JP3062710B2 - Catalyst deterioration detection device - Google Patents

Catalyst deterioration detection device

Info

Publication number
JP3062710B2
JP3062710B2 JP4119303A JP11930392A JP3062710B2 JP 3062710 B2 JP3062710 B2 JP 3062710B2 JP 4119303 A JP4119303 A JP 4119303A JP 11930392 A JP11930392 A JP 11930392A JP 3062710 B2 JP3062710 B2 JP 3062710B2
Authority
JP
Japan
Prior art keywords
catalyst
deterioration
exhaust gas
lean nox
nox catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4119303A
Other languages
Japanese (ja)
Other versions
JPH05312024A (en
Inventor
史彦 斉藤
淳一 田賀
一司 片岡
忠孝 中角
元 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4119303A priority Critical patent/JP3062710B2/en
Publication of JPH05312024A publication Critical patent/JPH05312024A/en
Application granted granted Critical
Publication of JP3062710B2 publication Critical patent/JP3062710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排気系にいわゆるリーン
NOx触媒を備えたエンジンにおける触媒劣化検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst deterioration detecting apparatus for an engine having a so-called lean NOx catalyst in an exhaust system.

【0002】[0002]

【従来の技術】従来から特開平3ー225013号公報
に記載されているように、空燃比が理論空燃比よりも大
きいリーン空燃比領域でエンジン排気ガス中のNOxを
浄化する触媒として、遷移金属あるいは貴金属を担持せ
しめたゼオライトからなり、酸化雰囲気中、HCの存在
下で排気ガス中のNOxを還元する触媒いわゆるリーン
NOx触媒を排気系に備えたエンジンが知られている。
2. Description of the Related Art As disclosed in Japanese Patent Application Laid-Open No. 3-25013, a transition metal is used as a catalyst for purifying NOx in engine exhaust gas in a lean air-fuel ratio region in which the air-fuel ratio is larger than a stoichiometric air-fuel ratio. Alternatively, an engine having a so-called lean NOx catalyst in an exhaust system, which is made of zeolite carrying a noble metal and reduces NOx in exhaust gas in an oxidizing atmosphere in the presence of HC, is known.

【0003】また、例えば特開昭63ー97852号公
報に記載されているように、排気系に触媒を備えたエン
ジンにおいて、触媒下流側のガス濃度センサーの出力に
基づいて触媒の劣化を検出する装置を設けたものがあ
る。また、これとは別に、触媒の上流側と下流側の排気
温度差に基づいて劣化を検出するものも知られている。
Further, as described in Japanese Patent Application Laid-Open No. 63-97852, for example, in an engine provided with a catalyst in an exhaust system, deterioration of the catalyst is detected based on an output of a gas concentration sensor downstream of the catalyst. Some are provided with a device. Apart from this, there is also known one that detects deterioration based on a difference in exhaust gas temperature between the upstream side and the downstream side of the catalyst.

【0004】[0004]

【発明が解決しようとする課題】リーンNOx触媒は排
気ガス成分中のHCとNOxを吸着してNOxを還元し
浄化するものであるが、酸素を吸着すると劣化し浄化性
能が著しく低下する。ただし、この酸素吸着による劣化
はあくまで一時的な劣化であって、触媒を加熱するとか
リッチ混合気を送るなどの手段によって回復が可能であ
る。これに対し、経時変化によって触媒が劣化した場合
には触媒自体の交換が必要である。したがって、リーン
NOx触媒の劣化検出においては、上記のような酸素吸
着による一時劣化であるのか触媒自体の経時劣化である
のかを区別して検出する必要がある。しかし、従来の触
媒劣化検出装置ではリーンNOx触媒について一時劣化
と経時劣化とを区別して検出することは不可能である。
The lean NOx catalyst adsorbs HC and NOx in the exhaust gas components to reduce and purify NOx. However, when adsorbing oxygen, the catalyst deteriorates and remarkably deteriorates the purification performance. However, the deterioration due to oxygen adsorption is only temporary deterioration, and can be recovered by heating the catalyst or sending a rich mixture. On the other hand, when the catalyst has deteriorated due to aging, it is necessary to replace the catalyst itself. Therefore, in the detection of the deterioration of the lean NOx catalyst, it is necessary to distinguish and detect whether the deterioration is temporary deterioration due to oxygen adsorption as described above or deterioration with time of the catalyst itself. However, it is impossible for a conventional catalyst deterioration detecting device to detect a lean NOx catalyst by distinguishing between temporary deterioration and temporal deterioration.

【0005】本発明は上記問題点に鑑みてなされたもの
であって、リーンNOx触媒の劣化が経時的なものなの
か一時的なものなのかを判別することのできる触媒の劣
化検出装置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a catalyst deterioration detecting device capable of determining whether the deterioration of a lean NOx catalyst is temporal or temporary. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は触媒の劣化検出
装置に係るものであって、その構成は、少なくとも空燃
比が理論空燃比より大きいリーン空燃比領域でリーンN
Ox触媒により排気ガス中のNOxを還元浄化等により
低減するエンジンにおいて、リーンNOx触媒の上流側
および下流側の排気温度を検出する第1および第2の各
排気温度センサ及びこれら第1および第2の排気温度セ
ンサの出力を受けリーンNOx触媒の上流側と下流側の
排気温度差を演算する排気温度差演算手段等、リーンN
Ox触媒の温度状態を検出する温度状態検出手段と、リ
ーンNOx触媒の上流側と下流側の酸素濃度を検出する
第1および第2の各酸素濃度センサ等、リーンNOx触
媒の上流側と下流側の排気ガス中の酸素を検出する第1
および第2の各排気ガス成分検出センサと、これら第1
および第2の酸素濃度センサ等、排気ガス成分検出セン
サの出力を受けリーンNOx触媒の上流側と下流側の酸
素濃度差の積算値を演算する酸素濃度差積算値演算手段
等、リーンNOx触媒による酸素の吸着状態を算出する
吸着状態算出手段と、第1および第2の排気温度センサ
の出力を受けリーンNOx触媒の上流側と下流側の排気
温度差を演算する排気温度差演算手段等、温度状態検出
手段の出力と、酸素濃度差積算値演算手段等、吸着状態
算出手段の出力を受け、排気温度差が所定温度差以下
等、温度状態に基づいてリーンNOx触媒が劣化してい
ると判定され、かつ、酸素濃度差の積算値が所定値以上
等、酸素の吸着度合が所定値以上のときはリーンNOx
触媒が一時劣化の状態にあると判定する触媒劣化判定手
段を備えたことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to an apparatus for detecting deterioration of a catalyst, and comprises at least a lean N-fuel ratio in a lean air-fuel ratio region where the air-fuel ratio is larger than a stoichiometric air-fuel ratio.
In an engine in which NOx in exhaust gas is reduced by an Ox catalyst by reduction and purification or the like, first and second exhaust temperature sensors for detecting exhaust temperatures upstream and downstream of a lean NOx catalyst, and the first and second exhaust temperature sensors Exhaust temperature difference calculating means for calculating the exhaust temperature difference between the upstream side and the downstream side of the lean NOx catalyst by receiving the output of the exhaust
A temperature state detecting means for detecting a temperature state of the Ox catalyst, and first and second oxygen concentration sensors for detecting oxygen concentrations on the upstream side and the downstream side of the lean NOx catalyst. For detecting oxygen in exhaust gas
And second exhaust gas component detection sensors,
A lean NOx catalyst, such as an oxygen concentration difference integrated value calculating means for receiving an output of an exhaust gas component detection sensor such as a second oxygen concentration sensor and calculating an integrated value of an oxygen concentration difference between an upstream side and a downstream side of the lean NOx catalyst. Temperature, such as an adsorbed state calculating means for calculating an adsorbed state of oxygen , an exhaust temperature difference calculating means for receiving outputs of the first and second exhaust temperature sensors and calculating an exhaust temperature difference between an upstream side and a downstream side of the lean NOx catalyst. Based on the output of the state detection means and the output of the adsorption state calculation means such as the oxygen concentration difference integrated value calculation means, it is determined that the lean NOx catalyst has deteriorated based on the temperature state, such as when the exhaust gas temperature difference is equal to or less than a predetermined temperature difference. When the degree of oxygen adsorption is equal to or higher than a predetermined value, such as when the integrated value of the oxygen concentration difference is equal to or higher than a predetermined value, lean NOx
It is characterized by comprising catalyst deterioration determining means for determining that the catalyst is in a state of temporary deterioration.

【0007】上記劣化検出装置は、しきい値低減手段を
備え、一時劣化判定のための酸素濃度差積算値の所定値
をリーンNOx触媒の経時変化に応じて小さくするもの
とすることができる。。
[0007] The deterioration detecting device may include a threshold value reducing means, and may reduce a predetermined value of the oxygen concentration difference integrated value for the temporary deterioration determination in accordance with the aging of the lean NOx catalyst. .

【0008】また、上記劣化検出装置は、触媒劣化判定
手段による劣化判定実行のインターバルをエンジンの回
転数および負荷が高い程短くする判定インターバル可変
手段を備えたものとすることができる。
Further, the deterioration detecting device may include a judgment interval changing means for shortening an interval of execution of the deterioration judgment by the catalyst deterioration judging means as the engine speed and the load become higher.

【0009】また、上記劣化検出装置は、劣化判定手段
によりリーンNOx触媒が一時劣化の状態にあると判定
された時にリーンNOx触媒に吸着された酸素を離脱さ
せる酸素離脱手段を備えたものとすることができる。
Further, the deterioration detecting device is provided with oxygen releasing means for releasing oxygen adsorbed on the lean NOx catalyst when the deterioration determining means determines that the lean NOx catalyst is in a temporarily deteriorated state. be able to.

【0010】図1は本発明の上記構成を示す全体構成図
である。
FIG. 1 is an overall configuration diagram showing the above configuration of the present invention.

【0011】[0011]

【作用】リーンNOx触媒によりNOxの浄化が行われ
ている時には、触媒内部での化学反応による発熱で排気
温度が上昇しリーンNOx触媒の上流側と下流側で排気
温度差が生ずるとともに、化学反応により排気中の酸素
濃度が低下し、また、触媒表面に酸素が吸着されること
によっても酸素濃度が低下して、リーンNOx触媒の上
流側と下流側で酸素濃度差が生ずる。そして、これら排
気温度差並びに酸素濃度差は、リーン運転開始からの時
間の経過とともに酸素吸着による一時劣化が進むことに
よってに次第に小さくなり、また、経時劣化が進むにつ
れその値は全体として低下する。また、所定インターバ
ルで酸素濃度差を積算した値は、リーン運転開始直後に
急上昇して、その後は一時劣化が進むにつれて徐々に上
昇が鈍化し、また、経時劣化が進むとその値は全体とし
て低下する。
When NOx is being purified by the lean NOx catalyst, the exhaust gas temperature rises due to heat generated by a chemical reaction inside the catalyst, causing a difference in exhaust gas temperature between the upstream side and the downstream side of the lean NOx catalyst. As a result, the oxygen concentration in the exhaust gas is reduced, and the oxygen concentration is also reduced by the adsorption of oxygen on the catalyst surface, so that an oxygen concentration difference occurs between the upstream side and the downstream side of the lean NOx catalyst. The difference between the exhaust gas temperature and the difference in oxygen concentration gradually decreases with the lapse of time from the start of the lean operation due to the temporary deterioration due to oxygen adsorption, and the values decrease as the deterioration with time progresses. Further, the value obtained by integrating the oxygen concentration difference at a predetermined interval sharply increases immediately after the start of the lean operation, and thereafter gradually decreases as temporary deterioration proceeds, and the value decreases as the deterioration with time progresses as a whole. I do.

【0012】本発明によれば、温度状態に基づいて、例
えば上記排気温度差が所定値以下となった時にリーンN
Ox触媒が劣化していると判定され、さらに、その時の
酸素濃度差の積算値が所定値以上等、酸素の吸着度合が
所定値以上であればリーンNOx触媒が一時劣化してい
ると判定され、所定値より小さければ経時劣化している
と判定される。
According to the present invention, when the exhaust gas temperature difference becomes equal to or less than a predetermined value, the lean N
If it is determined that the Ox catalyst is deteriorated, and if the degree of oxygen adsorption is equal to or greater than a predetermined value, such as the integrated value of the oxygen concentration difference at that time is equal to or greater than a predetermined value, it is determined that the lean NOx catalyst is temporarily deteriorated. Is smaller than the predetermined value, it is determined that the battery has deteriorated with time.

【0013】また、酸素濃度差積算値のしきい値がリー
ンNOx触媒の経時変化に応じて小さくされることによ
り、経時変化によって触媒自体の浄化率が低下した時に
は一時劣化の検出が早期に行われる。そのため、一時劣
化に対する回復操作を早期に行うことが可能となって、
経時変化による浄化率の低下に対処しやくすなる。
Further, the threshold value of the integrated value of the oxygen concentration difference is reduced in accordance with the aging of the lean NOx catalyst, so that when the purification rate of the catalyst itself is reduced due to the aging, the detection of the temporary deterioration is performed early. Will be Therefore, it is possible to perform a recovery operation for temporary deterioration early.
It is easier to cope with a decrease in the purification rate due to aging.

【0014】また、劣化判定実行のインターバルがエン
ジンの回転数および負荷が高い程短くされることによ
り、エンジン回転数が高くなって、あるいは負荷が大き
くなって、NOxの排出量が多くなった場合でも触媒劣
化を早期に検出することによって高い浄化率を維持でき
るようになる。
[0014] Further, since the interval of the execution of the deterioration determination is shortened as the engine speed and the load become higher, even when the engine speed becomes higher or the load becomes larger and the NOx emission amount becomes larger. By detecting catalyst deterioration early, a high purification rate can be maintained.

【0015】そして、一時劣化と判定された時にリーン
NOx触媒から酸素を離脱させる手段が設けられること
で、一時劣化の際の浄化性能の回復が可能となる。
By providing a means for releasing oxygen from the lean NOx catalyst when it is determined that the fuel is temporarily deteriorated, the purification performance at the time of the temporary deterioration can be recovered.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図2は本発明の一実施例のシステム図であ
る。図において1はエンジンであって、エンジン1の吸
気通路2にはサージタンク3が形成され、サージタンク
3の上流にはスロットル弁4が、下流には燃料噴射弁5
が設けられている。また、吸気通路2の入口はエアクリ
ーナ6に接続され、エアクリーナ6の直下流にはエアフ
ローメータ7が設置されている。
FIG. 2 is a system diagram of one embodiment of the present invention. 1, a surge tank 3 is formed in an intake passage 2 of the engine 1. A throttle valve 4 is provided upstream of the surge tank 3, and a fuel injection valve 5 is provided downstream thereof.
Is provided. An inlet of the intake passage 2 is connected to an air cleaner 6, and an air flow meter 7 is provided immediately downstream of the air cleaner 6.

【0018】一方、エンジン1の排気通路8には空燃比
が理論空燃比より希薄なリーン運転時にNOxを還元浄
化するリーンNOx触媒9が設けられている。そして、
このリーンNOx触媒9の上流側に第1の酸素濃度セン
サ10aと第1の排気温度センサ11aが設置され、リ
ーンNOx触媒9の下流側に第2の酸素濃度センサ10
bと第2の排気温度センサ11bが設置されている。
On the other hand, the exhaust passage 8 of the engine 1 is provided with a lean NOx catalyst 9 for reducing and purifying NOx during lean operation in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. And
A first oxygen concentration sensor 10a and a first exhaust gas temperature sensor 11a are provided on the upstream side of the lean NOx catalyst 9, and a second oxygen concentration sensor 10a is provided on the downstream side of the lean NOx catalyst 9.
b and a second exhaust gas temperature sensor 11b.

【0019】上記燃料噴射弁5の制御はマイクロコンピ
ュータにより構成されたコントロールユニット12によ
って行う。そのため、コントロールユニット12にはデ
ィストリビュータ13に付設された回転センサからエン
ジン回転数信号が入力され、エアフローメータ7から吸
入空気量信号が入力され、図示しない水温センサからエ
ンジン水温信号が入力される。また、リーンNOx触媒
9の上流側および下流側に設置された第1および第2の
酸素濃度センサからそれぞれの酸素濃度信号がコントロ
ールユニット12に入力され,リーンNOx触媒9の上
流側および下流側に設置された第1および第2の排気温
度センサ11a,11bからそれぞれの排気温度信号が
入力される。
The control of the fuel injection valve 5 is performed by a control unit 12 constituted by a microcomputer. Therefore, an engine speed signal is input to the control unit 12 from a rotation sensor attached to the distributor 13, an intake air amount signal is input from the air flow meter 7, and an engine water temperature signal is input from a water temperature sensor (not shown). Further, the respective oxygen concentration signals are input to the control unit 12 from the first and second oxygen concentration sensors provided on the upstream side and the downstream side of the lean NOx catalyst 9, and are sent to the upstream side and the downstream side of the lean NOx catalyst 9. Each exhaust temperature signal is input from the installed first and second exhaust temperature sensors 11a and 11b.

【0020】エンジン1の運転状態が所定のリーンF/
Bゾーンにある時、エンジン回転数と吸入空気量に基づ
いて燃料の基本噴射量が設定され、それに水温等による
各種補正が加えられ、さらに、酸素濃度信号に基づいた
フィードバック補正が加えられて最終噴射量が算出され
る。そして、この最終噴射量に相当する制御パルスが上
記燃料噴射弁5に印加され、それによってエンジン1の
空燃比がリーン設定の目標値に制御される。
When the operating state of the engine 1 is a predetermined lean F /
When in zone B, the basic injection amount of fuel is set based on the engine speed and the intake air amount, and various corrections based on the water temperature and the like are added thereto. An injection amount is calculated. Then, a control pulse corresponding to the final injection amount is applied to the fuel injection valve 5, whereby the air-fuel ratio of the engine 1 is controlled to a target value for lean setting.

【0021】また、エンジン1がリーン定常運転に入る
と、リーンNOx触媒9の劣化検出のためリーン定常運
転開始直後から所定インターバルで上記第1および第2
の両酸素濃度センサ10a,10bと第1および第2の
両排気温度センサ11a,11bの検出信号がコントロ
ールユニット12に読み込まれ、リーンNOx触媒9の
上流側と下流側の排気温度差および酸素濃度差積算値が
演算される。そして、図3に示す排気温度差ΔT(横
軸)とリーンNOx触媒9の浄化率η(縦軸)との関係
から、必要とされる最低浄化率ηlimitに対応する排気
温度差ΔTのしきい値ΔTlimitが設定され、次いで、
図4に示す排気温度差ΔTの時間変化から排気温度差Δ
Tがしきい値ΔTlimit以下になったかどうかが判定さ
れて、しきい値ΔTlimit以下になったらリーンNOx
触媒9の劣化と判定される。なお、図4で実線に対し破
線は触媒9の経時劣化が進んだ状態を示している。
When the engine 1 enters the lean steady operation, the first and second engine operation are started at a predetermined interval immediately after the start of the lean steady operation to detect the deterioration of the lean NOx catalyst 9.
The detection signals of the two oxygen concentration sensors 10a, 10b and the first and second exhaust temperature sensors 11a, 11b are read into the control unit 12, and the difference between the exhaust gas temperature and the oxygen concentration on the upstream side and the downstream side of the lean NOx catalyst 9 is detected. A difference integrated value is calculated. Then, based on the relationship between the exhaust gas temperature difference ΔT (horizontal axis) and the purification rate η (vertical axis) of the lean NOx catalyst 9 shown in FIG. 3, the exhaust gas temperature difference ΔT corresponding to the required minimum purification rate η limit is obtained. A threshold ΔT limit is set, then
From the time change of the exhaust gas temperature difference ΔT shown in FIG.
T is determined whether or not equal to or less than the threshold ΔT limit, lean NOx Once you become less than or equal to the threshold value ΔT limit
It is determined that the catalyst 9 has deteriorated. In FIG. 4, a broken line with respect to a solid line indicates a state in which the deterioration of the catalyst 9 with time has advanced.

【0022】そして、排気温度差ΔTがしきい値ΔT
limit以下で、リーンNOx触媒9の劣化と判定された
ときは、そのしきい値ΔTlimit以下となった時の経過
時間tl imitが図4から求められ、次いで、図5に示す
酸素濃度差|ΔO2|の積算値∫|ΔO2|dtの時間変
化から、上記経過時間tlimitにおける酸素濃度差|Δ
2|の積算値∫|ΔO2|dtが予め設定されたしきい
値O2limit(図の上側の一点鎖線に相当する)以上であ
るかどうかが判定されて、酸素濃度差|ΔO2|の積算
値∫|ΔO2|dtがしきい値O2limit以上であれば上
記リーンNOx触媒9の劣化が一時劣化であると判定さ
れ、酸素濃度差|ΔO2|の積算値∫|ΔO2|dtがし
きい値O2limitより小さければ経時劣化であると判定さ
れる。なお、図5で実線に対し破線はやはり触媒9の経
時劣化が進んだ状態を示している。また、このように経
時劣化が進んだ状態では、しきい値O2limitは図の下側
の一点鎖線に相当するレベルまで下げられる。
The exhaust gas temperature difference ΔT is equal to the threshold value ΔT
limit below, when it is determined that the deterioration of the lean NOx catalyst 9, the elapsed time t l imit when equal to or less than the threshold [Delta] T limit is determined from FIG. 4, then, the oxygen concentration difference shown in FIG. 5 | delta O.D. 2 | integrated value ∫ | ΔO 2 | from time variation of dt, the oxygen concentration difference in the elapsed time t limit | delta
It is determined whether or not the integrated value O | ΔO 2 | dt of O 2 | is equal to or greater than a predetermined threshold value O 2limit (corresponding to the dashed line in the upper part of the figure), and the oxygen concentration difference | ΔO 2 | If the integrated value ∫ | ΔO 2 | dt is equal to or larger than the threshold value O 2limit , it is determined that the deterioration of the lean NOx catalyst 9 is temporary deterioration, and the integrated value 酸 素 | ΔO 2 | of the oxygen concentration difference | ΔO 2 | If dt is smaller than the threshold value O 2limit, it is determined that deterioration with time has occurred . In FIG. 5, the broken line with respect to the solid line also shows a state in which the deterioration of the catalyst 9 with time has advanced. Further, in such a state where the deterioration with time has advanced, the threshold value O 2limit is lowered to a level corresponding to the dashed line on the lower side of the figure.

【0023】劣化検出のための上記インターバルは、空
燃比,排気温度,エンジン回転数および負荷に応じて変
更される。すなわち、図5に示す酸素濃度差|ΔO2
の積算値の時間変化特性は空燃比および排気温度によっ
て変化し、空燃比が大きい程、また、排気温度が低い
程、特性曲線の立ち上がりが早くなる。図6はこれら空
燃比および排気温度による積算値時間変化特性の変化を
示すものであって、実線は空燃比が大きい、あるいは排
気温度が低い場合、破線は空燃比が小さい、あるいは排
気温度が高い場合に相当する。空燃比が大きくなり、あ
るいは排気温度が低くなると、図に矢印で示す方向に特
性曲線が移動する。そこで、この実施例では、図7に示
すように空燃比が大きい程、あるいは排気温度が低い
程、上記インターバルを小さくしてリーンNOx触媒9
の劣化が早期に検出できるようにしている。また、エン
ジン回転数が高くなり、あるいは負荷が大きくなると、
NOxの排出量が多くなるため、やはり触媒劣化を早期
に検出して高い浄化率を維持できるようにすることが必
要となる。そこで、この実施例では、図7に示すように
エンジン回転数が高い程、あるいは負荷が大きい程、上
記インターバルが小さくなるようにしている。
The interval for detecting deterioration is changed according to the air-fuel ratio, the exhaust temperature, the engine speed and the load. That is, the oxygen concentration difference | ΔO 2 |
The time-dependent characteristic of the integrated value changes depending on the air-fuel ratio and the exhaust gas temperature. The higher the air-fuel ratio and the lower the exhaust gas temperature, the faster the rise of the characteristic curve. FIG. 6 shows a change in the integrated value time change characteristic depending on the air-fuel ratio and the exhaust temperature. The solid line indicates a large air-fuel ratio or a low exhaust temperature, and the dashed line indicates a small air-fuel ratio or a high exhaust temperature. Corresponds to the case. When the air-fuel ratio increases or the exhaust gas temperature decreases, the characteristic curve moves in the direction indicated by the arrow in the figure. Therefore, in this embodiment, as shown in FIG. 7, as the air-fuel ratio is larger or the exhaust gas temperature is lower, the above interval is reduced and the lean NOx catalyst 9 is reduced.
The deterioration of can be detected early. Also, when the engine speed increases or the load increases,
Since the emission amount of NOx increases, it is necessary to detect catalyst deterioration early and maintain a high purification rate. Therefore, in this embodiment, as shown in FIG. 7, as the engine speed is higher or the load is larger, the interval is made smaller.

【0024】図8はこの実施例における上記劣化検出の
処理を実行するフローチャートである。S1〜S13は
その各ステップを示す。
FIG. 8 is a flowchart for executing the above-described process of detecting deterioration in this embodiment. S1 to S13 indicate the respective steps.

【0025】図8のフローチャートでは、スタートし
て、S1でリーン定常運転開始かどうかを判定する。そ
して、リーン定常運転開始でなければそのままリターン
し、リーン定常運転開始ということであれば、S2で検
出インターバル算出のため空燃比,排気温度,エンジン
回転数および負荷を読み込んで、これら空燃比,排気温
度,エンジン回転数および負荷に基づいてS3で検出イ
ンターバルを算出する。
In the flowchart of FIG. 8, the process is started, and in S1, it is determined whether or not the lean steady operation is started. If the lean steady operation is not started, the routine returns as it is. If the lean steady operation is started, the air-fuel ratio, the exhaust gas temperature, the engine speed and the load are read in S2 for the detection interval calculation. At S3, a detection interval is calculated based on the temperature, the engine speed, and the load.

【0026】S3でインターバルを算出すると、つぎ
に、S4でタイマーをスタートさせ、S5で排気温度セ
ンサ11a,11bおよび酸素濃度センサ10a,10
bの検出値を読み込み、S6で排気温度差ΔTと酸素濃
度差積算値∫|ΔO2|dtを算出する。
After calculating the interval in S3, the timer is started in S4, and the exhaust gas temperature sensors 11a and 11b and the oxygen concentration sensors 10a and 10b in S5.
The detected value of b is read, and an exhaust gas temperature difference ΔT and an oxygen concentration difference integrated value ∫ | ΔO 2 | dt are calculated in S6.

【0027】つぎに、S7で排気温度差ΔTがしきい値
ΔTlimit(図4参照)より大きいかどうかを判定す
る。そして、排気温度差ΔTがしきい値ΔTlimitより
大きいということであれば、S8でリーン定常運転が継
続中かどうかを見て、継続中であればS4に戻ってS4
〜S8のルーチンを繰り返し、リーン定常運転継続中で
なくなればリターンする。
Next, in S7, it is determined whether or not the exhaust gas temperature difference ΔT is larger than a threshold value ΔT limit (see FIG. 4). If it is determined that the exhaust gas temperature difference ΔT is larger than the threshold value ΔT limit , it is determined whether the lean steady operation is continuing in S8. If so, the process returns to S4 and returns to S4.
The routine from S8 to S8 is repeated, and the routine returns if the lean steady operation is not continued.

【0028】また、S7の判定で排気温度差ΔTがしき
い値ΔTlimi以下であれば、S9へ進んで酸素濃度差積
算値∫|ΔO2|dtがしきい値O2limit(図5参照)
以上かどうかを判定し、酸素濃度差積算値∫|ΔO2
dtがしきい値O2limit以上であればS10で酸素吸着
によるリーンNOx触媒9の一時劣化と判定して、S1
1へ進んで触媒浄化性能回復のための操作(触媒加熱,
リッチ混合気の供給等)を行う。そして、リターンす
る。
If it is determined in step S7 that the exhaust gas temperature difference ΔT is equal to or smaller than the threshold value ΔT limi , the process proceeds to step S9, where the oxygen concentration difference integrated value ∫ | ΔO 2 | dt is set to the threshold value O 2limit (see FIG. 5).
Determining whether more, the oxygen concentration difference integrated value ∫ | ΔO 2 |
If dt is equal to or larger than the threshold value O 2limit, it is determined in S10 that the lean NOx catalyst 9 is temporarily deteriorated due to oxygen adsorption, and S1 is determined.
Proceed to Step 1 to recover the catalyst purification performance (catalyst heating,
Supply of a rich mixture). And it returns.

【0029】また、酸素濃度差積算値∫|ΔO2|dt
がしきい値O2limitより小さいときは、S12でリーン
NOx触媒9の経時劣化と判定し、S13へ進んでリー
ン運転を停止しλ(空気過剰率)=1での運転を行う。
そして、リターンする。
The oxygen concentration difference integrated value ∫ | ΔO 2 | dt
Is smaller than the threshold value O 2limit , it is determined in S12 that the lean NOx catalyst 9 has deteriorated with time, and the routine proceeds to S13, in which the lean operation is stopped, and the operation at λ (excess air ratio) = 1 is performed.
And it returns.

【0030】[0030]

【発明の効果】本発明は以上のように構成されているの
で、リーンNOx触媒の劣化が経時的なものか一時的な
ものかを判別することができ、劣化の種類に応じた適切
な対処が可能となる。
Since the present invention is configured as described above, it is possible to determine whether the lean NOx catalyst has deteriorated over time or temporarily, and to take appropriate measures according to the type of deterioration. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体構成図FIG. 1 is an overall configuration diagram of the present invention.

【図2】本発明の一実施例のシステム図FIG. 2 is a system diagram of an embodiment of the present invention.

【図3】本発明の一実施例における排気温度差と浄化率
の関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between an exhaust gas temperature difference and a purification rate in one embodiment of the present invention.

【図4】本発明の一実施例における排気温度差の時間変
化を示す特性図
FIG. 4 is a characteristic diagram showing a time change of an exhaust gas temperature difference in one embodiment of the present invention.

【図5】本発明の一実施例における酸素濃度差積算値の
時間変化を示す特性図
FIG. 5 is a characteristic diagram showing a time change of an oxygen concentration difference integrated value in one embodiment of the present invention.

【図6】本発明の一実施例における酸素濃度差積算値変
化特性の各種パラメータによる変化を示す特性図
FIG. 6 is a characteristic diagram showing a change of an oxygen concentration difference integrated value change characteristic by various parameters in one embodiment of the present invention.

【図7】本発明の一実施例における各種パラメータによ
る検出インターバル変化を示す特性図
FIG. 7 is a characteristic diagram showing a change in a detection interval according to various parameters in one embodiment of the present invention.

【図8】本発明の一実施例における劣化検出の処理を実
行するフローチャート
FIG. 8 is a flowchart for executing a process of detecting deterioration according to an embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1 エンジン 8 排気通路 9 リーンNOx触媒 10a,10b 酸素濃度センサ 11a、11b 排気温度センサ 12 コントロールユニット Reference Signs List 1 engine 8 exhaust passage 9 lean NOx catalyst 10a, 10b oxygen concentration sensor 11a, 11b exhaust temperature sensor 12 control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中角 忠孝 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 末次 元 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭64−45913(JP,A) 特開 平3−50315(JP,A) 実開 昭62−61919(JP,U) 実開 昭63−128221(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/38 F01N 9/00 - 11/00 F02D 41/00 - 41/40 F02D 43/00 - 45/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tadataka Nakakaku 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. (72) Former Moto Suetsugu 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Matsu (56) References JP-A-64-45913 (JP, A) JP-A-3-50315 (JP, A) JP-A 62-61919 (JP, U) JP-A 63-128221 (JP, A) , U) (58) Fields investigated (Int. Cl. 7 , DB name) F01N 3/08-3/38 F01N 9/00-11/00 F02D 41/00-41/40 F02D 43/00-45 / 00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも空燃比が理論空燃比より大き
いリーン空燃比領域でリーンNOx触媒により排気ガス
中のNOxを還元浄化するエンジンにおいて、前記リー
ンNOx触媒の上流側および下流側の排気温度を検出す
る第1および第2の各排気温度センサと、これら第1お
よび第2の排気温度センサの出力を受け前記リーンNO
x触媒の上流側と下流側の排気温度差を演算する排気温
度差演算手段と、前記リーンNOx触媒の上流側と下流
側の酸素濃度を検出する第1および第2の各酸素濃度セ
ンサと、これら第1および第2の酸素濃度センサの出力
を受け前記リーンNOx触媒の上流側と下流側の酸素濃
度差の積算値を演算する酸素濃度差積算値演算手段と、
前記排気温度差演算手段の出力と前記酸素濃度差積算値
演算手段の出力を受け、前記排気温度差が所定温度差以
下で、かつ、前記酸素濃度差の積算値が所定値以上のと
きは前記リーンNOx触媒が一時劣化の状態にあると判
定する触媒劣化判定手段を備えたことを特徴とする触媒
の劣化検出装置。
In an engine that reduces and purifies NOx in exhaust gas with a lean NOx catalyst at least in a lean air-fuel ratio region in which an air-fuel ratio is greater than a stoichiometric air-fuel ratio, exhaust gas temperatures upstream and downstream of the lean NOx catalyst are detected. Receiving the outputs of the first and second exhaust gas temperature sensors and the first and second exhaust gas temperature sensors.
exhaust temperature difference calculating means for calculating an exhaust gas temperature difference between the upstream side and the downstream side of the x catalyst; first and second oxygen concentration sensors for detecting oxygen concentrations on the upstream side and the downstream side of the lean NOx catalyst; Oxygen concentration difference integrated value calculation means for receiving the outputs of the first and second oxygen concentration sensors and calculating the integrated value of the oxygen concentration difference between the upstream side and the downstream side of the lean NOx catalyst;
When the output of the exhaust gas temperature difference calculating means and the output of the oxygen concentration difference integrated value calculating means are received, and the exhaust gas temperature difference is equal to or less than a predetermined temperature difference, and the integrated value of the oxygen concentration difference is equal to or more than a predetermined value, An apparatus for detecting deterioration of a catalyst, comprising: catalyst deterioration determining means for determining that the lean NOx catalyst is in a state of temporary deterioration.
【請求項2】 一時劣化判定のための前記酸素濃度差積
算値の所定値をリーンNOx触媒の経時変化に応じて小
さくするしきい値低減手段を備えた請求項1記載の触媒
の劣化検出装置。
2. A catalyst deterioration detecting device according to claim 1, further comprising a threshold value reducing means for reducing a predetermined value of said oxygen concentration difference integrated value for temporary deterioration determination in accordance with a temporal change of the lean NOx catalyst. .
【請求項3】 前記触媒劣化判定手段による劣化判定実
行のインターバルをエンジンの回転数および負荷が高い
程短くする判定インターバル可変手段を備えた請求項1
記載の触媒の劣化検出装置。
3. The engine according to claim 1, further comprising a determination interval changing unit that shortens an interval of the deterioration determination executed by the catalyst deterioration determining unit as the engine speed and the load increase.
A catalyst deterioration detection device according to the above.
【請求項4】 前記劣化判定手段によりリーンNOx触
媒が一時劣化の状態にあると判定された時に該リーンN
Ox触媒に吸着された酸素を離脱させる酸素離脱手段を
備えた請求項1記載の触媒の劣化検出装置。
4. When the lean NOx catalyst is determined to be in a state of temporary deterioration by the deterioration determining means, the lean
2. The catalyst deterioration detecting device according to claim 1, further comprising oxygen desorbing means for desorbing oxygen adsorbed on the Ox catalyst.
【請求項5】 少なくとも空燃比が理論空燃比より大き
いリーン空燃比領域でリーンNOx触媒により排気ガス
中のNOxを低減するエンジンにおいて、前記リーンN
Ox触媒の温度状態を検出する温度状態検出手段と、前
記リーンNOx触媒の上流側と下流側の排気ガス中の酸
を検出する第1および第2の各排気ガス成分検出セン
サと、これら第1および第2の排気ガス成分検出センサ
の出力を受け前記リーンNOx触媒による酸素の吸着状
態を算出する吸着状態算出手段と、前記温度状態検出手
段の出力と前記吸着状態算出手段の出力を受け、前記温
度状態に基づいて前記リーンNOx触媒が劣化している
と判定され、かつ、酸素の吸着度合が所定値以上のとき
は前記リーンNOx触媒が一時劣化の状態にあると判定
する触媒劣化判定手段を備えたことを特徴とする触媒の
劣化検出装置。
5. An engine in which NOx in exhaust gas is reduced by a lean NOx catalyst at least in a lean air-fuel ratio region in which the air-fuel ratio is greater than a stoichiometric air-fuel ratio.
Temperature state detecting means for detecting the temperature state of the Ox catalyst; and acid in exhaust gas on the upstream and downstream sides of the lean NOx catalyst.
The first and second and the exhaust gas component detection sensor, the first and second exhaust gas component receives the output of the detection sensor adsorption state calculating means for calculating the adsorption state of oxygen by the lean NOx catalyst for detecting a hydrogen Receiving the output of the temperature state detection means and the output of the adsorption state calculation means, it is determined that the lean NOx catalyst is deteriorated based on the temperature state, and the degree of adsorption of oxygen is equal to or more than a predetermined value. A catalyst deterioration detection device, comprising: catalyst deterioration determination means for determining that the lean NOx catalyst is in a state of temporary deterioration at any time.
JP4119303A 1992-05-12 1992-05-12 Catalyst deterioration detection device Expired - Fee Related JP3062710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119303A JP3062710B2 (en) 1992-05-12 1992-05-12 Catalyst deterioration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119303A JP3062710B2 (en) 1992-05-12 1992-05-12 Catalyst deterioration detection device

Publications (2)

Publication Number Publication Date
JPH05312024A JPH05312024A (en) 1993-11-22
JP3062710B2 true JP3062710B2 (en) 2000-07-12

Family

ID=14758086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119303A Expired - Fee Related JP3062710B2 (en) 1992-05-12 1992-05-12 Catalyst deterioration detection device

Country Status (1)

Country Link
JP (1) JP3062710B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852788B2 (en) * 1995-10-02 2006-12-06 株式会社小松製作所 Diesel engine NOx catalyst deterioration detection device and its deterioration detection method
JPH1071325A (en) * 1996-06-21 1998-03-17 Ngk Insulators Ltd Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means
DE19963903A1 (en) 1999-12-31 2001-07-12 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
JP4985071B2 (en) * 2007-04-13 2012-07-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR101091627B1 (en) * 2009-08-31 2011-12-08 기아자동차주식회사 Exhaust system
GB2533609A (en) * 2014-12-22 2016-06-29 Gm Global Tech Operations Llc An internal combustion engine equipped with a lean NOx trap
JP2016035938A (en) * 2015-12-17 2016-03-17 大阪瓦斯株式会社 Solid oxide fuel battery system
JP7351318B2 (en) * 2021-02-12 2023-09-27 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JPH05312024A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP3470597B2 (en) Exhaust gas purification device for internal combustion engine
WO2012144269A1 (en) Internal combustion engine exhaust gas purification control apparatus
JPH09203313A (en) Degradation detecting device for catalyst
JPH10339195A (en) Exhaust emission control device of internal combustion engine
JP2888124B2 (en) Exhaust gas purification device for internal combustion engine
JP2004069457A (en) Apparatus for detecting degradation of air/fuel ratio detecting device
JP3062710B2 (en) Catalyst deterioration detection device
JP3154110B2 (en) Engine emission control device
JP3272465B2 (en) Engine exhaust gas purification device
JP2982440B2 (en) Exhaust gas purification device for internal combustion engine
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JP2800581B2 (en) Exhaust gas purification device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP2006126218A (en) Deterioration detector for air-fuel ratio detection device
JPH0650204A (en) Air-fuel ratio controller of internal combustion engine
JPH06200750A (en) Exhaust emission control device for internal combustion engine
JP2881266B2 (en) Engine exhaust purification device
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JP2004169709A (en) Engine air-fuel ratio control system
JPH112115A (en) Engine hc absorbent degradation diagnosing device
JPH0979028A (en) Self-diagnostic device for catalyst
JP2000027687A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees