JPH05311434A - Formation of film and surface-treated substrate for film formation - Google Patents

Formation of film and surface-treated substrate for film formation

Info

Publication number
JPH05311434A
JPH05311434A JP12076692A JP12076692A JPH05311434A JP H05311434 A JPH05311434 A JP H05311434A JP 12076692 A JP12076692 A JP 12076692A JP 12076692 A JP12076692 A JP 12076692A JP H05311434 A JPH05311434 A JP H05311434A
Authority
JP
Japan
Prior art keywords
film
substrate
film forming
forming
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12076692A
Other languages
Japanese (ja)
Inventor
Naoto Kuratani
直人 鞍谷
Kiyoshi Ogata
潔 緒方
Satoru Nishiyama
哲 西山
Akinori Ebe
明憲 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12076692A priority Critical patent/JPH05311434A/en
Publication of JPH05311434A publication Critical patent/JPH05311434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To attain excellent adhesion of a film to a substrate. CONSTITUTION:Ions 12 of a group IVA element are implanted into the film forming surface of a substrate 11 to form an ion implanted layer 13 in the film forming surface of the substrate 11. By this layer 13, the chemical activity of the film forming surface of the substrate 11 is increased. A desired film 15 is then formed on the film forming surface of the substrate 11 by vapor deposition and irradiation with ions. At the same time, a mixed layer 16 is formed at the interface between the substrate 11 and the film 15. Since the chemical activity of the film forming surface of the substrate 11 is increased and the mixed layer 16 is formed, excellent adhesion of the film 15 to the substrate 11 can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、表面に成膜が行われ
る基体の機械的特性や化学的安定性を向上させるため、
あるいは基体上に各種半導体特性を有する膜を形成さ
せ、半導体素子として利用するため等を目的として、基
体の表面に膜を形成するための成膜方法および膜を形成
するのに適した表面処理を行った成膜用表面処理基体に
関するものである。なお、本明細書において、「成膜用
表面処理基体」という表現は、膜形成面に所望の膜を形
成する直前における所定の表面処理が済んだ後の基体を
意味し、単なる「基体」という表現は最初に準備された
基体を意味する。
BACKGROUND OF THE INVENTION The present invention improves the mechanical properties and chemical stability of a substrate on which a film is formed.
Alternatively, a film forming method for forming a film on the surface of the substrate and a surface treatment suitable for forming the film may be performed for the purpose of forming a film having various semiconductor characteristics on the substrate and using it as a semiconductor element. The present invention relates to the film-formed surface-treated substrate. In the present specification, the expression "surface-treated substrate for film formation" means a substrate after a predetermined surface treatment just before forming a desired film on a film formation surface, and is simply referred to as "substrate". The expression refers to the initially prepared substrate.

【0002】[0002]

【従来の技術】従来より、基体の表面に膜を形成する手
法として、各種PVD法やCVD法がいくつも提案され
ている。なかでも、真空蒸着またはスパッタリング等の
蒸着とイオン照射とを併用して基体の表面に膜を形成す
るIVD法は、基体と膜との界面に混合層が形成される
ので、優れた密着性を有する膜が低温処理で基体の表面
に形成できる利点を有していることで注目を浴びてい
る。
2. Description of the Related Art Conventionally, various PVD methods and CVD methods have been proposed as a method of forming a film on the surface of a substrate. Among them, the IVD method in which vapor deposition such as vacuum vapor deposition or sputtering is used in combination with ion irradiation to form a film on the surface of a substrate, a mixed layer is formed at the interface between the substrate and the film, so that excellent adhesion is obtained. Attention has been paid to the fact that the film it has has the advantage that it can be formed on the surface of the substrate by low-temperature treatment.

【0003】[0003]

【発明が解決しようとする課題】IVD法が優れた密着
性を有するのは、照射されるイオンによって基体と膜と
の界面に両者の構成原子よりなる混合層が形成されるた
めである。しかしながら、例えば、基体と膜とが金属と
窒化物セラミックとのような濡れ性の悪い組み合わせか
らなる材質の場合は、前記混合層の形成だけでは充分な
密着性を得ることが困難な場合もある。
The reason why the IVD method has excellent adhesion is that the irradiated ions form a mixed layer of the constituent atoms of the two at the interface between the substrate and the film. However, for example, when the substrate and the film are made of a material having a poor wettability such as a metal and a nitride ceramic, it may be difficult to obtain sufficient adhesion only by forming the mixed layer. ..

【0004】この発明の目的は、基体に対する膜の密着
性を優れたものとすることができる成膜方法を提供する
ことである。この発明の他の目的は、膜の密着性を優れ
たものとすることができる成膜用表面処理基体を提供す
ることである。
An object of the present invention is to provide a film forming method which can improve the adhesion of the film to the substrate. Another object of the present invention is to provide a film-forming surface-treated substrate capable of providing excellent film adhesion.

【0005】[0005]

【課題を解決するための手段】請求項1記載の成膜方法
は、基体の膜形成面にIVA族元素よりなるイオンを予め
注入することにより基体の膜形成面にイオン注入層を形
成する。その後、基体の膜形成面への蒸着とイオン照射
とを併用して基体の膜形成面に所望の膜を形成するとと
もに基体と所望の膜との界面に混合層を形成する。
According to a first aspect of the film forming method, an ion-implanted layer is formed on the film forming surface of a substrate by previously implanting ions of a group IVA element into the film forming surface of the substrate. Then, vapor deposition on the film forming surface of the substrate and ion irradiation are used together to form a desired film on the film forming surface of the substrate and a mixed layer is formed at the interface between the substrate and the desired film.

【0006】請求項2記載の成膜用表面処理基体は、表
面に所望の膜を形成する成膜方法に用いるもので、基体
の膜形成面にIVA族元素よりなるイオンを注入してイオ
ン注入層を形成している。
The surface-treated substrate for film formation according to claim 2 is used in a film forming method for forming a desired film on the surface, and ion implantation is performed by implanting ions of a group IVA element into the film formation surface of the substrate. Forming layers.

【0007】[0007]

【作用】この発明の構成によれば、基体の膜形成面にIV
A族元素よりなるイオンを予め注入することにより基体
の膜形成面にイオン注入層を形成したため、基体の膜形
成面の化学的活性度がIVA族元素の存在によって高まる
ことになる。この結果、基体の膜形成面に形成する所望
の膜の密着性が優れたものとなる。
According to the structure of the present invention, the IV is formed on the film forming surface of the substrate.
Since the ion-implanted layer is formed on the film forming surface of the substrate by previously implanting ions of the group A element, the chemical activity of the film forming surface of the substrate is increased by the presence of the group IVA element. As a result, the adhesion of the desired film formed on the film formation surface of the substrate becomes excellent.

【0008】[0008]

【実施例】以下、この発明の一実施例を図1および図2
に基づいて説明する。図2はこの発明の成膜方法を実施
するための成膜装置の概略図を示すものである。図2に
おいて、1は真空容器、2は基体、3は基体2を保持す
る基体ホルダである。4は蒸発源であり、5は蒸発物質
を示している。6はイオン源、7はイオン源6から基体
2へ照射されるイオンビームである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
It will be explained based on. FIG. 2 is a schematic view of a film forming apparatus for carrying out the film forming method of the present invention. In FIG. 2, 1 is a vacuum container, 2 is a substrate, and 3 is a substrate holder that holds the substrate 2. Reference numeral 4 is an evaporation source, and 5 is an evaporation material. 6 is an ion source, and 7 is an ion beam with which the substrate 2 is irradiated from the ion source 6.

【0009】8は蒸着物質の基体2へ蒸着される個数や
形成される膜の膜厚を測定する膜厚モニタであり、例え
ば水晶振動子からなる。9は照射されるイオンの個数を
測定するイオン電流測定器で、例えばファラディカップ
からなる。以上のような成膜装置を使用して、成膜を行
う方法について以下に説明する。まず、図2に示すよう
に、基体2をホルダ3に固定して真空容器1に納め、所
定の真空度に保つ。その後、イオン源6よりIVA族元素
からなるイオンが基体2の膜形成面に注入される。この
際、イオンの加速エネルギー,注入量は基体2の耐熱性
に応じて適宜決められる。イオン源の方式は特に限定さ
れない。
Reference numeral 8 is a film thickness monitor for measuring the number of vapor-deposited substances vapor-deposited on the substrate 2 and the film thickness of a film to be formed, which is composed of, for example, a crystal oscillator. Reference numeral 9 denotes an ion current measuring device for measuring the number of ions to be irradiated, which is composed of, for example, a Faraday cup. A method for forming a film using the above film forming apparatus will be described below. First, as shown in FIG. 2, the substrate 2 is fixed to the holder 3 and housed in the vacuum container 1 to maintain a predetermined degree of vacuum. After that, ions of Group IVA element are injected from the ion source 6 into the film forming surface of the substrate 2. At this time, the acceleration energy of the ions and the implantation amount are appropriately determined according to the heat resistance of the substrate 2. The method of the ion source is not particularly limited.

【0010】その後、蒸発源4から蒸発した蒸発物質5
を基体2の膜形成面上に蒸着させる。このとき、同時に
または交互にあるいは蒸着後にイオン源6からのイオン
照射が行われる。この結果、基体2とその上に形成され
た膜との界面に基体材料と膜材料との混合層が形成され
る。なお、蒸着はスパッタリングによって行うことも可
能である。
After that, the evaporation material 5 evaporated from the evaporation source 4
Is vapor-deposited on the film formation surface of the substrate 2. At this time, ion irradiation from the ion source 6 is performed simultaneously or alternately or after vapor deposition. As a result, a mixed layer of the base material and the film material is formed at the interface between the base 2 and the film formed thereon. Note that the vapor deposition can also be performed by sputtering.

【0011】この蒸着とイオン照射とを併用して膜を形
成するときに、膜厚モニタ8およびイオン電流測定器9
を用いて基体2へ到達する蒸着物の膜厚とイオンの個数
とを計測でき、その値を任意に設定することで、所望の
組成比をもった膜を所定の膜厚に形成することができ
る。つぎに、図1を参照して成膜の過程について説明す
る。
When a film is formed by using this vapor deposition and ion irradiation in combination, the film thickness monitor 8 and the ion current measuring device 9 are used.
Can be used to measure the film thickness of the deposit reaching the substrate 2 and the number of ions, and by setting the values arbitrarily, it is possible to form a film having a desired composition ratio to a predetermined film thickness. it can. Next, the process of film formation will be described with reference to FIG.

【0012】まず、図1(a)に示すように、各種合
金,セラミック等の基体11の膜形成面にイオン照射A
1 によってTi,Zr等のIVA族元素からなるイオン1
2を予め注入することにより基体11の膜形成面にイオ
ン注入層13を形成する。この図1(a)の状態のもの
が成膜用表面処理基体14である。その後、図1(b)
に示すように、基体11の膜形成面への蒸着を行うとと
もに、基体11の膜形成面へのイオン照射A2 を併せて
行うことにより、基体11の膜形成面に所望の膜15を
形成するとともに、基体11と所望の膜15との界面に
基体材料および膜材料からなる混合層16を形成する。
First, as shown in FIG. 1A, ion irradiation A is performed on the film forming surface of a substrate 11 made of various alloys, ceramics or the like.
Ti by 1, the ion 1 consisting of Group IVA element such as Zr
By implanting 2 in advance, the ion-implanted layer 13 is formed on the film formation surface of the base 11. The surface-treated substrate 14 for film formation is in the state shown in FIG. After that, FIG. 1 (b)
As shown in FIG. 3, a desired film 15 is formed on the film forming surface of the base 11 by performing vapor deposition on the film forming surface of the base 11 and also performing ion irradiation A 2 on the film forming surface of the base 11. At the same time, the mixed layer 16 made of the base material and the film material is formed at the interface between the base 11 and the desired film 15.

【0013】基体11に形成される膜15は、蒸発材料
のみからなる場合もあり、蒸発材料とイオン源から照射
されたイオンとの混合組成からなる場合もある。このよ
うに、基体11の膜形成面にIVA族元素からなるイオン
12を予め注入してイオン注入層13を形成すると、基
体11の膜形成面の化学的活性度が高くなる。この結
果、基体11の膜形成面に蒸着とイオン照射とを併用し
て所望の膜15を形成するとともに基体11と所望の膜
15との界面に混合層16を形成すると、基体11に対
する所望の膜15の密着性が優れたものとなり、基体1
1に形成した所望の膜15を剥離しにくくできる。
The film 15 formed on the substrate 11 may be composed of only the evaporation material, or may be composed of a mixed composition of the evaporation material and the ions irradiated from the ion source. As described above, when the ions 12 composed of the group IVA element are preliminarily implanted into the film forming surface of the substrate 11 to form the ion-implanted layer 13, the chemical activity of the film forming surface of the substrate 11 is increased. As a result, when the desired film 15 is formed on the film formation surface of the substrate 11 by using both vapor deposition and ion irradiation, and the mixed layer 16 is formed at the interface between the substrate 11 and the desired film 15, the desired film for the substrate 11 is obtained. The adhesion of the film 15 becomes excellent, and the base 1
The desired film 15 formed in 1 can be hardly peeled off.

【0014】また、混合層16を形成する際の照射イオ
ンの加速エネルギーを小さくしても必要な密着性を確保
することができ、所望の膜15を形成する際に基体11
に与えられる熱的な損傷を低減することが可能となる。
さらに、基体11の膜形成面にイオンを注入することに
より、膜形成面が硬化されることが多く、その結果、耐
摩耗性といった機械的特性を向上させることができる。
Further, even if the acceleration energy of the irradiation ions at the time of forming the mixed layer 16 is made small, the required adhesiveness can be secured, and at the time of forming the desired film 15, the substrate 11 is formed.
It is possible to reduce the thermal damage given to the.
Furthermore, by implanting ions into the film forming surface of the substrate 11, the film forming surface is often hardened, and as a result, mechanical characteristics such as wear resistance can be improved.

【0015】ここで、具体的な実施例およびそれに対応
した比較例を示す。 (実施例1)超硬合金(K10種)よりなる基体を図2
に示す成膜装置で上記したような処理を施した。具体的
には、まず真空容器を5×10-7torr以下の真空度に保
ち、イオン源にTiCガスを6.7×10-5torrを導入
し、Tiイオンを加速エネルギー200keV,2×1
16個/cm2 の条件で基体の膜形成面に注入した。
Here, concrete examples and comparative examples corresponding thereto will be shown. Example 1 A substrate made of cemented carbide (K10 type) is shown in FIG.
The above-described processing was performed by the film forming apparatus shown in FIG. Specifically, first, the vacuum container was kept at a vacuum degree of 5 × 10 −7 torr or less, TiC gas was introduced to the ion source at 6.7 × 10 −5 torr, and Ti ions were accelerated at an energy of 200 keV and 2 × 1.
It was injected into the film forming surface of the substrate under the condition of 0 16 pieces / cm 2 .

【0016】その後、純度99.9%のチタン(Ti)
ペレットを電子ビームを用いた蒸発源を用いて蒸発さ
せ、基体の膜形成面にチタン膜を蒸着させると同時に、
イオン源より窒素イオンを2keVの条件で照射した。
なお、この際、基体に到達するTiと窒素原子の個数比
(Ti/N組成比)が1になるように、Ti/N輸送比
を調整した。このときに基体の表面に作成された窒化チ
タン膜は膜厚1μmであった。
Then, titanium (Ti) having a purity of 99.9%
At the same time as evaporating the pellets using an evaporation source using an electron beam and depositing a titanium film on the film forming surface of the substrate,
Nitrogen ions were irradiated from the ion source under the condition of 2 keV.
At this time, the Ti / N transport ratio was adjusted so that the number ratio (Ti / N composition ratio) of Ti and nitrogen atoms reaching the substrate was 1. At this time, the titanium nitride film formed on the surface of the substrate had a film thickness of 1 μm.

【0017】(比較例1)実施例1と同じ基体に対しIV
A族元素のイオンの前注入処理を行わずに、基体に1μ
mの膜厚に窒化チタン膜を形成した。なお、窒化チタン
膜の形成方法は、実施例1と同じであった。上記実施例
1と比較例1の窒化チタン膜の密着性をAEセンサ付自
動スクラッチ試験機(引っかき試験を行い、膜が剥離す
る荷重を測定するもの)によって測定したところ、実施
例1の膜が50Nで剥離したのに対し、比較例1の膜は
20Nで剥離した。
Comparative Example 1 IV for the same substrate as in Example 1
1 μm was added to the substrate without pre-injection treatment of group A element ions.
A titanium nitride film having a thickness of m was formed. The method for forming the titanium nitride film was the same as in Example 1. The adhesion of the titanium nitride films of Example 1 and Comparative Example 1 above was measured by an automatic scratch tester with an AE sensor (a scratch test is performed to measure the load at which the film peels). The film of Comparative Example 1 was peeled off at 20 N, while the film was peeled off at 50 N.

【0018】したがって、この発明による成膜方法の方
が基体に対する膜の密着性が優れていることが明らかで
ある。なお、基体としては、上記実施例1に示した超硬
合金(K10種)の他に各種金属、合金あるいはセラミ
ック(例えばAlN,BN等の窒化物セラミック)が考
えられる。
Therefore, it is apparent that the film forming method according to the present invention has a better adhesion of the film to the substrate. As the substrate, various metals, alloys or ceramics (for example, nitride ceramics such as AlN and BN) other than the cemented carbide (K10 type) shown in the first embodiment can be considered.

【0019】例えば、金属からなる基体の表面をAl
N,TiN,BN等の窒化化合物薄膜で被覆する場合に
は、Ti,Zr等のイオンを基体の膜形成面に注入し、
その後AlN,TiN,BN等を堆積させる。また、A
l,Ti,Cr,Ni等の金属薄膜でAlN,BN等の
窒化物セラミックからなる基体を被覆する場合には、基
体の膜形成面にTi,Zr等のイオンを注入し、その後
Al,Ti,Cr,Ni等を堆積させる。
For example, if the surface of a base made of metal is Al
When coating with a nitride compound thin film of N, TiN, BN, etc., ions of Ti, Zr, etc. are implanted into the film forming surface of the base,
After that, AlN, TiN, BN, etc. are deposited. Also, A
When a substrate made of a nitride ceramic such as AlN or BN is coated with a metal thin film of l, Ti, Cr, Ni or the like, ions such as Ti or Zr are implanted into the film forming surface of the substrate, and then Al or Ti. , Cr, Ni, etc. are deposited.

【0020】また、混合層形成のために照射するイオン
としては、例えば窒化膜を形成する場合は、窒素イオン
を含むイオン、例えば窒素イオンや窒素イオンと不活性
ガスイオンとを混合したもの等を照射するのが好まし
く、単体金属膜を形成する場合等には不活性ガスイオン
を含むイオンを照射するのが好ましいが、前記イオンに
水素イオンや各種金属イオンを併用しても良い。
As the ions to be irradiated for forming the mixed layer, for example, in the case of forming a nitride film, ions containing nitrogen ions, such as nitrogen ions or a mixture of nitrogen ions and an inert gas ion, are used. Irradiation is preferable, and in the case of forming a single metal film, it is preferable to irradiate with ions containing an inert gas ion, but hydrogen ions or various metal ions may be used in combination with the above ions.

【0021】[0021]

【発明の効果】この発明の成膜方法および成膜用表面処
理基体によれば、基体の膜形成面にIVA族元素よりなる
イオンを予め注入することにより基体の膜形成面にイオ
ン注入層を形成したため、基体の膜形成面の化学的活性
度がIVA族元素の存在によって高まることになり、基体
の膜形成面に形成する所望の膜の密着性を優れたものと
でき、基体に形成した所望の膜を剥離しにくくできる。
According to the film forming method and the surface-treated substrate for film formation of the present invention, the ion-implanted layer is formed on the film forming surface of the substrate by previously implanting the ions of the group IVA element into the film forming surface of the substrate. Since it is formed, the chemical activity of the film forming surface of the substrate is increased by the presence of the Group IVA element, and the adhesion of the desired film formed on the film forming surface of the substrate can be made excellent. It is possible to make it difficult to peel off the desired film.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の成膜方法による成膜過程を示す断面
図である。
FIG. 1 is a cross-sectional view showing a film forming process by a film forming method of the present invention.

【図2】この発明の成膜方法において使用する成膜装置
の構成を示す概略図である。
FIG. 2 is a schematic view showing the structure of a film forming apparatus used in the film forming method of the present invention.

【符号の説明】[Explanation of symbols]

11 基体 12 イオン 13 イオン注入層 14 成膜用表面処理基体 15 膜 16 混合層 11 Substrate 12 Ion 13 Ion Implantation Layer 14 Surface Treatment Substrate for Film Formation 15 Film 16 Mixed Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江部 明憲 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akinori Ebe 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体の表面に所望の膜を形成する成膜方
法であって、 前記基体の膜形成面にIVA族元素よりなるイオンを予め
注入することにより前記基体の膜形成面にイオン注入層
を形成し、その後前記基体の膜形成面への蒸着とイオン
照射とを併用して基体の膜形成面に所望の膜を形成する
とともに前記基体と前記所望の膜との界面に混合層を形
成することを特徴とする成膜方法。
1. A film forming method for forming a desired film on a surface of a substrate, comprising implanting ions of a group IVA element into the film forming surface of the substrate in advance to ion-implant the film forming surface of the substrate. After forming a layer, a vapor deposition on the film forming surface of the substrate and ion irradiation are used together to form a desired film on the film forming surface of the substrate, and a mixed layer is formed at the interface between the substrate and the desired film. A method for forming a film, which comprises forming the film.
【請求項2】 表面に所望の膜を形成する成膜方法に用
いる成膜用表面処理基体であって、 基体の膜形成面にIVA族元素よりなるイオンを注入して
イオン注入層を形成したことを特徴とする成膜用表面処
理基体。
2. A surface-treated substrate for film formation used in a film forming method for forming a desired film on a surface, wherein an ion of a group IVA element is injected into a film formation surface of the substrate to form an ion-implanted layer. A surface-treated substrate for film formation, comprising:
JP12076692A 1992-05-13 1992-05-13 Formation of film and surface-treated substrate for film formation Pending JPH05311434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076692A JPH05311434A (en) 1992-05-13 1992-05-13 Formation of film and surface-treated substrate for film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076692A JPH05311434A (en) 1992-05-13 1992-05-13 Formation of film and surface-treated substrate for film formation

Publications (1)

Publication Number Publication Date
JPH05311434A true JPH05311434A (en) 1993-11-22

Family

ID=14794476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076692A Pending JPH05311434A (en) 1992-05-13 1992-05-13 Formation of film and surface-treated substrate for film formation

Country Status (1)

Country Link
JP (1) JPH05311434A (en)

Similar Documents

Publication Publication Date Title
EP0811243A1 (en) A PROCESS FOR IN-SITU DEPOSITION OF A Ti/TiN/Ti ALUMINUM UNDERLAYER
JPH0588310B2 (en)
JPH05311434A (en) Formation of film and surface-treated substrate for film formation
JP3318960B2 (en) Film-forming method and surface-treated substrate for film-forming
JPH05311438A (en) Formation of film and surface-treated substrate for film formation
JP2789651B2 (en) Method for forming boron nitride film
JP2513338B2 (en) Method for forming boron nitride thin film coated substrate
JPH0310074A (en) Formation of thin film
JPH07150337A (en) Production of nitride film
JP2952683B2 (en) Method for producing nitride film-coated substrate and oxide film-coated substrate
JPS6316464B2 (en)
JPS60131964A (en) Manufacture of film-coated body
JPH0587592B2 (en)
JPH01168857A (en) Formation of titanium nitride film
JP3275360B2 (en) Film formation method
JPH07150336A (en) Film-coated substrate
JPH08269693A (en) Formation of thin film
JPH08239753A (en) Substrate coated with boron nitrid containing film and its production
JPH08232059A (en) Substrate coated with film containing carbon-nitrogen compound
JPH0611908B2 (en) Corrosion resistant coated composite material and method for producing the same
JP2769404B2 (en) Method for forming carbon-nitrogen compound film
JPH06172967A (en) Boron nitride-containing film-coated base and its production
JPH05311396A (en) Formation of chromium nitride film
JPH04333574A (en) Coating film and its production
JPH04314853A (en) Formation of titanium nitride film