JP4258639B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4258639B2
JP4258639B2 JP2004062134A JP2004062134A JP4258639B2 JP 4258639 B2 JP4258639 B2 JP 4258639B2 JP 2004062134 A JP2004062134 A JP 2004062134A JP 2004062134 A JP2004062134 A JP 2004062134A JP 4258639 B2 JP4258639 B2 JP 4258639B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust
modulation
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004062134A
Other languages
Japanese (ja)
Other versions
JP2005248884A (en
Inventor
保樹 田村
正志 五十嵐
敏広 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004062134A priority Critical patent/JP4258639B2/en
Publication of JP2005248884A publication Critical patent/JP2005248884A/en
Application granted granted Critical
Publication of JP4258639B2 publication Critical patent/JP4258639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、内燃機関の燃焼空燃比を制御することにより触媒コンバータの排気浄化性能を向上させる技術に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a technique for improving the exhaust gas purification performance of a catalytic converter by controlling the combustion air-fuel ratio of the internal combustion engine.

白金(Pt)等の貴金属を利用した排気浄化用の三元触媒コンバータは、少なからず酸素(O2)等の酸化剤を吸蔵或いは吸着(以下、単に吸蔵)する酸化剤ストレージ機能を有しており、排気空燃比がリーン空燃比(酸化雰囲気)であるときにO2を吸蔵してNOxの発生を抑え、一方排気空燃比がリッチ空燃比(還元雰囲気)であるときには、上記吸蔵したO2を放出(供給)してHC、COの酸化促進を図り、これによりNOxの還元反応とHC、COの酸化反応とを広い空燃比範囲で実現して排気浄化性能を向上させることが可能である。 A three-way catalytic converter for purifying exhaust gas using a noble metal such as platinum (Pt) has an oxidant storage function that occludes or adsorbs (hereinafter simply “occludes”) an oxidant such as oxygen (O 2 ). When the exhaust air-fuel ratio is a lean air-fuel ratio (oxidizing atmosphere), O 2 is occluded to suppress the generation of NOx, while when the exhaust air-fuel ratio is a rich air-fuel ratio (reducing atmosphere), the occluded O 2 is stored. It is possible to promote the oxidation of HC and CO by releasing (supplying) the exhaust gas, thereby realizing the NOx reduction reaction and the HC and CO oxidation reaction in a wide air-fuel ratio range, thereby improving the exhaust purification performance. .

また、最近では酸化剤ストレージ機能とともにHC等の還元剤を吸蔵する還元剤ストレージ機能をも併せ有した触媒コンバータの開発も進んでおり、当該触媒コンバータでは、排気空燃比がリッチ空燃比であるときに還元剤を吸蔵してHC等の発生を抑え、一方排気空燃比がリーン空燃比であるときには、上記吸蔵したHC等を放出(供給)してNOxの酸化促進を図り、これにより排気浄化性能をさらに向上させることが可能である。   Recently, a catalytic converter having a reducing agent storage function for storing a reducing agent such as HC as well as an oxidizing agent storage function has been developed. In the catalytic converter, when the exhaust air-fuel ratio is a rich air-fuel ratio. Occludes the reducing agent to suppress the generation of HC, etc., while when the exhaust air-fuel ratio is a lean air-fuel ratio, the stored HC, etc. is released (supplied) to promote the oxidation of NOx, thereby improving the exhaust purification performance. Can be further improved.

このようなことから、例えば内燃機関の燃焼室内の空燃比(燃焼空燃比)を所定中心空燃比(例えば、ストイキ)を挟み一定期間毎にリーン空燃比とリッチ空燃比とに切り換えることで排気空燃比をリーン空燃比とリッチ空燃比とに変調(パータベーション)させ、酸化剤や還元剤の吸蔵と放出を繰り返すことで触媒コンバータの排気浄化性能向上を図った自動車が開発されている(特許文献1等参照)。
特開平10−159629号公報
For this reason, for example, the air-fuel ratio (combustion air-fuel ratio) in the combustion chamber of the internal combustion engine is switched between a lean air-fuel ratio and a rich air-fuel ratio at regular intervals with a predetermined center air-fuel ratio (for example, stoichiometric) in between. Automobiles have been developed that improve the exhaust gas purification performance of catalytic converters by modulating (perturbation) the fuel ratio into a lean air-fuel ratio and a rich air-fuel ratio, and repeatedly storing and releasing oxidants and reductants (Patent Literature) 1 etc.).
Japanese Patent Laid-Open No. 10-159629

ところで、例えば、吸入空気量センサや燃料噴射弁等のばらつき、燃料付着による筒内への燃料供給量誤差、燃料量演算誤差等に起因して、リッチ側片振幅やリーン側片振幅或いはリッチ側期間やリーン側期間が変化し、実際の排気空燃比が所定中心空燃比に対し全体としてリッチ空燃比側或いはリーン空燃比側に偏り、排気空燃比のリッチ空燃比側或いはリーン空燃比側のいずれか一方の変調振幅が小さくなってしまう場合がある。   By the way, for example, due to variations in intake air amount sensors, fuel injection valves, etc., fuel supply amount error in the cylinder due to fuel adhesion, fuel amount calculation error, etc., the rich side piece amplitude, lean side piece amplitude or rich side The actual exhaust air-fuel ratio is biased toward the rich air-fuel ratio side or lean air-fuel ratio side as a whole with respect to the predetermined center air-fuel ratio, and either the rich air-fuel ratio side or the lean air-fuel ratio side of the exhaust air-fuel ratio changes. On the other hand, the modulation amplitude of one of them may be reduced.

また一方において、内燃機関と排気系に設置された触媒コンバータとの間の排気系容積によっては燃焼空燃比の変調に対して排気空燃比の変調(以下、排気空燃比変調)が減衰する傾向にある。
従って、上記の如く排気空燃比のリッチ空燃比側或いはリーン空燃比側のいずれか一方の変調振幅が小さくなると、当該変調振幅が小さくなった空燃比側においては排気空燃比変調がさらに減衰し、酸化剤や還元剤の吸蔵及び放出を十分に行うことができないという問題が生じる。
On the other hand, depending on the exhaust system volume between the internal combustion engine and the catalytic converter installed in the exhaust system, the modulation of the exhaust air / fuel ratio (hereinafter referred to as exhaust air / fuel ratio modulation) tends to attenuate with respect to the modulation of the combustion air / fuel ratio. is there.
Therefore, when the modulation amplitude of either the rich air-fuel ratio side or the lean air-fuel ratio side of the exhaust air-fuel ratio becomes small as described above, the exhaust air-fuel ratio modulation is further attenuated on the air-fuel ratio side where the modulation amplitude is reduced, There arises a problem that the oxidant and the reductant cannot be fully occluded and released.

このように、酸化剤や還元剤の吸蔵及び放出を十分に行うことができなくなると、酸化剤や還元剤の吸蔵及び放出のバランスが崩れることになり、触媒コンバータの排気浄化性能の向上を図ることができず好ましいことではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、空燃比変調時の排気空燃比のリッチ空燃比側或いはリーン空燃比側への偏りに伴う排気空燃比変調の減衰を抑制し、触媒コンバータにおける排気浄化性能の最適化を図った内燃機関の排気浄化装置を提供することにある。
As described above, when the oxidant and the reducing agent cannot be sufficiently stored and released, the balance between the storage and release of the oxidant and the reducing agent is lost, and the exhaust gas purification performance of the catalytic converter is improved. It is not preferable because it cannot be done.
The present invention has been made to solve such problems, and an object of the present invention is to provide exhaust air that accompanies a bias of the exhaust air / fuel ratio at the time of air / fuel ratio modulation toward the rich air / fuel ratio side or lean air / fuel ratio side. An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that suppresses the attenuation of the fuel ratio modulation and optimizes the exhaust gas purification performance in the catalytic converter.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた触媒コンバータと、内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、前記空燃比変調手段は、燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するとともに該リッチ空燃比側の変調振幅を増大させることを特徴としている。 In order to achieve the above-mentioned object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, a rich air can be applied across a predetermined center air-fuel ratio between the catalytic converter provided in the exhaust passage of the internal combustion engine and the combustion air-fuel ratio of the internal combustion engine. Air-fuel ratio modulation that periodically modulates the air-fuel ratio of the exhaust gas flowing into the catalytic converter into a rich air-fuel ratio side and a lean air-fuel ratio side periodically with a predetermined period by modulating the fuel-fuel ratio side and the lean air-fuel ratio side periodically And an exhaust air / fuel ratio detecting means for detecting the air / fuel ratio of the exhaust gas upstream of the catalytic converter , wherein the air / fuel ratio modulating means modulates the combustion air / fuel ratio from the rich air / fuel ratio side to the lean air / fuel ratio side. to time, discontinue modulating exhaust air-fuel ratio to the lean air-fuel ratio side to the rich air-fuel ratio when the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means is not in the rich air-fuel ratio Li Holds the modulation in Chi air side is characterized by increasing the modulation amplitude of the rich air-fuel ratio side.

また、請求項の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた触媒コンバータと、内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、前記空燃比変調手段は、燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するとともに該中止した直後の該リーン空燃比側の変調振幅を減少させることを特徴としている。 In the exhaust gas purification apparatus for an internal combustion engine according to claim 2 , the rich air-fuel ratio side and the lean air-fuel ratio side of the catalytic converter provided in the exhaust passage of the internal combustion engine and the combustion air-fuel ratio of the internal combustion engine straddling a predetermined center air-fuel ratio The air-fuel ratio modulation means for periodically modulating the air-fuel ratio of the exhaust gas flowing into the catalytic converter into a rich air-fuel ratio side and a lean air-fuel ratio side at a predetermined period by periodically modulating the air-fuel ratio of the catalytic converter, Exhaust air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust upstream of the exhaust, and the air-fuel ratio modulation means adjusts the combustion air-fuel ratio from the rich air-fuel ratio side to the lean air-fuel ratio side when the exhaust air-fuel ratio is modulated holding a modulation at a rich air-fuel ratio side exhaust air-fuel ratio detected by the detection means to stop the modulation to the lean air-fuel ratio side to the exhaust air-fuel ratio becomes a rich air-fuel ratio when not become rich air-fuel ratio It is characterized by decreasing the modulation amplitude of the lean air-fuel ratio side immediately after the discontinuation while.

また、請求項の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた触媒コンバータと、内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、前記空燃比変調手段は、燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するとともに該リーン空燃比側の変調振幅を増大させることを特徴としている。 In the exhaust gas purification apparatus for an internal combustion engine according to claim 3 , the rich air-fuel ratio side and the lean air-fuel ratio side of the catalytic converter provided in the exhaust passage of the internal combustion engine and the combustion air-fuel ratio of the internal combustion engine straddling a predetermined center air-fuel ratio The air-fuel ratio modulation means for periodically modulating the air-fuel ratio of the exhaust gas flowing into the catalytic converter into a rich air-fuel ratio side and a lean air-fuel ratio side at a predetermined period by periodically modulating the air-fuel ratio of the catalytic converter, Exhaust air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas upstream of the exhaust gas, and the air-fuel ratio modulation means adjusts the combustion air-fuel ratio from the lean air-fuel ratio side to the rich air-fuel ratio side when the exhaust air-fuel ratio is modulated holding a modulation at a lean air-fuel ratio side exhaust air-fuel ratio detected by the detection means to stop the modulation to the rich air-fuel ratio side to the exhaust air-fuel ratio becomes a lean air-fuel ratio when it is not already lean air-fuel ratio It is characterized by increasing the modulation amplitude of the lean air-fuel ratio side as well as.

また、請求項の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられた触媒コンバータと、内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、前記空燃比変調手段は、燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するとともに該中止した直後の該リッチ空燃比側の変調振幅を減少させることを特徴としている。 Further, in the exhaust purification system of an internal combustion engine according to claim 4, a catalytic converter provided in an exhaust passage of an internal combustion engine, a rich air-fuel ratio side and a lean air-fuel ratio side combustion air-fuel ratio of the internal combustion engine across a predetermined center air-fuel ratio The air-fuel ratio modulation means for periodically modulating the air-fuel ratio of the exhaust gas flowing into the catalytic converter into a rich air-fuel ratio side and a lean air-fuel ratio side at a predetermined period by periodically modulating the air-fuel ratio of the catalytic converter, Exhaust air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas upstream of the exhaust gas, and the air-fuel ratio modulation means adjusts the combustion air-fuel ratio from the lean air-fuel ratio side to the rich air-fuel ratio side when the exhaust air-fuel ratio is modulated holding a modulation at a lean air-fuel ratio side exhaust air-fuel ratio detected by the detection means to stop the modulation to the rich air-fuel ratio side to the exhaust air-fuel ratio becomes a lean air-fuel ratio when it is not already lean air-fuel ratio It is characterized by decreasing the modulation amplitude of the rich air-fuel ratio side immediately after the discontinuation while.

請求項1の内燃機関の排気浄化装置によれば、燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するので、排気A/FのリーンA/F側への偏りが発生しても燃焼A/Fを適宜補正し、当該偏りを抑制でき、ひいては当該偏りに伴う排気A/F変調の減衰を抑制することができる。これにより、触媒コンバータにおける排気浄化性能の最適化を図ることができる。 According to the exhaust gas purification apparatus for an internal combustion engine of claim 1, when the combustion air-fuel ratio is modulated from the rich air-fuel ratio side to the lean air-fuel ratio side, the exhaust air-fuel ratio on the exhaust upstream side of the catalytic converter is not the rich air-fuel ratio. Sometimes, the modulation to the lean air-fuel ratio side is stopped until the exhaust air-fuel ratio becomes the rich air-fuel ratio, and the modulation on the rich air-fuel ratio side is held, so that the deviation of the exhaust A / F to the lean A / F side occurs. Even if it corrects combustion A / F suitably, the said bias | bias can be suppressed and by extension, the attenuation | damping of exhaust A / F modulation accompanying the said bias | bias can be suppressed. Thereby, optimization of the exhaust gas purification performance in the catalytic converter can be achieved.

さらに、燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリッチ空燃比になっていないときには該リッチ空燃比側の変調振幅を増大させるので、排気A/FのリーンA/F側への偏りが発生しても燃焼A/Fを積極的に補正し、当該偏りに伴う排気A/F変調の減衰をより一層速やかに抑制することができる。これにより、触媒コンバータにおける排気浄化性能のさらなる最適化を図ることができる。 Furthermore, when modulating the combustion air-fuel ratio from the rich air-fuel ratio side to the lean air-fuel ratio side, the modulation amplitude of the rich air-fuel ratio side when the exhaust air-fuel ratio of the exhaust gas upstream of the catalytic converter is not in the rich air-fuel ratio Therefore, even if the exhaust A / F leans to the lean A / F side, the combustion A / F is positively corrected, and the attenuation of the exhaust A / F modulation caused by the bias is more quickly suppressed. can do. Thereby, further optimization of the exhaust gas purification performance in the catalytic converter can be achieved.

また、請求項の内燃機関の排気浄化装置によれば、燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するとともに該中止した直後の該リーン空燃比側の変調振幅を減少させるので、排気A/FのリーンA/F側への偏りが発生しても燃焼A/Fを積極的に補正し、当該偏りに伴う排気A/F変調の減衰をより一層速やかに抑制することができる。これにより、やはり触媒コンバータにおける排気浄化性能のさらなる最適化を図ることができる。 Further, according to the exhaust purification system of an internal combustion engine according to claim 2, when modulating the combustion air-fuel ratio from the rich air-fuel ratio side to the lean air-fuel ratio side, the exhaust gas air-fuel ratio of the exhaust gas upstream of the catalytic converter in a rich air-fuel ratio If not, the modulation to the lean air-fuel ratio side is stopped until the exhaust air-fuel ratio becomes the rich air-fuel ratio, the modulation on the rich air-fuel ratio side is held, and the modulation amplitude on the lean air-fuel ratio side immediately after the cancellation is held Therefore, even if a deviation of the exhaust A / F to the lean A / F side occurs, the combustion A / F is positively corrected, and the attenuation of the exhaust A / F modulation caused by the deviation is more promptly corrected. Can be suppressed. Thereby, the exhaust gas purification performance in the catalytic converter can be further optimized.

また、請求項の内燃機関の排気浄化装置によれば、燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するので、排気A/FのリッチA/F側への偏りが発生しても燃焼A/Fを適宜補正し、当該偏りを抑制でき、ひいては当該偏りに伴う排気A/F変調の減衰を抑制することができる。これにより、触媒コンバータにおける排気浄化性能の最適化を図ることができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 3 , when the combustion air-fuel ratio is modulated from the lean air-fuel ratio side to the rich air-fuel ratio side, the exhaust air-fuel ratio on the exhaust upstream side of the catalytic converter becomes the lean air-fuel ratio. If not, the modulation to the rich air-fuel ratio side is stopped until the exhaust air-fuel ratio becomes the lean air-fuel ratio, and the modulation on the lean air-fuel ratio side is maintained, so that the deviation of the exhaust A / F to the rich A / F side is maintained. Even if the combustion A / F occurs, the combustion A / F can be corrected as appropriate to suppress the bias, and thus the exhaust A / F modulation attenuation associated with the bias can be suppressed. Thereby, optimization of the exhaust gas purification performance in the catalytic converter can be achieved.

さらに、燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリーン空燃比になっていないときには該リーン空燃比側の変調振幅を増大させるので、排気A/FのリッチA/F側への偏りが発生しても燃焼A/Fを積極的に補正し、当該偏りに伴う排気A/F変調の減衰をより一層速やかに抑制することができる。これにより、触媒コンバータにおける排気浄化性能のさらなる最適化を図ることができる。 Furthermore, when modulating the combustion air-fuel ratio from the lean air-fuel ratio side to the rich air-fuel ratio side, the modulation amplitude of the lean air-fuel ratio side when the exhaust air-fuel ratio of the exhaust gas upstream of the catalytic converter is not in the lean air-fuel ratio Because it increases, even if the exhaust A / F is biased toward the rich A / F side, the combustion A / F is positively corrected, and the attenuation of the exhaust A / F modulation caused by the bias is suppressed more quickly. can do. Thereby, further optimization of the exhaust gas purification performance in the catalytic converter can be achieved.

また、請求項の内燃機関の排気浄化装置によれば、燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、触媒コンバータの排気上流側の排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するとともに該中止した直後の該リッチ空燃比側の変調振幅を減少させるので、排気A/FのリッチA/F側への偏りが発生しても燃焼A/Fを積極的に補正し、当該偏りに伴う排気A/F変調の減衰をより一層速やかに抑制することができる。これにより、やはり触媒コンバータにおける排気浄化性能のさらなる最適化を図ることができる。 Further, according to the exhaust purification system of an internal combustion engine according to claim 4, when modulating the combustion air-fuel ratio from the lean air-fuel ratio side to the rich air-fuel ratio side, the exhaust gas air-fuel ratio of the exhaust gas upstream of the catalytic converter in a lean air-fuel ratio If not, the modulation to the rich air-fuel ratio side is stopped until the exhaust air-fuel ratio becomes the lean air-fuel ratio, the modulation on the lean air-fuel ratio side is held, and the modulation amplitude on the rich air-fuel ratio side immediately after the cancellation is held Therefore, even if the exhaust A / F is biased toward the rich A / F side, the combustion A / F is positively corrected, and the exhaust A / F modulation accompanying the bias is more quickly attenuated. Can be suppressed. Thereby, the exhaust gas purification performance in the catalytic converter can be further optimized.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、当該排気浄化装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、吸気管噴射型(Multi Point Injection:MPI)ガソリンエンジンが採用される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention mounted on a vehicle. Hereinafter, the configuration of the exhaust gas purification apparatus will be described.
As shown in the figure, an intake pipe injection (MPI) gasoline engine is adopted as an engine body (hereinafter simply referred to as an engine) 1 that is an internal combustion engine.

エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4には高電圧を出力する点火コイル8が接続されている。
シリンダヘッド2には、各気筒毎に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には、電磁式の燃料噴射弁6が取り付けられており、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。
A spark plug 4 is attached to each cylinder of the cylinder head 2 of the engine 1, and an ignition coil 8 that outputs a high voltage is connected to the spark plug 4.
In the cylinder head 2, an intake port is formed for each cylinder, and one end of an intake manifold 10 is connected so as to communicate with each intake port. An electromagnetic fuel injection valve 6 is attached to the intake manifold 10, and a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. .

吸気マニホールド10の燃料噴射弁6よりも上流側には、吸入空気量を調節する電磁式のスロットル弁14が設けられており、併せてスロットル弁14の弁開度θthを検出するスロットルポジションセンサ(TPS)16が設けられている。さらに、スロットル弁14の上流には、吸入空気量を計測するエアフローセンサ18が介装されている。エアフローセンサ18としては、カルマン渦式エアフローセンサが使用される。   An electromagnetic throttle valve 14 for adjusting the amount of intake air is provided upstream of the fuel injection valve 6 of the intake manifold 10 and a throttle position sensor (for detecting the valve opening θth of the throttle valve 14). TPS) 16 is provided. Further, an air flow sensor 18 for measuring the intake air amount is interposed upstream of the throttle valve 14. A Karman vortex airflow sensor is used as the airflow sensor 18.

また、シリンダヘッド2には、各気筒毎に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド12の一端がそれぞれ接続されている。
なお、当該MPIエンジンは公知のものであるため、その構成の詳細については説明を省略する。
排気マニホールド12の他端には排気管20が接続されており、当該排気管20には、排気浄化触媒装置として三元触媒(触媒コンバータ)30が介装されている。
The cylinder head 2 has an exhaust port for each cylinder, and one end of an exhaust manifold 12 is connected to communicate with each exhaust port.
Since the MPI engine is a known one, the detailed description of its configuration is omitted.
An exhaust pipe 20 is connected to the other end of the exhaust manifold 12, and a three-way catalyst (catalytic converter) 30 is interposed in the exhaust pipe 20 as an exhaust purification catalyst device.

この三元触媒30は、担体に活性貴金属として銅(Cu),コバルト(Co),銀(Ag),白金(Pt),ロジウム(Rh),パラジウム(Pd)のいずれかを有している。セリウム(Ce)、ジルコニア(Zr)等の酸素吸蔵材を含む場合の他、当該酸素吸蔵材を含まない場合においても、活性貴金属は、酸素吸蔵機能(O2ストレージ機能、酸化剤ストレージ機能)を有している。故に、三元触媒30は、排気空燃比(排気A/F)がリーン空燃比(リーンA/F)である酸化雰囲気中において酸素(O2)を吸蔵すると、排気A/Fがリッチ空燃比(リッチA/F)となり還元雰囲気となるまでそのO2をストレージO2として保持し、当該ストレージO2の放出(供給)により、還元雰囲気状態においてもHC(炭化水素)やCO(一酸化炭素)を酸化除去可能である。即ち、当該三元触媒30は、酸化雰囲気でHC、COを浄化できるのは勿論のことNOxの発生をもある程度抑え、還元雰囲気中においてNOxの浄化のみならず吸蔵されたO2によりHC、COをもある程度浄化可能である。 The three-way catalyst 30 has copper (Cu), cobalt (Co), silver (Ag), platinum (Pt), rhodium (Rh), or palladium (Pd) as an active noble metal on a support. In addition to the case where an oxygen storage material such as cerium (Ce) or zirconia (Zr) is included, the active noble metal has an oxygen storage function (O 2 storage function, oxidant storage function) even when the oxygen storage material is not included. Have. Therefore, when the three-way catalyst 30 occludes oxygen (O 2 ) in an oxidizing atmosphere in which the exhaust air / fuel ratio (exhaust A / F) is a lean air / fuel ratio (lean A / F), the exhaust A / F becomes a rich air / fuel ratio. It retains its O 2 until the (rich a / F) becomes a reducing atmosphere as a storage O 2, by the release of the storage O 2 (supplied), also HC (hydrocarbon) in a reducing atmosphere state and CO (carbon monoxide ) Can be removed by oxidation. That is, the three-way catalyst 30 not only can purify HC and CO in an oxidizing atmosphere, but also suppresses the generation of NOx to some extent, and not only purifies NOx in the reducing atmosphere but also stores HC and CO by O 2 stored. Can be purified to some extent.

また、排気管20の三元触媒30よりも直上流には、排気A/FがリッチA/FであるかリーンA/Fであるかを検出し判定するO2センサ(排気空燃比検出手段)22が配設されている。
ECU(電子コントロールユニット)40は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU40により、エンジン1を含めた排気浄化装置の総合的な制御が行われる。
Further, an O 2 sensor (exhaust air / fuel ratio detecting means) that detects and determines whether the exhaust A / F is rich A / F or lean A / F immediately upstream of the three-way catalyst 30 of the exhaust pipe 20. ) 22 is provided.
The ECU (electronic control unit) 40 includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Overall control of the exhaust emission control device is performed.

ECU40の入力側には、上述したTPS16、エアフローセンサ18、O2センサ22の他、エンジン1のクランク角を検出するクランク角センサ42等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ42からの情報に基づきエンジン回転速度Neが算出される。
一方、ECU40の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁14等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期等がそれぞれ出力される。詳しくは、各種センサ類からの検出情報に基づき空燃比が適正な目標空燃比(目標A/F)に設定され、当該目標A/Fに応じた量の燃料が適正なタイミングで燃料噴射弁6から噴射され、またスロットル弁14が適正な開度に調整され、点火プラグ4により適正なタイミングで火花点火が実施される。
Various sensors such as a crank angle sensor 42 for detecting the crank angle of the engine 1 are connected to the input side of the ECU 40 in addition to the TPS 16, the air flow sensor 18 and the O 2 sensor 22 described above. Detection information is input. The engine speed Ne is calculated based on information from the crank angle sensor 42.
On the other hand, various output devices such as the fuel injection valve 6, the ignition coil 8, and the throttle valve 14 are connected to the output side of the ECU 40. These various output devices are operated based on detection information from various sensors. The fuel injection amount, fuel injection timing, ignition timing, etc., are output. Specifically, the air-fuel ratio is set to an appropriate target air-fuel ratio (target A / F) based on detection information from various sensors, and an amount of fuel corresponding to the target A / F is injected at the appropriate timing. The throttle valve 14 is adjusted to an appropriate opening, and spark ignition is performed at an appropriate timing by the spark plug 4.

より詳しくは、当該排気浄化装置では、三元触媒30が上記O2ストレージ機能を有していることから、三元触媒30の能力を十分発揮するために、通常運転時には、ECU40によって空燃比を中心A/F(所定中心空燃比、例えば、ストイキ)を境にリッチA/FとリーンA/Fとの間で周期的に強制的に交互に振る強制変調制御を行うようにしている。つまり、燃焼室内の空燃比(燃焼A/F)を所定の振幅(所定のリッチ側片振幅dr及び所定のリーン側片振幅dl)、所定の周期(所定のリッチ側期間tr及び所定のリーン側期間tl)をもって所定のリッチA/F及び所定のリーンA/F間で変調制御し、排気A/FをリッチA/FとリーンA/F間において強制的に変調させるようにしている(空燃比変調手段)。 More specifically, in the exhaust purification device, since the three-way catalyst 30 has the O 2 storage function, the ECU 40 sets the air-fuel ratio during normal operation in order to fully demonstrate the ability of the three-way catalyst 30. Forcible modulation control is performed in which the center A / F (predetermined center air-fuel ratio, for example, stoichiometric) is periodically and forcibly alternately swung between the rich A / F and the lean A / F. That is, the air-fuel ratio (combustion A / F) in the combustion chamber is set to a predetermined amplitude (predetermined rich side piece amplitude dr and predetermined lean side piece amplitude dl), a predetermined period (predetermined rich side period tr and predetermined lean side). Modulation control is performed between a predetermined rich A / F and a predetermined lean A / F with a period tl), and the exhaust A / F is forcibly modulated between the rich A / F and the lean A / F (empty). Fuel ratio modulation means).

なお、ここでは、中心A/Fを例えばストイキとしたが、中心A/Fについてはその他運転条件(エンジン回転速度、体積効率、排気流量、吸入空気流量、排気温度、触媒温度、始動後経過時間、冷却水温度、作動油温度、空燃比変動量等)に応じて変更するようにしてもよい。
これにより、排気A/FがリーンA/Fである酸化雰囲気中ではHC、COが良好に浄化されるとともに三元触媒30のO2ストレージ機能によりO2が吸蔵されてNOxの発生がある程度抑えられ、排気A/FがリッチA/Fである還元雰囲気中ではNOxが良好に浄化されるとともに吸蔵されたストレージO2によってHC、COがある程度継続的に浄化され続け、三元触媒30の排気浄化性能の向上が図られる。
Here, the center A / F is, for example, stoichiometric, but other operating conditions (engine speed, volume efficiency, exhaust flow rate, intake air flow rate, exhaust temperature, catalyst temperature, elapsed time after start-up) are used for the center A / F. The cooling water temperature, the hydraulic oil temperature, the air-fuel ratio fluctuation amount, etc.) may be changed.
As a result, in an oxidizing atmosphere in which the exhaust A / F is lean A / F, HC and CO are well purified and O 2 is occluded by the O 2 storage function of the three-way catalyst 30 to suppress generation of NOx to some extent. In a reducing atmosphere where the exhaust A / F is rich A / F, NOx is purified well and HC and CO are continuously purified to some extent by the stored storage O 2 , and the exhaust of the three-way catalyst 30 The purification performance is improved.

ところで、上述したように、エアフローセンサ18や燃料噴射弁6等のばらつき、燃料付着による筒内への燃料供給量誤差、燃料量演算誤差等に起因して実際の排気A/Fが中心A/Fに対し全体としてリッチA/F側或いはリーンA/F側に偏り、排気A/Fの変調振幅が小さくなった空燃比側ではエンジン1と三元触媒30との間の排気系容積によって排気A/Fの変調(以下、排気A/F変調)がさらに減衰し、三元触媒30の排気浄化性能の向上を図れないおそれがある。   By the way, as described above, the actual exhaust A / F is center A / F due to variations in the air flow sensor 18, the fuel injection valve 6, etc., the fuel supply amount error in the cylinder due to fuel adhesion, the fuel amount calculation error, and the like. On the air / fuel ratio side where the modulation amplitude of the exhaust A / F has become smaller and the exhaust A / F modulation amplitude has become smaller as a whole, the exhaust gas is exhausted by the exhaust system volume between the engine 1 and the three-way catalyst 30. The modulation of A / F (hereinafter referred to as exhaust A / F modulation) is further attenuated, and the exhaust purification performance of the three-way catalyst 30 may not be improved.

そこで、本発明に係る排気浄化装置では、上記空燃比変調制御においてこのような排気A/FのリッチA/F側或いはリーンA/F側への偏りに伴う排気空燃比変調の減衰を抑制するように図っており、以下、本発明に係る空燃比変調制御について説明する。
図2を参照すると、本発明に係る空燃比変調制御の制御ルーチンがフローチャートで示されており、また、図3を参照すると当該空燃比変調制御による燃焼A/F及び排気A/Fの各変調波形が示されており、以下、図3を参照しながら同フローチャートに沿い説明する。
Therefore, in the exhaust emission control device according to the present invention, in the air-fuel ratio modulation control, attenuation of the exhaust air-fuel ratio modulation accompanying such a bias of the exhaust A / F toward the rich A / F side or lean A / F side is suppressed. Hereinafter, air-fuel ratio modulation control according to the present invention will be described.
Referring to FIG. 2, a control routine for air-fuel ratio modulation control according to the present invention is shown in a flowchart, and with reference to FIG. 3, each modulation of combustion A / F and exhaust A / F by the air-fuel ratio modulation control is shown. The waveform is shown, and will be described along the flowchart with reference to FIG.

ステップS10では、現在空燃比変調モードであるか否か、即ち変調制御中であるか否かを判別する。判別結果が真(Yes)で変調制御中と判定された場合には、ステップS12に進む。
ステップS12では、先ず、リッチA/F側への変調における還元剤総量(例えば、HC、CO量)が予め設定した目標還元剤総量よりも小さいか否かを判別する。
In step S10, it is determined whether or not the current air-fuel ratio modulation mode is in effect, that is, whether or not modulation control is being performed. If the determination result is true (Yes) and it is determined that modulation control is being performed, the process proceeds to step S12.
In step S12, first, it is determined whether or not the reducing agent total amount (for example, HC, CO amount) in the modulation to the rich A / F side is smaller than a preset target reducing agent total amount.

当該空燃比変調制御では、リッチA/F側での変調中に還元剤総量が目標還元剤総量に達したらリーンA/F側への変調に切り換え、リーンA/F側での変調中に酸化剤総量が目標酸化剤総量に達したらリッチA/F側への変調に切り換えるようにして変調の所定の周期(所定のリッチ側期間tr及び所定のリーン側期間tl)を設定しており、換言すれば、ここではリッチ側期間が目標還元剤総量に対応する所定のリッチ側期間trの範囲内にあるか否かを判別する。   In the air-fuel ratio modulation control, when the total amount of reducing agent reaches the target total amount of reducing agent during modulation on the rich A / F side, switching to modulation on the lean A / F side is performed, and oxidation is performed during modulation on the lean A / F side. When the total amount of the agent reaches the target total amount of oxidant, the modulation is changed to the modulation to the rich A / F side, and the predetermined modulation period (the predetermined rich side period tr and the predetermined lean side period tl) is set. In this case, it is determined here whether or not the rich side period is within a range of a predetermined rich side period tr corresponding to the target reducing agent total amount.

具体的には、例えば次式(1)に基づき判別する。
∫(変調振幅(t)×触媒流入排気流量(t))dt
<∫(基本変調振幅(t)×基本触媒流入排気流量)dt …(1)
ここに、変調振幅(t)はECU40からの指令値、触媒流入排気流量(t)は例えばエアフローセンサ18からの情報に基づき推定される値である。また、基本変調振幅(t)は例えば上記所定のリッチ側片振幅drであり、基本触媒流入排気流量は上記所定のリッチ側期間trに対応するものであってエンジン排気量やエンジン回転速度Neに応じて決定される値である。なお、検出可能であれば変調振幅(t)や基本変調振幅(t)に代えて還元剤濃度を用いてもよい。
Specifically, for example, the determination is made based on the following equation (1).
∫ (modulation amplitude (t) x catalyst inflow exhaust flow rate (t)) dt
<∫ (basic modulation amplitude (t) x basic catalyst inflow and exhaust flow rate) dt (1)
Here, the modulation amplitude (t) is a command value from the ECU 40, and the catalyst inflow / exhaust flow rate (t) is a value estimated based on information from the airflow sensor 18, for example. Further, the basic modulation amplitude (t) is, for example, the predetermined rich side piece amplitude dr, and the basic catalyst inflow exhaust flow rate corresponds to the predetermined rich side period tr and corresponds to the engine exhaust amount and the engine rotational speed Ne. The value is determined accordingly. If detectable, the reducing agent concentration may be used instead of the modulation amplitude (t) and the basic modulation amplitude (t).

ステップS12の判別結果が真(Yes)で、還元剤総量が目標還元剤総量よりも小さいと判定された場合には、ステップS14に進んでリッチA/F側への変調(リッチ変調)を継続するとともに、ステップS16において還元剤総量を更新する。
ステップS12の判別結果が偽(No)となり、還元剤総量が目標還元剤総量以上と判定された場合には、ステップS18に進む。
When the determination result of step S12 is true (Yes) and it is determined that the total amount of reducing agent is smaller than the target total amount of reducing agent, the process proceeds to step S14 and modulation to the rich A / F side (rich modulation) is continued. At the same time, the reducing agent total amount is updated in step S16.
If the determination result in step S12 is false (No) and it is determined that the total amount of reducing agent is equal to or greater than the target total amount of reducing agent, the process proceeds to step S18.

ステップS18では、O2センサ22により検出され判定される排気A/FがリッチA/FであるかリーンA/Fであるかを判別する。判別により排気A/FがリーンA/Fであると判定された場合には、ステップS20に進み、リッチ化補正を行う。
即ち、本来であれば、図3中に破線で示すように、燃焼A/Fの変調に応じて排気A/Fが追従して変動するところ、上述したように実際の排気A/Fが中心A/Fに対し全体としてリッチA/F側或いはリーンA/F側に偏るような場合には、図3中に実線で示すように、還元剤総量が目標還元剤総量以上となって所定のリッチ側期間trが経過した時点でも排気A/FがリーンA/FのままリッチA/Fになっていないことがあり、このような場合には、排気A/FがリーンA/F側に偏っていると判断し、リッチ化補正を行う。具体的には、図3に示すように、リーンA/F側への変調を中止して燃焼A/Fをそのまま所定のリッチA/Fに保持する。
In step S18, it is determined whether the exhaust A / F detected and determined by the O 2 sensor 22 is rich A / F or lean A / F. If it is determined that the exhaust A / F is lean A / F, the process proceeds to step S20 to perform enrichment correction.
That is, if the exhaust A / F fluctuates in accordance with the modulation of the combustion A / F as shown by the broken line in FIG. 3, the actual exhaust A / F is centered as described above. In the case where the A / F as a whole is biased toward the rich A / F side or lean A / F side, as shown by the solid line in FIG. Even when the rich side period tr elapses, the exhaust A / F may remain lean A / F and does not become rich A / F. In such a case, the exhaust A / F moves to the lean A / F side. Judgment is biased, and rich correction is performed. Specifically, as shown in FIG. 3, the modulation to the lean A / F side is stopped, and the combustion A / F is held at a predetermined rich A / F as it is.

そして、ステップS18の判別により排気A/FがリッチA/Fになったと判定された場合には、リッチ化補正を終了してリーンA/F側への変調を許容し、ステップS22に進む。これにより、所定のリッチ側期間trが図3に示すようにΔtrの期間だけ延長される。
ステップS22では、上記ステップS12と同様にして、今度は、リーンA/F側への変調における酸化剤総量(例えば、O2量)が予め設定した目標酸化剤総量よりも小さいか否か、換言すれば、リーン側期間が目標酸化剤総量に対応する所定のリーン側期間tlの範囲内であるか否かを、例えば上記式(1)に基づき判別する。なお、この場合には、基本変調振幅(t)は例えば上記所定のリーン側片振幅dlであり、基本触媒流入排気流量は上記所定のリーン側期間tlに対応するものである。また、検出可能であれば変調振幅(t)や基本変調振幅(t)に代えて酸化剤濃度を用いてもよい。
If it is determined in step S18 that the exhaust A / F has become rich A / F, the enrichment correction is terminated, modulation to the lean A / F side is permitted, and the process proceeds to step S22. Thus, the predetermined rich side period tr is extended by a period of Δtr as shown in FIG.
In step S22, in the same manner as in step S12, this time, whether or not the total amount of oxidant (for example, O 2 amount) in the modulation to the lean A / F side is smaller than a preset target oxidant total amount, in other words, Then, whether or not the lean side period is within the range of the predetermined lean side period tl corresponding to the target oxidant total amount is determined based on, for example, the above formula (1). In this case, the basic modulation amplitude (t) is, for example, the predetermined lean side piece amplitude dl, and the basic catalyst inflow / exhaust flow rate corresponds to the predetermined lean side period tl. Further, if detectable, the oxidant concentration may be used instead of the modulation amplitude (t) and the basic modulation amplitude (t).

ステップS22の判別結果が真(Yes)で、酸化剤総量が目標酸化剤総量よりも小さいと判定された場合には、ステップS24に進んでリーンA/F側への変調(リーン変調)を継続するとともに、ステップS26において酸化剤総量を更新する。
ステップS22の判別結果が偽(No)となり、酸化剤総量が目標酸化剤総量以上と判定された場合には、ステップS28に進む。
If the determination result in step S22 is true (Yes) and it is determined that the total amount of oxidant is smaller than the target total amount of oxidant, the process proceeds to step S24 and modulation to the lean A / F side (lean modulation) is continued. At the same time, the total amount of oxidant is updated in step S26.
If the determination result of step S22 is false (No) and it is determined that the total amount of oxidant is equal to or greater than the target total amount of oxidant, the process proceeds to step S28.

ステップS28では、上記ステップS18と同様に、O2センサ22により検出され判定される排気A/FがリッチA/FであるかリーンA/Fであるかを判別する。判別により排気A/FがリッチA/Fであると判定された場合には、ステップS30に進み、リーン化補正を行う。
即ち、上記リッチ化補正の場合と同様に、酸化剤総量が目標酸化剤総量以上となって所定のリーン側期間tlが経過した時点でも排気A/FがリッチA/FのままリーンA/Fになっていない場合には、排気A/FがリッチA/F側に偏っていると判断し、リーン化補正を行う。具体的には、上記リッチ化補正の場合と同様にリッチA/F側への変調を中止し、燃焼A/Fをそのまま所定のリーンA/Fに保持する。
In step S28, as in step S18, it is determined whether the exhaust A / F detected and determined by the O 2 sensor 22 is rich A / F or lean A / F. If it is determined that the exhaust A / F is rich A / F, the process proceeds to step S30, and lean correction is performed.
That is, as in the case of the enrichment correction, the exhaust A / F remains lean A / F and the lean A / F even when the predetermined lean side period tl elapses when the total amount of oxidant is equal to or greater than the target total oxidant amount. If not, it is determined that the exhaust A / F is biased toward the rich A / F side, and lean correction is performed. More specifically, the modulation to the rich A / F side is stopped as in the case of the enrichment correction, and the combustion A / F is held at a predetermined lean A / F as it is.

そして、ステップS28の判別により排気A/FがリーンA/Fになったと判定された場合には、リーン化補正を終了してリッチA/F側への変調を許容し、ステップS32に進む。
ステップS32では、ステップS12及びステップS22で使用した還元剤総量と酸化剤総量とを共にリセットして次回の変調に備え、ステップS10に戻る。
If it is determined in step S28 that the exhaust A / F has become lean A / F, the lean correction is terminated and the modulation to the rich A / F side is permitted, and the process proceeds to step S32.
In step S32, both the reducing agent total amount and the oxidizing agent total amount used in step S12 and step S22 are reset to prepare for the next modulation, and the process returns to step S10.

このように、本発明に係る空燃比変調制御では、リッチA/F側への変調時、還元剤総量が目標還元剤総量以上となる所定のリッチ側期間trが経過した時点でも排気A/FがリーンA/FのままリッチA/Fになっていない場合、或いは、リーンA/F側への変調時、酸化剤総量が目標酸化剤総量以上となる所定のリーン側期間tlが経過した時点でも排気A/FがリッチA/FのままリーンA/Fになっていない場合には、それぞれ排気A/FがリッチA/Fとなるまでリーン側への変調を中止してリッチA/F側での変調を保持するとともにリーンA/Fとなるまでリッチ側への変調を中止してリーンA/F側での変調を保持するようにしている。従って、排気A/FのリーンA/F側への偏りやリッチA/F側への偏りが発生したとしても当該偏りに応じて燃焼A/Fが適宜補正されることになり、排気A/FのリーンA/F側或いはリッチA/F側への偏りが抑制され、ひいては当該偏りに伴う排気A/F変調の減衰が抑制される。   As described above, in the air-fuel ratio modulation control according to the present invention, the exhaust A / F is adjusted even when the predetermined rich-side period tr in which the total amount of the reducing agent becomes equal to or larger than the total amount of the reducing agent when modulating to the rich A / F side. Is a lean A / F and does not become a rich A / F, or when a predetermined lean side period tl in which the total amount of oxidant becomes equal to or greater than the total amount of target oxidant during modulation to the lean A / F side However, if the exhaust A / F remains rich A / F and does not become lean A / F, the modulation to the lean side is stopped until the exhaust A / F becomes rich A / F, and the rich A / F. The modulation on the rich side is held until the lean A / F is reached, and the modulation on the lean A / F side is held until the lean A / F is reached. Therefore, even if the deviation of the exhaust A / F toward the lean A / F side or the deviation toward the rich A / F side occurs, the combustion A / F is appropriately corrected according to the deviation, and the exhaust A / F is corrected accordingly. The deviation of F to the lean A / F side or the rich A / F side is suppressed, and consequently, the attenuation of the exhaust A / F modulation accompanying the deviation is suppressed.

これにより、O2ストレージ機能を十分に発揮するようにでき、三元触媒30の排気浄化性能の最適化を図ることができる。
図4、図5を参照すると、本発明の他の実施形態に係る空燃比変調制御による燃焼A/F及び排気A/Fの各変調波形が示されており、以下、図4、図5を参照しながら他の実施形態について説明する。なお、当該他の実施形態は上記空燃比変調制御の制御ルーチンにおいてステップS20のリッチ化補正及びステップS30のリーン化補正の実行内容が異なるのみであり、ここでは制御ルーチンについての説明は省略する。
As a result, the O 2 storage function can be sufficiently exhibited, and the exhaust purification performance of the three-way catalyst 30 can be optimized.
4 and 5, there are shown modulation waveforms of combustion A / F and exhaust A / F by air-fuel ratio modulation control according to another embodiment of the present invention. Other embodiments will be described with reference to FIG. The other embodiment is different from the control routine of the air-fuel ratio modulation control only in the execution contents of the enrichment correction in step S20 and the leaning correction in step S30, and the description of the control routine is omitted here.

先ず、図4の場合について説明する。
図4の場合には、リッチA/F側への変調時、還元剤総量が目標還元剤総量以上となる所定のリッチ側期間trが経過した時点でも排気A/FがリーンA/FのままリッチA/Fになっていない場合には、排気A/FがリッチA/Fとなるまでリーン側への変調を中止してリッチA/F側での変調を保持するとともに、当該リッチA/F側での変調の変調振幅(リッチ側片振幅)を例えばΔdrだけ増大させるようにする。なお、図4では徐々に振幅を増加させるようにしているが、ステップ的に増加させるようにしてもよい。
First, the case of FIG. 4 will be described.
In the case of FIG. 4, at the time of modulation to the rich A / F side, the exhaust A / F remains lean A / F even when a predetermined rich side period tr in which the total amount of reducing agent becomes equal to or greater than the target total amount of reducing agent has elapsed. If not rich A / F, the modulation to the lean side is stopped until the exhaust A / F becomes rich A / F, the modulation on the rich A / F side is held, and the rich A / F is held. The modulation amplitude of the modulation on the F side (rich side half amplitude) is increased by, for example, Δdr. Although the amplitude is gradually increased in FIG. 4, it may be increased stepwise.

リーンA/F側への変調時についても同様であり、ここでは説明を省略する。
これにより、排気A/FのリーンA/F側への偏りやリッチA/F側への偏りに対し燃焼A/FがリッチA/F側或いはリーンA/F側に積極的に大きく補正され、中心A/Fに対する排気A/FのリーンA/F側或いはリッチA/F側への偏りに伴う排気A/F変調の減衰がより一層速やかに抑制されることになり、三元触媒30の排気浄化性能のさらなる最適化を図ることができる。
The same applies to the modulation to the lean A / F side, and the description is omitted here.
Thus, the combustion A / F is positively corrected to the rich A / F side or the lean A / F side with respect to the deviation of the exhaust A / F toward the lean A / F side or the bias toward the rich A / F side. Further, the attenuation of the exhaust A / F modulation accompanying the deviation of the exhaust A / F from the center A / F toward the lean A / F side or the rich A / F side is more quickly suppressed, and the three-way catalyst 30 Further optimization of the exhaust gas purification performance can be achieved.

図5の場合には、リッチA/F側への変調時、還元剤総量が目標還元剤総量以上となる所定のリッチ側期間trが経過した時点でも排気A/FがリーンA/FのままリッチA/Fになっていない場合には、排気A/FがリッチA/Fとなるまでリーン側への変調を中止してリッチA/F側での変調を保持するとともに、当該リーン側への変調を中止した直後のリーン側での変調振幅(リーン側片振幅)を例えばΔdlだけ減少させるようにする。   In the case of FIG. 5, the exhaust A / F remains lean A / F even when a predetermined rich-side period tr when the total amount of reducing agent becomes equal to or greater than the target total amount of reducing agent during modulation to the rich A / F side. If it is not rich A / F, the modulation to the lean side is stopped until the exhaust A / F becomes rich A / F, the modulation on the rich A / F side is held, and the lean side is The modulation amplitude on the lean side (lean side half amplitude) immediately after the modulation is stopped is reduced by, for example, Δdl.

変調振幅の減少は、図5に示すように、1回のみとしてもよいし、変調振幅を複数回或いは恒常的に減少させるようにしてもよい。さらに、図4で示したリッチ化補正を併用してもよい。
リーンA/F側への変調時についても同様であり、ここでは説明を省略する。
このようにしても、排気A/FのリーンA/F側への偏りやリッチA/F側への偏りに対し燃焼A/FがリッチA/F側或いはリーンA/F側に積極的に大きく補正され、中心A/Fに対する排気A/FのリーンA/F側或いはリッチA/F側への偏りに伴う排気A/F変調の減衰がより一層速やかに抑制されることになり、三元触媒30の排気浄化性能のさらなる最適化を図ることができる。
The modulation amplitude may be decreased only once as shown in FIG. 5, or the modulation amplitude may be decreased a plurality of times or constantly. Furthermore, the enrichment correction shown in FIG. 4 may be used in combination.
The same applies to the modulation to the lean A / F side, and the description is omitted here.
Even in this case, the combustion A / F is positively applied to the rich A / F side or the lean A / F side with respect to the deviation of the exhaust A / F to the lean A / F side or the rich A / F side. The correction is greatly made, and the attenuation of the exhaust A / F modulation accompanying the deviation of the exhaust A / F from the center A / F toward the lean A / F side or the rich A / F side is suppressed more quickly. Further optimization of the exhaust gas purification performance of the original catalyst 30 can be achieved.

以上で本発明に係る内燃機関の排気浄化装置の実施形態の説明を終えるが、実施形態は上記に限られるものではない。
例えば、上記実施形態では、変調の所定の周期(所定のリッチ側期間tr及び所定のリーン側期間tl)を還元剤総量と目標還元剤総量との関係及び酸化剤総量と目標酸化剤総量との関係に基づいて設定するようにしているが、これに限られるものではなく、所定の周期は固定値(例えば、0.8sec)であってもよく、また、運転条件に応じて予め最適設定されたマップ値であってもよい。
Although the description of the embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention is finished above, the embodiment is not limited to the above.
For example, in the above embodiment, the predetermined period of modulation (the predetermined rich side period tr and the predetermined lean side period tl) is the relationship between the reducing agent total amount and the target reducing agent total amount, and the total oxidizing agent amount and the target oxidizing agent total amount. It is set based on the relationship, but is not limited to this, and the predetermined cycle may be a fixed value (for example, 0.8 sec), and is optimally set in advance according to the operating conditions. It may be a map value.

また、上記実施形態では、燃焼A/Fの変調波形を方形波としたが、これに限られず、三角波、鋸波、波状波であってもよい。
また、上記実施形態では、O2ストレージ機能(酸化剤ストレージ機能)を有した三元触媒30を例に説明したが、HC、CO等を吸蔵し放出する還元剤ストレージ機能を有した触媒コンバータや酸化剤ストレージ機能と還元剤ストレージ機能との双方を有した触媒コンバータにも本発明を同様に適用可能であることは言うまでもない。
Moreover, in the said embodiment, although the modulation waveform of combustion A / F was made into the square wave, it is not restricted to this, A triangular wave, a sawtooth wave, and a wavy wave may be sufficient.
In the above embodiment, the three-way catalyst 30 having an O 2 storage function (oxidant storage function) has been described as an example. However, a catalytic converter having a reducing agent storage function for storing and releasing HC, CO, etc. It goes without saying that the present invention can be similarly applied to a catalytic converter having both an oxidizing agent storage function and a reducing agent storage function.

また、上記実施形態では、エンジン1を吸気管噴射型ガソリンエンジンとしたが、筒内噴射型ガソリンエンジンであってもよい。   Moreover, in the said embodiment, although the engine 1 was made into the intake pipe injection type gasoline engine, it may be a cylinder injection type gasoline engine.

車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention mounted on a vehicle. 本発明に係る空燃比変調制御の制御ルーチンを示すフローチャートである。3 is a flowchart showing a control routine of air-fuel ratio modulation control according to the present invention. 本発明に係る空燃比変調制御による燃焼A/F及び排気A/Fの各変調波形を示す図である。It is a figure which shows each modulation waveform of combustion A / F and exhaust A / F by the air fuel ratio modulation control which concerns on this invention. 本発明の他の実施形態に係る空燃比変調制御による燃焼A/F及び排気A/Fの各変調波形を示す図である。It is a figure which shows each modulation waveform of combustion A / F and exhaust A / F by the air fuel ratio modulation control which concerns on other embodiment of this invention. 本発明の他の実施形態に係る空燃比変調制御による燃焼A/F及び排気A/Fの各変調波形を示す図である。It is a figure which shows each modulation waveform of combustion A / F and exhaust A / F by the air fuel ratio modulation control which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 エンジン本体
6 燃料噴射弁
22 O2センサ(排気空燃比検出手段)
30 三元触媒(触媒コンバータ)
40 ECU(電子コントロールユニット)
1 Engine Body 6 Fuel Injection Valve 22 O 2 Sensor (Exhaust Air / Fuel Ratio Detection Means)
30 Three-way catalyst (catalytic converter)
40 ECU (Electronic Control Unit)

Claims (4)

内燃機関の排気通路に設けられた触媒コンバータと、
内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、
前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、
前記空燃比変調手段は、
燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するとともに該リッチ空燃比側の変調振幅を増大させることを特徴とする内燃機関の排気浄化装置。
A catalytic converter provided in an exhaust passage of the internal combustion engine;
By periodically modulating the combustion air-fuel ratio of the internal combustion engine between the rich air-fuel ratio side and the lean air-fuel ratio side across the predetermined center air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the catalytic converter is adjusted to the rich air-fuel ratio side and the lean air-fuel side. Air-fuel ratio modulation means for periodically modulating the fuel ratio side with a predetermined cycle;
An exhaust air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust on the exhaust upstream side of the catalytic converter ;
The air-fuel ratio modulation means includes
When the combustion air-fuel ratio is modulated from the rich air-fuel ratio side to the lean air-fuel ratio side, if the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means is not the rich air-fuel ratio, the exhaust air-fuel ratio becomes the rich air-fuel ratio. An exhaust emission control device for an internal combustion engine, wherein the modulation to the lean air-fuel ratio side is stopped, the modulation on the rich air-fuel ratio side is maintained, and the modulation amplitude on the rich air-fuel ratio side is increased .
内燃機関の排気通路に設けられた触媒コンバータと、
内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、
前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、
前記空燃比変調手段は、
燃焼空燃比をリッチ空燃比側からリーン空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリッチ空燃比になっていないときには排気空燃比がリッチ空燃比となるまで該リーン空燃比側への変調を中止してリッチ空燃比側での変調を保持するとともに該中止した直後の該リーン空燃比側の変調振幅を減少させることを特徴とする内燃機関の排気浄化装置。
A catalytic converter provided in an exhaust passage of the internal combustion engine;
By periodically modulating the combustion air-fuel ratio of the internal combustion engine between the rich air-fuel ratio side and the lean air-fuel ratio side across the predetermined center air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the catalytic converter is adjusted to the rich air-fuel ratio side and the lean air-fuel side. Air-fuel ratio modulation means for periodically modulating the fuel ratio side with a predetermined cycle;
An exhaust air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust on the exhaust upstream side of the catalytic converter;
The air-fuel ratio modulation means includes
When the combustion air-fuel ratio is modulated from the rich air-fuel ratio side to the lean air-fuel ratio side, if the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means is not the rich air-fuel ratio, the exhaust air-fuel ratio becomes the rich air-fuel ratio. An exhaust gas purification apparatus for an internal combustion engine, wherein the modulation to the lean air-fuel ratio side is stopped to maintain the modulation on the rich air-fuel ratio side, and the modulation amplitude on the lean air-fuel ratio side immediately after the stop is reduced .
内燃機関の排気通路に設けられた触媒コンバータと、
内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、
前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、
前記空燃比変調手段は、
燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するとともに該リーン空燃比側の変調振幅を増大させることを特徴とする内燃機関の排気浄化装置。
A catalytic converter provided in an exhaust passage of the internal combustion engine;
By periodically modulating the combustion air-fuel ratio of the internal combustion engine between the rich air-fuel ratio side and the lean air-fuel ratio side across the predetermined center air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the catalytic converter is adjusted to the rich air-fuel ratio side and the lean air-fuel side. Air-fuel ratio modulation means for periodically modulating the fuel ratio side with a predetermined cycle;
An exhaust air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust on the exhaust upstream side of the catalytic converter ;
The air-fuel ratio modulation means includes
When the combustion air-fuel ratio is modulated from the lean air-fuel ratio side to the rich air-fuel ratio side, if the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detecting means is not the lean air-fuel ratio, the exhaust air-fuel ratio becomes the lean air-fuel ratio. An exhaust emission control device for an internal combustion engine, wherein the modulation to the rich air-fuel ratio side is stopped, the modulation on the lean air-fuel ratio side is maintained, and the modulation amplitude on the lean air-fuel ratio side is increased .
内燃機関の排気通路に設けられた触媒コンバータと、
内燃機関の燃焼空燃比を所定中心空燃比を跨いでリッチ空燃比側とリーン空燃比側とに周期的に変調させることにより前記触媒コンバータに流入する排気の空燃比をリッチ空燃比側とリーン空燃比側とに所定の周期で周期的に変調させる空燃比変調手段と、
前記触媒コンバータの排気上流側で前記排気の空燃比を検出する排気空燃比検出手段とを備え、
前記空燃比変調手段は、
燃焼空燃比をリーン空燃比側からリッチ空燃比側へ変調する際、前記排気空燃比検出手段により検出される排気空燃比がリーン空燃比になっていないときには排気空燃比がリーン空燃比となるまで該リッチ空燃比側への変調を中止してリーン空燃比側での変調を保持するとともに該中止した直後の該リッチ空燃比側の変調振幅を減少させることを特徴とする内燃機関の排気浄化装置。
A catalytic converter provided in an exhaust passage of the internal combustion engine;
By periodically modulating the combustion air-fuel ratio of the internal combustion engine between the rich air-fuel ratio side and the lean air-fuel ratio side across the predetermined center air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the catalytic converter is changed to the rich air-fuel ratio side and the lean air-fuel side. Air-fuel ratio modulation means for periodically modulating the fuel ratio side with a predetermined cycle;
An exhaust air-fuel ratio detecting means for detecting an air-fuel ratio of the exhaust on the exhaust upstream side of the catalytic converter;
The air-fuel ratio modulation means includes
When the combustion air-fuel ratio is modulated from the lean air-fuel ratio side to the rich air-fuel ratio side, if the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detecting means is not the lean air-fuel ratio, the exhaust air-fuel ratio becomes the lean air-fuel ratio. An exhaust emission control device for an internal combustion engine, wherein the modulation to the rich air-fuel ratio side is stopped to maintain the modulation on the lean air-fuel ratio side, and the modulation amplitude on the rich air-fuel ratio side immediately after the cancellation is reduced .
JP2004062134A 2004-03-05 2004-03-05 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4258639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062134A JP4258639B2 (en) 2004-03-05 2004-03-05 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062134A JP4258639B2 (en) 2004-03-05 2004-03-05 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005248884A JP2005248884A (en) 2005-09-15
JP4258639B2 true JP4258639B2 (en) 2009-04-30

Family

ID=35029593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062134A Expired - Fee Related JP4258639B2 (en) 2004-03-05 2004-03-05 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4258639B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924646B2 (en) 2009-03-31 2012-04-25 株式会社デンソー Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2005248884A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
JP4264760B2 (en) Exhaust gas purification device for internal combustion engine
JP4305643B2 (en) Exhaust gas purification device for internal combustion engine
JP2001214734A (en) Exhaust emission control device for internal combustion engine
WO2013118252A1 (en) Exhaust emission control device for internal combustion engine
EP2500536A1 (en) Exhaust cleaning system of internal combustion engine
JP2008223592A (en) Exhaust emission control device of internal-combustion engine
JP4214415B2 (en) Catalyst temperature estimation device
JP2008175173A (en) Air-fuel ratio control device
US20180328252A1 (en) Exhaust Gas Control System for Internal Combustion Engine and Method of Controlling Exhaust Gas Control System for Internal Combustion Engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JP4424495B2 (en) Exhaust gas purification device for internal combustion engine
JP4258639B2 (en) Exhaust gas purification device for internal combustion engine
JP4535287B2 (en) Catalyst temperature estimation device
JP2008255972A (en) Air-fuel ratio control device
JP2006233894A (en) Exhaust gas purifier of internal combustion engine
JP2016109026A (en) Exhaust emission control device for internal combustion engine
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4366588B2 (en) Exhaust gas purification device for internal combustion engine
JP2005264826A (en) Exhaust emission control device of internal combustion engine
JP2000297704A (en) Exhaust emission control device for internal combustion engine
JP2002138821A (en) Exhaust emission control device
JP2010031730A (en) Exhaust emission control device for internal combustion engine
JP2005282505A (en) Exhaust emission control device of internal combustion engine
JP4273328B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees