuchu-cho, Aki-gun, Hiroshima Prefecture (72) Inventor, Kazuhiko Hashimoto, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) In-house, Kazushi Kataoka, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも空燃比が理論空燃比より大き
いリーン空燃比領域で排気ガス中のNOxを還元浄化す
るリーンNOx触媒を備えたエンジンにおいて、前記リ
ーンNOx触媒に吸着された酸素を低減する吸着酸素低
減手段と、該エンジンのリーン空燃比領域での運転を検
出するリーン運転検出手段と、前記リーン運転検出手段
の出力を受け、リーン運転継続中、所定周期で前記吸着
酸素低減手段による吸着酸素の低減を実行する低減実行
手段を備えたことを特徴とするエンジンの排気制御装
置。
1. An engine equipped with a lean NOx catalyst for reducing and purifying NOx in exhaust gas in a lean air-fuel ratio region in which at least an air-fuel ratio is larger than a stoichiometric air-fuel ratio, and adsorption for reducing oxygen adsorbed on the lean NOx catalyst. Oxygen reducing means, lean operation detecting means for detecting the operation of the engine in the lean air-fuel ratio region, and output of the lean operation detecting means, and during the lean operation continues, the adsorbed oxygen by the adsorbed oxygen reducing means at a predetermined cycle. An exhaust control device for an engine, comprising: a reduction execution means for performing the reduction.
【請求項2】 吸着酸素低減手段として、リーンNOx
触媒を加熱する触媒加熱手段を備えるとともに、前記リ
ーンNOx触媒の温度を検出する触媒温度検出手段と、
該触媒温度検出手段の出力を受け、前記リーンNOx触
媒の温度が所定温度以上にならないことを条件に低減実
行手段を作動させる実行制限手段を備えた請求項1記載
のエンジンの排気制御装置。
2. Lean NOx as means for reducing adsorbed oxygen
A catalyst heating means for heating the catalyst, and a catalyst temperature detecting means for detecting the temperature of the lean NOx catalyst;
2. The exhaust control device for an engine according to claim 1, further comprising execution limiting means for operating the reduction executing means on condition that the temperature of the lean NOx catalyst does not exceed a predetermined temperature in response to the output of the catalyst temperature detecting means.
【請求項3】 空燃比が理論空燃比より大きいリーン空
燃比領域で排気ガス中のNOxを還元浄化するリーンN
Ox触媒を備えたエンジンにおいて、前記リーンNOx
触媒に吸着された酸素を低減する吸着酸素低減手段と、
前記リーンNOx触媒を通過する酸素量を検出する通過
酸素量検出手段と、該通過酸素量検出手段により検出さ
れた酸素量の積算値を演算する積算値演算手段と、該積
算値演算手段の出力を受け、前記積算値が所定値以上に
なる毎に前記吸着酸素低減手段による吸着酸素の低減を
実行する低減実行手段を備えたことを特徴とするエンジ
ンの排気制御装置。
3. A lean N for reducing and purifying NOx in exhaust gas in a lean air-fuel ratio region where the air-fuel ratio is larger than the theoretical air-fuel ratio.
In an engine equipped with an Ox catalyst, the lean NOx
An adsorbed oxygen reducing means for reducing oxygen adsorbed on the catalyst,
Passing oxygen amount detecting means for detecting the amount of oxygen passing through the lean NOx catalyst, integrated value calculating means for calculating an integrated value of the oxygen amount detected by the passing oxygen amount detecting means, and output of the integrated value calculating means In response to the above, the engine exhaust control device is provided with a reduction execution unit that executes the reduction of the adsorbed oxygen by the adsorbed oxygen reduction unit every time the integrated value becomes a predetermined value or more.
【請求項4】 吸着酸素低減手段として、リーンNOx
触媒を加熱する触媒加熱手段を備えるとともに、前記リ
ーンNOx触媒の温度を検出する触媒温度検出手段と、
該触媒温度検出手段の出力を受け、前記リーンNOx触
媒の温度が所定温度以上にならないことを条件に低減実
行手段を作動させる実行制限手段を備えた請求項3記載
のエンジンの排気制御装置。
4. Lean NOx as means for reducing adsorbed oxygen
A catalyst heating means for heating the catalyst, and a catalyst temperature detecting means for detecting the temperature of the lean NOx catalyst;
The exhaust control device for an engine according to claim 3, further comprising execution limiting means that receives the output of the catalyst temperature detecting means and operates the reduction executing means on condition that the temperature of the lean NOx catalyst does not exceed a predetermined temperature.
【請求項5】 吸着酸素低減手段はエンジンを一時的に
リッチ空燃比で運転する一時リッチ運転手段とした請求
項1または3記載のエンジンの排気制御装置。
5. The engine exhaust control device according to claim 1, wherein the adsorbed oxygen reducing means is a temporary rich operating means for temporarily operating the engine at a rich air-fuel ratio.
JP11930192A 1992-05-12 1992-05-12 Engine emission control device Expired - Fee Related JP3154110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11930192A JP3154110B2 (en) 1992-05-12 1992-05-12 Engine emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11930192A JP3154110B2 (en) 1992-05-12 1992-05-12 Engine emission control device

Publications (2)

Publication Number Publication Date
JPH05312026A true JPH05312026A (en) 1993-11-22
JP3154110B2 JP3154110B2 (en) 2001-04-09

Family

ID=14758036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11930192A Expired - Fee Related JP3154110B2 (en) 1992-05-12 1992-05-12 Engine emission control device

Country Status (1)

Country Link
JP (1) JP3154110B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690072A (en) * 1996-12-13 1997-11-25 Ford Global Technologies, Inc. Method and system for determining and controlling a/f ratio in lean engines
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
US5755202A (en) * 1996-10-25 1998-05-26 Ford Global Technologies, Inc. Method of reducing feed gas emissions in an internal combustion engine
US5778666A (en) * 1996-04-26 1998-07-14 Ford Global Technologies, Inc. Method and apparatus for improving engine fuel economy
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
US5865026A (en) * 1997-01-21 1999-02-02 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5915359A (en) * 1996-12-13 1999-06-29 Ford Global Technologies, Inc. Method and system for determining and controlling A/F ratio during cold start engine operation
US5953905A (en) * 1997-01-17 1999-09-21 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US5974786A (en) * 1997-01-21 1999-11-02 Ford Global Technologies, Inc. Adaptive time window to synchronize pre- and post-catalyst oxygen sensor switch counters
US5974785A (en) * 1997-01-16 1999-11-02 Ford Global Technologies, Inc. Closed loop bias air/fuel ratio offset to enhance catalytic converter efficiency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906880B1 (en) * 2008-03-31 2009-07-08 현대자동차주식회사 Monitoring method for efficiency of catalyst in lean nox trap

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778666A (en) * 1996-04-26 1998-07-14 Ford Global Technologies, Inc. Method and apparatus for improving engine fuel economy
US5755202A (en) * 1996-10-25 1998-05-26 Ford Global Technologies, Inc. Method of reducing feed gas emissions in an internal combustion engine
US5690072A (en) * 1996-12-13 1997-11-25 Ford Global Technologies, Inc. Method and system for determining and controlling a/f ratio in lean engines
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
US5915359A (en) * 1996-12-13 1999-06-29 Ford Global Technologies, Inc. Method and system for determining and controlling A/F ratio during cold start engine operation
US5974785A (en) * 1997-01-16 1999-11-02 Ford Global Technologies, Inc. Closed loop bias air/fuel ratio offset to enhance catalytic converter efficiency
US5953905A (en) * 1997-01-17 1999-09-21 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US6112518A (en) * 1997-01-17 2000-09-05 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US5865026A (en) * 1997-01-21 1999-02-02 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5974786A (en) * 1997-01-21 1999-11-02 Ford Global Technologies, Inc. Adaptive time window to synchronize pre- and post-catalyst oxygen sensor switch counters
US6018944A (en) * 1997-01-21 2000-02-01 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap

Also Published As

Publication number Publication date
JP3154110B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JP2983429B2 (en) Exhaust gas purification device for internal combustion engine
JP3470597B2 (en) Exhaust gas purification device for internal combustion engine
JP3154110B2 (en) Engine emission control device
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693845A (en) Exhaust emission control device for engine
JP3062710B2 (en) Catalyst deterioration detection device
JP2982440B2 (en) Exhaust gas purification device for internal combustion engine
JP2004092535A (en) Emission control device
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JPH0666131A (en) Self-diagnosis device of adsorbent for internal combustion engine
JP3454177B2 (en) Exhaust gas purification device for internal combustion engine
JP3596450B2 (en) Exhaust gas purification device for internal combustion engine
JP2005147106A (en) Exhaust emission control device for internal combustion engine
JPH1162559A (en) Exhaust emission control device of internal combustion engine
JPH06200750A (en) Exhaust emission control device for internal combustion engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JP3446646B2 (en) Exhaust gas purification device for internal combustion engine
JPH0893459A (en) Exhaust emission control device of engine
JP3465584B2 (en) Exhaust gas purification device for internal combustion engine
JP3216442B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JPH0693843A (en) Exhaust emission control device for internal combustion engine
JP2005264826A (en) Exhaust emission control device of internal combustion engine
JP4258639B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees