JPS6316464B2 - - Google Patents

Info

Publication number
JPS6316464B2
JPS6316464B2 JP3457285A JP3457285A JPS6316464B2 JP S6316464 B2 JPS6316464 B2 JP S6316464B2 JP 3457285 A JP3457285 A JP 3457285A JP 3457285 A JP3457285 A JP 3457285A JP S6316464 B2 JPS6316464 B2 JP S6316464B2
Authority
JP
Japan
Prior art keywords
film
boron nitride
vacuum
mobn
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3457285A
Other languages
Japanese (ja)
Other versions
JPS61194171A (en
Inventor
Takeshi Hatano
Masahiro Tosa
Kazuhiro Yoshihara
Keikichi Nakamura
Keiichi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP3457285A priority Critical patent/JPS61194171A/en
Publication of JPS61194171A publication Critical patent/JPS61194171A/en
Publication of JPS6316464B2 publication Critical patent/JPS6316464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は基板上に形成されたMoBN膜の表面
に窒化ボロンを析出させた積層材料の製造方法に
関する。 更に詳しくはBN膜によりMoの高温における
耐酸化性を高め、ガスの吸着性を少なくした材
料、またBNの絶縁膜を持つ機能的性質を有する
材料として有用な積層材料の製造方法に関する。 従来技術 一般に金属・セラミツク積層材料はセラミツク
を保護膜として内部金属を保護し、また、セラミ
ツク層自体に機能上の役割を持たせた電子素子等
に利用される。 これらの材料においては金属とセラミツクの界
面での密着性が良好であること、また電子素子等
に利用する場合は更に膜の一様性、膜厚の制御性
が要求される。しかし、セラミツクの融点は金属
の融点に比べて高いこと(窒化ボロンの融点は
3000℃)、金属の表面が反応性に富むこと及び金
属とセラミツクの熱膨張率に差があること等の原
因により良質な積層材料を得ることは困難であつ
た。 従来、金属・セラミツク積層材料を作る方法と
して、金属の表面を化学的気相蒸着法によつてセ
ラミツクを被覆する方法は知られている。しか
し、この方法で窒化ほう素セラミツク被膜を行う
と、膜に不純物が含有し、またBNの融点が高い
ため、金属材料を1000〜2000℃と言う非常に高い
温度に加熱しなければならず、しかもその操作も
面倒である欠点があつた。そのほか、物理的方法
として、真空蒸着法、イオンプレーテイング法、
スパツタ法によりセラミツクを付着させる方法も
知られている。しかし、これらの方法は均一に膜
を形成し得るが、密着性が悪い欠点があつた。 また、溶射法も知られているが、この方法によ
ると、膜が不均一で密着性も悪く、母材を加熱し
ておく必要がある等の欠点があつた。 本発明者らはこの欠点がなく、比較的低温で、
且つ容易にBN膜で被覆する方法について研究の
結果、本発明者らの一人がさきにチタンを含まな
いオーステナイト系ステンレス鋼の成分にNを
0.1〜0.3%、Bを0.005〜0.02%、Ceを0.001〜0.1
%(ただし、%は重量%を示す。)を添加した合
金を作り、これを真空中で700℃程度に加熱する
と、合金内部から表面にBNが析出して膜を形成
し得ることを究明し得た。(特願昭58−144419号)
しかし、この方法によると、金属がチタンを含ま
ないオーステナイト系ステンレス鋼に限られ、ま
たセリウムを必須とする問題点があつた。 発明の目的 本発明は前記問題点を解消しようとするもので
あり、その目的はセリウムの添加を必要とせず、
真空中での加熱により窒化ボロンとなる成分
(B,N)を合金内部から表面に析出させてBN
膜を形成させることにより密着性が優れ、かつ均
一に窒化ボロンで被覆された積層材料を製造する
方法を提供する点にある。 発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、モリブデン及び窒化ボロンをターゲツトと
して使用し、例えばモリブデンターゲツト上に窒
化ボロンの小片を並べて、アルゴンガス雰囲気中
で高周波スパツタ法で、基板上に膜を形成する
と、Mo100-(X+Y)BxNy(ただし、X,Yは原子%
を表わす、X>0,Y>0,X+Y<100)の組
成からなる膜が得られ、B,Nを高濃度に含有さ
せたものが容易に得られるとこと、及びこの生成
膜を真空中で500〜1000℃に加熱すると、窒素、
ほう素が表面に拡剤結合して窒化ボロンを析出す
ることを究明し得た。この知見に基いて本発明を
完成した。 本発明の要旨は、モリブデン及び窒化ボロンを
ターゲツトとして使用し、高周波スパツタ法によ
つて基板上に、一般式Mo100-(x+Y)BxNy(ただし、
X,Yは前記と同じものを表わす)で示される
MoBN膜を作り、これを真空中で500〜1000℃に
加熱して表面に窒化ボロンを析出させることを特
徴とする基板上に形成させたMoBN膜の表面に
窒化ボロンを析出させた積層材料の製造方法。 本発明において高周波スパツタ法を使用するの
は、絶縁体である窒化ほう素をターゲツトとして
使用するからである。高周波スパツタ法はプラズ
マ生成のため、10-2〜102Paのアルゴン雰囲気下
で行う。得られるスパツタ膜の組成のX,Yはモ
リブデンターゲツト上に並べる窒化ボロンの面積
比に比例して増加し、またアルゴンガス圧によつ
ても変化する。従つて、前記両者の調整によつて
窒素とほう素の含有量を任意に変化させることが
できる。X+Yの値は5.8X+Y40であるこ
とが適当である。 基板としては例えば、モリブデン、サフアイ
ア、ガラス、シリコン、石英が挙げられる。 得られたMoBN膜を真空中(Mo,Bを酸化さ
せないため)で500〜1000℃で1分以上加熱する
と膜の表面に窒化ボロンが析出する。加熱温度が
500℃より低いと窒素・ほう素が表面に拡散しな
いので500℃以上であることが必要である。しか
し、1000℃を超えると窒化ボロンが分解して
Mo2Bを生成するので、1000℃以下であることが
必要である。 析出BN膜厚はMoBNのB及びNの濃度、真空
中における加熱温度及び加熱時間、真空度、不純
物量等によつて変化する。これらの制御によつて
析出BN膜厚を変化させることができる。 実施例 Moの4インチφターゲツト上に、5×5mm2
窒化ボロンの小片を並べて、アルゴン5×
10-3torr下で20分間高周波スパツタL、(150mA、
180W)モリブデン基板上に製膜した。得られた
膜を5×10-6torr以下の真空下で750〜950℃で1
時間加熱した。その結果は第1図に示す通りであ
つた。析出するBN膜厚は加熱前の膜中に含まれ
るBNの濃度によつて大きく変化する。厚いBN
膜を得るには、B+Nが8〜12原子%、20〜40原
子%であることがよい。 BNの膜厚は、スパツタ膜厚、スパツタガス
(Ar)圧、スパツタ膜厚のB・N濃度比、加熱温
度、加熱時の真空度及び不純物含有量によつて変
化し、これを適当に選択することによつて制御し
得る。得られた窒化ボロンを表面に析出させた
MoBNスパツタ膜の表面汚染度(付着した酸素
と炭素の合計量、原子%)をオージエ電子分光法
で調べた結果は下記表−1に示す通りであつた。
The present invention relates to a method for manufacturing a laminated material in which boron nitride is deposited on the surface of a MoBN film formed on a substrate. More specifically, the present invention relates to a material that uses a BN film to improve the oxidation resistance of Mo at high temperatures and reduces gas adsorption, and a method for producing a laminated material that is useful as a functional material that has a BN insulating film. Prior Art In general, metal/ceramic laminated materials are used in electronic devices, etc., in which the ceramic layer is used as a protective film to protect internal metals, and the ceramic layer itself has a functional role. These materials require good adhesion at the interface between metal and ceramic, and when used in electronic devices, film uniformity and controllability of film thickness are required. However, the melting point of ceramics is higher than that of metals (the melting point of boron nitride is
3000°C), it has been difficult to obtain high-quality laminated materials due to the highly reactive nature of metal surfaces and the difference in coefficient of thermal expansion between metal and ceramic. Conventionally, as a method for producing a metal/ceramic laminated material, a method is known in which the surface of a metal is coated with ceramic by chemical vapor deposition. However, when coating boron nitride ceramics using this method, the film contains impurities and the metal material must be heated to a very high temperature of 1000 to 2000°C because BN has a high melting point. Moreover, it had the disadvantage that its operation was troublesome. Other physical methods include vacuum evaporation, ion plating,
A method of depositing ceramics by sputtering is also known. However, although these methods can form a uniform film, they have the disadvantage of poor adhesion. A thermal spraying method is also known, but this method has disadvantages such as non-uniform coating, poor adhesion, and the need to heat the base material. The inventors do not have this drawback and at relatively low temperatures,
As a result of research into a method for easily coating with BN film, one of the present inventors first added N to the components of austenitic stainless steel that does not contain titanium.
0.1~0.3%, B 0.005~0.02%, Ce 0.001~0.1
% (where % indicates weight %) was made and heated in vacuum to approximately 700°C, it was discovered that BN could precipitate from inside the alloy to the surface and form a film. Obtained. (Special Application No. 144419, 1983)
However, this method has the problem that the metal is limited to austenitic stainless steel that does not contain titanium, and cerium is essential. Purpose of the Invention The present invention aims to solve the above-mentioned problems, and its purpose is to eliminate the need for adding cerium,
By heating in a vacuum, the ingredients (B, N) that become boron nitride are precipitated from the inside of the alloy to the surface to form BN.
The object of the present invention is to provide a method for manufacturing a laminated material that has excellent adhesion and is uniformly coated with boron nitride by forming a film. Structure of the Invention In order to achieve the above object, the inventors of the present invention have conducted intensive research and found that molybdenum and boron nitride are used as targets. , when a film is formed on the substrate, Mo 100-(X+Y) BxNy (where X and Y are atomic%
A film having a composition of X > 0, Y > 0, X + Y < 100), which represents When heated to 500-1000℃, nitrogen,
It was found that boron binds to the surface and precipitates boron nitride. The present invention was completed based on this knowledge. The gist of the present invention is to use molybdenum and boron nitride as targets and deposit the general formula Mo 100-(x+Y) BxNy (however,
X, Y represent the same as above)
A laminated material in which boron nitride is deposited on the surface of a MoBN film formed on a substrate, which is characterized by making a MoBN film and heating it in a vacuum to 500 to 1000°C to deposit boron nitride on the surface. Production method. The high frequency sputtering method is used in the present invention because boron nitride, which is an insulator, is used as a target. The high-frequency sputtering method is performed under an argon atmosphere of 10 -2 to 10 2 Pa to generate plasma. The compositions X and Y of the resulting sputtered film increase in proportion to the area ratio of boron nitride arranged on the molybdenum target, and also change depending on the argon gas pressure. Therefore, the contents of nitrogen and boron can be changed arbitrarily by adjusting both of the above. The value of X+Y is suitably 5.8X+Y40. Examples of the substrate include molybdenum, sapphire, glass, silicon, and quartz. When the obtained MoBN film is heated at 500 to 1000° C. for 1 minute or more in a vacuum (to prevent Mo and B from oxidizing), boron nitride is precipitated on the surface of the film. heating temperature
If the temperature is lower than 500°C, nitrogen and boron will not diffuse to the surface, so the temperature must be 500°C or higher. However, when the temperature exceeds 1000℃, boron nitride decomposes.
Since Mo 2 B is generated, the temperature must be 1000°C or lower. The thickness of the deposited BN film varies depending on the concentration of B and N in MoBN, the heating temperature and time in vacuum, the degree of vacuum, the amount of impurities, etc. Through these controls, the thickness of the deposited BN film can be changed. Example: Arrange small pieces of boron nitride of 5 x 5 mm 2 on a 4 inch φ target of Mo, and
High frequency spatter L, (150mA,
180W) Film was formed on a molybdenum substrate. The obtained film was heated at 750 to 950℃ under a vacuum of 5×10 -6 torr or less.
heated for an hour. The results were as shown in FIG. The thickness of the deposited BN film varies greatly depending on the concentration of BN contained in the film before heating. thick BN
In order to obtain a film, it is preferable that B+N be 8 to 12 atomic % and 20 to 40 atomic %. The BN film thickness changes depending on the sputter film thickness, the sputter gas (Ar) pressure, the B/N concentration ratio of the sputter film thickness, the heating temperature, the degree of vacuum during heating, and the impurity content, and should be selected appropriately. It can be controlled by The obtained boron nitride was deposited on the surface.
The degree of surface contamination (total amount of attached oxygen and carbon, atomic %) of the MoBN sputtered film was investigated using Auger electron spectroscopy, and the results were as shown in Table 1 below.

【表】 この結果が示すように、高周波スパツタ後、大
気中にさらしたものの表面は多量の酸素、炭素で
覆われているが、加熱後、窒化ボロンを析出させ
たものは、その量が数分の1に減少することがわ
かる。 発明の効果 本発明の方法によると、Moと窒化ボロンをタ
ーゲツトとして用い、基板上に高周波スパツタ法
によつてMoBN膜を形成するため、B,Nを高
濃度に含有させたものが容易に得られ、これを加
熱することによつて、その表面にBNを析出する
ためBN膜は均一厚さで高膜厚のものが容易に得
られ、しかもBN膜は強固に密着したものとな
る。 従つて、Moの高温における耐酸化性の優れた
ものとなし得ると共に、表面の窒化ボロンは非ガ
ス吸着性であつて、清浄面であるため、高真空装
置等の材料として好適である。 更にまた、窒化ボロンの高絶縁の特性を利用し
た、種々の素子を構成する材料、例えばMIS接合
素子(金属−絶縁体−半導体)やジヨゼフソン素
子(超電導体−絶縁体−超電導体)等の材料とし
ても優れたものである。
[Table] As shown in this result, the surface of objects exposed to the atmosphere after high-frequency sputtering is covered with a large amount of oxygen and carbon, but the amount of boron nitride precipitated after heating is small. It can be seen that this decreases to 1/2. Effects of the Invention According to the method of the present invention, a MoBN film containing a high concentration of B and N can be easily obtained because a MoBN film is formed on a substrate by high-frequency sputtering using Mo and boron nitride as targets. By heating this, BN is precipitated on the surface, so a BN film with a uniform thickness and a high thickness can be easily obtained, and the BN film is firmly adhered. Therefore, Mo can be made to have excellent oxidation resistance at high temperatures, and the boron nitride on the surface is non-gas adsorbent and has a clean surface, making it suitable as a material for high vacuum devices and the like. Furthermore, materials that make use of the high insulation properties of boron nitride can be used to construct various devices, such as MIS junction devices (metal-insulator-semiconductor) and Josefson devices (superconductor-insulator-superconductor). It is also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法における高周波スパツタ
法によつて生成した膜を真空中で加熱した場合に
おける加熱温度と析出するBN膜の厚さとの関係
図である。
FIG. 1 is a diagram showing the relationship between the heating temperature and the thickness of the deposited BN film when a film produced by the high frequency sputtering method in the method of the present invention is heated in vacuum.

Claims (1)

【特許請求の範囲】 1 モリブデン及び窒化ボロンをターゲツトとし
て使用し、高周波スパツタ法によつて基板上に 一般式 Mo100-(X+Y)BxNy(ただし、X>0,Y>0,
X+Y<100を表わす)で示されるMoBN膜を作
り、これを真空中で500〜1000℃に加熱して表面
に窒化ボロンを析出させることを特徴とする基板
上に形成させたMoBN膜の表面に窒化ボロンを
析出させた積層材料の製造方法。
[Claims] 1 Using molybdenum and boron nitride as targets, the general formula Mo 100-(X+Y) BxNy (where X>0, Y>0,
The surface of the MoBN film formed on the substrate is characterized by making a MoBN film represented by A method for producing a laminated material in which boron nitride is precipitated.
JP3457285A 1985-02-25 1985-02-25 Production of metal-ceramic laminate material deposited with boron nitride on surface of mobn film Granted JPS61194171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3457285A JPS61194171A (en) 1985-02-25 1985-02-25 Production of metal-ceramic laminate material deposited with boron nitride on surface of mobn film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3457285A JPS61194171A (en) 1985-02-25 1985-02-25 Production of metal-ceramic laminate material deposited with boron nitride on surface of mobn film

Publications (2)

Publication Number Publication Date
JPS61194171A JPS61194171A (en) 1986-08-28
JPS6316464B2 true JPS6316464B2 (en) 1988-04-08

Family

ID=12418041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3457285A Granted JPS61194171A (en) 1985-02-25 1985-02-25 Production of metal-ceramic laminate material deposited with boron nitride on surface of mobn film

Country Status (1)

Country Link
JP (1) JPS61194171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109393U (en) * 1989-02-16 1990-08-31

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811822B2 (en) * 1986-07-12 1996-02-07 日新電機株式会社 Method for forming boron nitride film
JPH0575496U (en) * 1992-03-11 1993-10-15 共栄電工株式会社 Non-seal pump
US6112843A (en) * 1996-11-07 2000-09-05 California Institute Of Technology High mobility vehicle
JP5120698B2 (en) * 2007-12-20 2013-01-16 日立ツール株式会社 Nitride-containing target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109393U (en) * 1989-02-16 1990-08-31

Also Published As

Publication number Publication date
JPS61194171A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
Randhawa et al. SnO2 films prepared by activated reactive evaporation
JP2003158307A (en) Method for producing superconducting material
JPH0234737A (en) Corrosion-resistant and heat-resistant aluminum-base alloy thin film and its manufacture
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
JPS6316464B2 (en)
Shimada et al. Deposition of TiN films on various substrates from alkoxide solution by plasma-enhanced CVD
Christian et al. Siliconizing of molybdenum metal in indium-silicon melts
JPS63166965A (en) Target for vapor deposition
JP2513338B2 (en) Method for forming boron nitride thin film coated substrate
JPH07150337A (en) Production of nitride film
JP5118276B2 (en) Sputtering target for forming gate insulating film for semiconductor device, manufacturing method thereof, and gate insulating film for semiconductor device
JPH0587591B2 (en)
Beyers et al. The Effect of Oxygen in Cosputtered (Titanium+ Silicon) Films
JPH0429612B2 (en)
JPS6447850A (en) Manufacture of thermoelement
JPS60149778A (en) Formation of cvd film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPH05320872A (en) Metallic article with corrosion resistant coating film and its production
JPH10324530A (en) Die for forming glass
JPS5916969A (en) Boron nitride coated parts
JPH05247626A (en) Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor
JP2988851B2 (en) Ceramic material excellent in corrosiveness of liquid sodium and method for producing the same
JPH03197666A (en) Combined oxide coated-material having oxidation resistance and its production
JPS6350320B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term