JPH05247626A - Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor - Google Patents

Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor

Info

Publication number
JPH05247626A
JPH05247626A JP4684792A JP4684792A JPH05247626A JP H05247626 A JPH05247626 A JP H05247626A JP 4684792 A JP4684792 A JP 4684792A JP 4684792 A JP4684792 A JP 4684792A JP H05247626 A JPH05247626 A JP H05247626A
Authority
JP
Japan
Prior art keywords
boron
film
sintered body
nitrogen
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4684792A
Other languages
Japanese (ja)
Inventor
Satoru Nishiyama
哲 西山
Naoto Kuratani
直人 鞍谷
Akinori Ebe
明憲 江部
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4684792A priority Critical patent/JPH05247626A/en
Publication of JPH05247626A publication Critical patent/JPH05247626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a sintered compact to the sintered compact itself, which incorporates silicon nitride or silicon carbide, being superior in friction resistance, wear resistance and seizuring resistance and being coated with a film which enables to stably exhibit the performance for a long period by excellently sticking to the sintered compact itself, and its manufacturing method. CONSTITUTION:The sintered compact 1 is incorporated with the silicon nitride and/or silicon carbide in which a part or whole of the surface is coated with a boron nitride containing film 11 which is formed by using vacuum deposition and/or sputtering and ion irradiation jointly and also the manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高硬度を有し、高温下
での強度に優れる珪素の窒化物や炭化物を含む焼結体で
あって、さらに耐摩擦、耐摩耗特性を向上させた焼結体
とその製造方法に関する。なお、本明細書における「焼
結体」には、各種物品の材料としての焼結体のほか、こ
れを利用した切削工具、成形金型等やそれらの部分、部
品等をも含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a sintered body containing a silicon nitride or a carbide having high hardness and excellent strength at high temperature, and further improved in friction resistance and wear resistance. The present invention relates to a sintered body and a manufacturing method thereof. The “sintered body” in the present specification includes not only a sintered body as a material for various articles, but also a cutting tool, a molding die and the like, parts thereof, parts and the like using the same.

【0002】[0002]

【従来の技術】珪素(Si)の窒化物や炭化物を含む焼
結体は、窒化珪素を例にとると、軽い、硬い、高強度と
いう特性を有し、特に高温強度に優れた特性をもつ。ま
た、切削工具材として用いた場合は、靱性も高く、切削
中の母材の“欠け”が生じ難い。また、炭化珪素を例に
とると、高硬度、高熱伝導性を有し、窒化珪素と同様高
温強度に優れた特性をもっている。そのため、これらは
耐摩擦、耐摩耗分野に幅広く用いられている。
2. Description of the Related Art Sintered bodies containing nitrides and carbides of silicon (Si) have the characteristics of lightness, hardness, and high strength when silicon nitride is taken as an example, and particularly excellent in high temperature strength. .. In addition, when used as a cutting tool material, it has high toughness and is less likely to cause "chips" in the base material during cutting. Also, taking silicon carbide as an example, it has high hardness and high thermal conductivity, and has the characteristics of high temperature strength as well as silicon nitride. Therefore, they are widely used in the fields of abrasion resistance and abrasion resistance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窒化珪
素や炭化珪素といったSiの窒化物やSiの炭化物は、
それ自体難焼結性の物質であるため、焼結体を得るため
には焼結助材を添加する必要がある。そして、この焼結
助材は焼結後、焼結体の粒界に残存する。例えば、窒化
珪素の焼結体の場合には、Y2 3 やMgOといったも
のが焼結助材として使用され、これらは窒化珪素原料粉
の表面に存在している酸化物(SiO2 )と反応して、
焼結中液相を形成し、焼結後、粒界にガラス相として残
存する。この粒界ガラス相成分は、高温強度に乏しく、
また焼結体が切削工具や金型として使用された場合には
被削材や成形体との凝着の原因になったりして、窒化珪
素のもつ特性を充分に引き出せない事態を招く。
However, Si nitrides such as silicon nitride and silicon carbide and Si carbides are
Since it is a substance that is difficult to sinter itself, it is necessary to add a sintering aid to obtain a sintered body. After sintering, this sintering aid remains at the grain boundaries of the sintered body. For example, in the case of a sintered body of silicon nitride, a material such as Y 2 O 3 or MgO is used as a sintering aid, and these are oxides (SiO 2 ) existing on the surface of the silicon nitride raw material powder. Reacting,
A liquid phase is formed during sintering and remains as a glass phase at the grain boundaries after sintering. This grain boundary glass phase component is poor in high temperature strength,
Further, when the sintered body is used as a cutting tool or a metal mold, it may cause adhesion to a work material or a molded body, which may lead to a situation in which the characteristics of silicon nitride cannot be sufficiently obtained.

【0004】炭化珪素の場合も同様で、焼結助材とし
て、ホウ素(B)元素や炭素(C)元素よりなる物質が
よく用いられる。この焼結助材は窒化珪素のように焼結
中に液相を形成しないものの、焼結体の粒界には残存
し、焼結体の特性に悪影響を及ぼす。また焼結助材とし
て酸化物を用いた場合も同様に、焼結体の粒界相成分が
焼結体の特性に悪影響を及ぼす。
The same applies to the case of silicon carbide, and a substance made of boron (B) element or carbon (C) element is often used as a sintering aid. Although this sintering aid does not form a liquid phase during sintering like silicon nitride, it remains at the grain boundaries of the sintered body and adversely affects the characteristics of the sintered body. Similarly, when an oxide is used as a sintering aid, the grain boundary phase component of the sintered body adversely affects the characteristics of the sintered body.

【0005】このようにSiの非酸化物の焼結体の粒界
相の制御が技術的に大きな課題になっており、これを改
善するためにホットプレス法やHIP(ホット アイソ
スタティック プレス)法、或いは反応焼結によって、
粒界相成分の少ないものを開発する試みがなされている
が、製造コストがかかり、一度に大量のものができなか
ったり、又は焼結体の密度が充分に上がらないといった
問題がある。
As described above, the control of the grain boundary phase of the Si non-oxide sintered body has become a technically large problem, and in order to improve this, the hot pressing method or the HIP (hot isostatic pressing) method is used. Or by reaction sintering,
Attempts have been made to develop a material having a small amount of grain boundary phase components, but there are problems that the manufacturing cost is high, a large quantity cannot be produced at one time, or the density of the sintered body cannot be sufficiently increased.

【0006】このため、前記焼結体の表面に膜を形成す
ることによって、前記問題点を解決しようとする試みも
見られるが、窒化珪素や炭化珪素は熱膨張係数が小さ
く、従って一般的なCVD法やPVD法で成膜された膜
内には大きな内部応力が発生し、そのため膜の密着性が
悪かったり、膜にクラックが入ったりする問題点があ
る。
For this reason, attempts have been made to solve the above-mentioned problems by forming a film on the surface of the sintered body, but silicon nitride and silicon carbide have a small coefficient of thermal expansion and are therefore generally used. A large internal stress is generated in the film formed by the CVD method or the PVD method, which causes problems such as poor adhesion of the film and cracks in the film.

【0007】そこで本発明は、珪素の窒化物や珪素の炭
化物を含む焼結体であって、焼結体それ自体よりも一層
耐摩擦性、耐摩耗性、耐焼付き性に優れ、且つ、該焼結
体によく密着して前記性能を長期にわたり安定して発揮
できる膜で被覆された焼結体とその製造方法を提供する
ことを目的とする。
Therefore, the present invention is a sintered body containing silicon nitride or silicon carbide, which is more excellent in abrasion resistance, wear resistance and seizure resistance than the sintered body itself, and It is an object of the present invention to provide a sintered body coated with a film capable of closely adhering to the sintered body and exhibiting the above-mentioned performance stably over a long period of time, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者は前記目的を達
成すべく研究を重ね、前記膜として窒化ホウ素含有膜に
着目した。窒化ホウ素(以下「BN」という)は、結晶
構造によって立方晶系閃亜鉛鉱型のもの(以下「c−B
N」という)、六方晶系のグラファイトと類似した構造
のもの(以下「h−BN」という)、或いは六方晶系の
ウルツ鉱型のもの(以下「w−BN」という)等に大別
される。
Means for Solving the Problems The present inventor has conducted extensive research to achieve the above-mentioned object, and has focused on a boron nitride-containing film as the film. Boron nitride (hereinafter referred to as “BN”) is a cubic zinc blende type (hereinafter referred to as “c-B” depending on its crystal structure).
N)), a structure similar to hexagonal graphite (hereinafter referred to as “h-BN”), or a hexagonal wurtzite type (hereinafter referred to as “w-BN”). It

【0009】c−BNはダイヤモンドに次ぐ高硬度を有
しており、熱的、化学的安定性にも優れていることか
ら、切削工具といった耐摩耗性を必要とする分野に応用
されており、また、絶縁性や高熱伝導率を有する特徴を
活かしてヒートシンク用材料として利用されている。さ
らに、w−BNもまた優れた化学的安定性、耐熱衝撃
性、或いは高硬度という特性を有していることにより、
各種耐摩耗性が要求される分野に応用されている。
Since c-BN has the second highest hardness after diamond and is excellent in thermal and chemical stability, c-BN is applied to a field requiring wear resistance such as a cutting tool, Further, it is used as a heat sink material by taking advantage of its insulating property and high thermal conductivity. Further, w-BN also has excellent chemical stability, thermal shock resistance, and high hardness,
It has been applied to various fields where abrasion resistance is required.

【0010】本発明者は、窒化珪素や炭化珪素の焼結体
の欠点を補うために被覆する膜として、当初、同質の
膜、すなわち窒化珪素や炭化珪素及びそれらよりも高温
安定性、硬度、耐熱衝撃性に優れたもの、例えばダイヤ
モンドやc−BN等に着目した。しかし、窒化珪素や炭
化珪素膜は、基材と同質であることより、前記内部応力
の問題は生じないが、c−BNに比べ、硬度や熱伝導性
の点で劣る。
The inventor of the present invention initially proposed a film of the same quality, namely, silicon nitride and silicon carbide, and high-temperature stability, hardness, Attention was paid to those having excellent thermal shock resistance, such as diamond and c-BN. However, since the silicon nitride and silicon carbide films are of the same quality as the base material, the problem of internal stress does not occur, but they are inferior in hardness and thermal conductivity as compared with c-BN.

【0011】また、ダイヤモンドは、鉄族元素との親和
性があり、h−BNやc−BNの化学的安定性よりも劣
る。このような背景により、本発明者は、BN含有膜が
窒化珪素や炭化珪素の焼結体に被覆する膜として最適と
考えた。また、c−BNは熱膨張係数が小さく、窒化珪
素や炭化珪素からなる焼結体上に成膜させても過大な内
部応力がかからないので、膜と焼結体との相性にも優れ
ている。
Further, diamond has an affinity with iron group elements and is inferior to the chemical stability of h-BN and c-BN. Based on such a background, the present inventor considered that the BN-containing film was optimal as a film to be coated on the sintered body of silicon nitride or silicon carbide. In addition, c-BN has a small coefficient of thermal expansion, and even if it is formed on a sintered body made of silicon nitride or silicon carbide, an excessive internal stress is not applied, so that the compatibility between the film and the sintered body is excellent. ..

【0012】次に、BN含有膜の製法であるが、c−B
Nやw−BNは、通常、共に高温度、高圧力下で人工的
に合成されるものである。このため、これまでc−BN
やw−BNを低温下で薄膜合成させようとする試みが、
各種PVDやCVD法によってなされてきた。CVD法
の一例を述べると、その手法では成膜すべき基体を反応
室に入れて、1000度近い温度に加熱させた後、ホウ
素元素(B)を含有するガスや窒素元素(N)を含有す
る原料ガスを反応室に導入し、熱分解反応させて基体の
表面にBN膜を形成しようとするものである。さらに、
PVD法においても、例えば窒素ガス中でホウ素をスパ
ッタリングし、基体表面にBN膜を成形しようとする反
応性スパッタ等が試みられている。しかし、いずれの手
法においてもh−BNの構成は可能であったが、c−B
Nやw−BNの合成は不可能であった。
Next, regarding the method for producing a BN-containing film, c-B
Both N and w-BN are usually artificially synthesized under high temperature and high pressure. Therefore, so far c-BN
Attempts to synthesize thin films of w-BN at low temperature
This has been done by various PVD and CVD methods. As an example of the CVD method, in the method, a substrate to be formed a film is placed in a reaction chamber and heated to a temperature close to 1000 ° C., and then a gas containing a boron element (B) and a nitrogen element (N) are contained. The raw material gas to be introduced is introduced into the reaction chamber to cause a thermal decomposition reaction to form a BN film on the surface of the substrate. further,
Also in the PVD method, for example, reactive sputtering in which boron is sputtered in nitrogen gas to form a BN film on the surface of the substrate has been attempted. However, h-BN could be constructed by any of the methods, but c-B
It was impossible to synthesize N or w-BN.

【0013】そこで本発明者は研究を重ね、焼結体上に
BN含有膜を形成する手法として、焼結体上にホウ素元
素を含有する膜を形成させると同時、交互、又は該膜形
成後に、イオンを照射する手法を用いれば、低温下で、
焼結体への密着性良好な窒化ホウ素含有膜を形成できる
ことを見出した。以上の知見に基づき本発明は、真空蒸
着及び(又は)スパッタリングとイオン照射とを併用す
ることにより形成された窒化ホウ素含有膜にて表面の一
部又は全部が被覆されていることを特徴とする珪素の窒
化物及び(又は)珪素の炭化物を含む焼結体を提供する
ものである。
Therefore, the inventors of the present invention have conducted extensive research and, as a method of forming a BN-containing film on a sintered body, simultaneously with forming a film containing a boron element on the sintered body, alternately, or after forming the film. If you use the method of irradiating ions, at low temperature,
It was found that a boron nitride-containing film having good adhesion to a sintered body can be formed. Based on the above findings, the present invention is characterized in that a part or all of the surface is covered with a boron nitride-containing film formed by using vacuum deposition and / or sputtering and ion irradiation in combination. The present invention provides a sintered body containing silicon nitride and / or silicon carbide.

【0014】さらに本発明は、その製造方法として、珪
素の窒化物及び(又は)珪素の炭化物を含む焼結体上に
ホウ素元素含有物質を真空蒸着法及び(又は)スパッタ
リング法にて付与し、該付与と同時、交互又は該付与の
あとにイオン源よりイオンを照射して窒化ホウ素含有膜
を形成するようにし、且つ、該成膜において前記焼結体
に到達するホウ素原子と窒素イオンの比及び前記照射イ
オンの加速エネルギを制御することにより前記窒化ホウ
素含有膜中のホウ素と窒素の原子比を制御することを特
徴とする窒化ホウ素含有膜被覆の焼結体の製造方法を提
供するものである。
Further, in the present invention, as a manufacturing method thereof, a boron element-containing substance is applied onto a sintered body containing silicon nitride and / or silicon carbide by a vacuum vapor deposition method and / or a sputtering method, A boron nitride-containing film is formed by irradiating ions from an ion source simultaneously with the application, alternately or after the application, and the ratio of boron atoms and nitrogen ions reaching the sintered body in the film formation. And a method for producing a sintered body of a boron nitride-containing film coating, which comprises controlling the atomic ratio of boron and nitrogen in the boron nitride-containing film by controlling the acceleration energy of the irradiation ions. is there.

【0015】前記方法における窒化ホウ素含有膜の成膜
において照射するイオンの加速エネルギは40KeV以
下が望ましい。イオンの加速エネルギが40KeVを超
えた場合には、膜中に過大なイオンの欠陥がもたらされ
膜の特性が劣化する。なお、加速エネルギの下限は特に
ない。前記窒化ホウ素含有膜被覆の焼結体における該膜
中に存在するホウ素と窒素の原子比は0.1以上50以
下が望ましい。
It is desirable that the acceleration energy of the ions to be irradiated in forming the boron nitride-containing film in the above method is 40 KeV or less. When the ion acceleration energy exceeds 40 KeV, excessive ion defects are introduced into the film and the characteristics of the film deteriorate. There is no particular lower limit to the acceleration energy. The atomic ratio of boron to nitrogen present in the film in the boron nitride-containing film-coated sintered body is preferably 0.1 or more and 50 or less.

【0016】膜中に存在するホウ素と窒素の原子比が
0.1より小さくなるように成膜すると、過大なスパッ
タリングによって、成膜時間が異常にかかり、コストの
増加を招く。また50を超えると、膜中のBNの含有量
が減少し、BNの特性が充分に引き出せない。従って、
前記方法においても、前記焼結体に到達するホウ素原子
と窒素イオンの比及び前記照射イオンの加速エネルギを
前記窒化ホウ素含有膜中に存在するホウ素と窒素の原子
比が0.1以上50以下になるように制御することが望
ましい。
When a film is formed such that the atomic ratio of boron to nitrogen existing in the film is smaller than 0.1, the film formation time becomes abnormal due to excessive sputtering, resulting in an increase in cost. On the other hand, if it exceeds 50, the BN content in the film decreases, and the BN characteristics cannot be sufficiently obtained. Therefore,
Also in the method, the atomic ratio of boron atoms to nitrogen ions reaching the sintered body and the acceleration energy of the irradiation ions are adjusted so that the atomic ratio of boron to nitrogen existing in the boron nitride-containing film is 0.1 or more and 50 or less. It is desirable to control so that

【0017】前記窒化ホウ素含有膜中のホウ素と窒素の
原子比は該膜の各部において一定であっても、或いは、
前記焼結体の表面から該膜の表面に向かって順次(連続
的、段階的又はこれらの組合せにて)減少していてもよ
い。この場合、前記方法を実施するにあたっては、原子
比がこのような分布になるように前記焼結体に到達する
ホウ素原子と窒素イオンの比及び前記照射イオンの加速
エネルギを制御すればよい。
The atomic ratio of boron to nitrogen in the film containing boron nitride may be constant in each part of the film, or
It may be gradually decreased (continuously, stepwise or a combination thereof) from the surface of the sintered body toward the surface of the film. In this case, when carrying out the method, the ratio of boron atoms and nitrogen ions reaching the sintered body and the acceleration energy of the irradiation ions may be controlled so that the atomic ratio has such a distribution.

【0018】窒化ホウ素含有膜中に存在するホウ素と窒
素の原子比が基体となる焼結体の表面から窒化ホウ素含
有膜の表面に向かって順次減少するように成膜した場合
は、膜内の内部応力をさらに減少させることができ、膜
の密着性がさらに向上し、また下地の焼結体の影響を受
け難くなり、c−BNやw−BNが成長し易いという利
点がある。
When the film is formed so that the atomic ratio of boron to nitrogen present in the boron nitride-containing film gradually decreases from the surface of the sintered body as the base toward the surface of the boron nitride-containing film, The internal stress can be further reduced, the adhesiveness of the film can be further improved, and the influence of the underlying sintered body can be reduced, and c-BN and w-BN can easily grow.

【0019】前記方法において用いるホウ素元素含有物
質としては、ホウ素単体、ホウ素の酸化物、ホウ素の窒
化物、ホウ素の炭化物等が考えられる。また、蒸発源の
方式は特に限定されるものではなく、例えば電子ビーム
(EB)、抵抗、レーザ、高周波等の手段を用いるもの
を適宜採用できる。また、ホウ素元素含有物質は、スパ
ッタによって焼結体上に膜形成されてもよが、この場
合、スパッタさせる手法も特に限定されず、イオンビー
ム、マグネトロン、高周波等の手段によりスパッタでき
る。
As the boron element-containing substance used in the above method, simple substance of boron, oxide of boron, nitride of boron, carbide of boron and the like can be considered. Further, the method of the evaporation source is not particularly limited, and for example, a method using means such as electron beam (EB), resistance, laser, high frequency can be appropriately adopted. Further, the boron element-containing substance may be formed into a film on the sintered body by sputtering, but in this case, the method of sputtering is not particularly limited, and it can be sputtered by a means such as ion beam, magnetron, or high frequency.

【0020】また、前記方法において用いるイオンとし
ては、窒素元素からの窒素イオンの他、これに不活性ガ
スや水素原子ガスによる不活性ガスイオンや水素イオン
を混合したもの等が考えられる。不活性ガスイオンや水
素イオンを用いると、蒸発ホウ素原子を一層高励起化す
ることができ、c−BNの形成に有利になる。なお、焼
結体へのイオン入射角度は特に限定されない。イオン源
の方式も特に限定はなく、例えば、カウフマン型、バケ
ット型等のものが考えられる。
Further, as the ions used in the above-mentioned method, in addition to nitrogen ions from the nitrogen element, it is conceivable that these are mixed with an inert gas ion such as an inert gas or a hydrogen atom gas or a hydrogen ion. When an inert gas ion or hydrogen ion is used, the vaporized boron atom can be more highly excited, which is advantageous for the formation of c-BN. The angle of incidence of ions on the sintered body is not particularly limited. The ion source system is also not particularly limited, and, for example, a Kauffman type, a bucket type, etc. can be considered.

【0021】成膜において基体に到達するホウ素原子と
窒素イオンの比(B/N輸送比)の調整は、例えば膜厚
モニターを用いて基体への蒸着量をモニターし、イオン
電流測定器を用いて基体へのイオンの照射量をモニター
することで行える。膜厚モニターは例えば水晶振動式膜
厚計でよく、イオン電流測定器は例えば2次電子抑制電
極を備えたファラデーカップ等でよいが、特に限定はな
い。これらにより膜を任意の膜厚に形成できる。
In the film formation, the ratio of boron atoms to nitrogen ions reaching the substrate (B / N transport ratio) is adjusted by, for example, monitoring the amount of vapor deposition on the substrate using a film thickness monitor and using an ion current measuring device. This can be done by monitoring the irradiation amount of ions on the substrate. The film thickness monitor may be, for example, a quartz vibration film thickness meter, and the ion current measuring device may be, for example, a Faraday cup equipped with a secondary electron suppressing electrode, but is not particularly limited. With these, the film can be formed to have an arbitrary thickness.

【0022】[0022]

【作用】本発明焼結体によると、それが密着性良好な窒
化ホウ素含有膜にて被覆されているので、焼結体それ自
体よりも一層耐摩擦性、耐摩耗性、耐焼付き性に優れ、
且つ、かかる性能を長期にわたり安定して発揮できる。
また、該焼結体の製造法によると、焼結基体に対し、ホ
ウ素元素含有物質が真空蒸着法及び(又は)スパッタリ
ング法にて付与され、該付与と同時、交互又は該付与の
あとにイオン源よりイオンが照射されて該焼結基体上に
窒化ホウ素含有膜が形成され、且つ、該成膜において該
基体に到達するホウ素原子と窒素イオンの比及び前記照
射イオンの加速エネルギが制御されることで、前記窒化
ホウ素含有膜中のホウ素と窒素の原子比が制御される。
According to the sintered body of the present invention, since it is coated with a boron nitride-containing film having good adhesion, it is more excellent in abrasion resistance, wear resistance and seizure resistance than the sintered body itself. ,
Moreover, such performance can be stably exhibited over a long period of time.
Further, according to the method for producing the sintered body, the boron element-containing substance is applied to the sintered substrate by the vacuum deposition method and / or the sputtering method, and at the same time as the application, alternately or after the application, ions are added. A boron nitride-containing film is formed on the sintered substrate by irradiation with ions from a source, and the ratio of boron atoms to nitrogen ions reaching the substrate and the acceleration energy of the irradiation ions are controlled in the film formation. This controls the atomic ratio of boron to nitrogen in the boron nitride-containing film.

【0023】また、前記成膜方法では、照射されるイオ
ンと蒸発原子とが衝突することにより、基体内に蒸発原
子が押し込まれ、基体内で反跳し、基体と膜の界面にて
両者の構成原子よりなる混合層が形成されることにより
膜の密着性が向上し、また、蒸発原子とイオンとの衝突
により蒸発原子が励起され、その結果、c−BNやw−
BNが膜内に形成される。よって、低温下で密着性に優
れたBN膜を得ることができる。
Further, in the above-mentioned film forming method, the irradiated ions collide with the vaporized atoms, so that the vaporized atoms are pushed into the substrate and recoil within the substrate, so that the vaporized atoms recoil at the interface between the substrate and film. The adhesion of the film is improved by forming the mixed layer of the constituent atoms, and the vaporized atoms are excited by the collision of the vaporized atoms with the ions, resulting in c-BN and w-
BN is formed in the film. Therefore, a BN film having excellent adhesion can be obtained at a low temperature.

【0024】[0024]

【実施例】以下、本発明の実施例につき図面を参照して
説明する。図1は本発明の実施例である窒化ホウ素含有
膜11を表面に形成された焼結基体1の断面図である。
図2は図1の焼結基体1を製造するに用いる成膜装置の
1例の概略構成を示したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a sintered substrate 1 having a boron nitride-containing film 11 formed on its surface, which is an embodiment of the present invention.
FIG. 2 shows a schematic structure of an example of a film forming apparatus used for manufacturing the sintered base 1 of FIG.

【0025】図2において、1は基体、2は基体1を支
持するホルダ、3はホウ素元素を含有する物質を蒸発さ
せる蒸発源、4はイオンを照射させるためのイオン源、
5は基体1上に蒸着されるホウ素の個数並びにその膜厚
を計測するための膜厚モニター、6は基体1に照射され
るイオンの個数を計測するためのイオン電流測定器であ
る。これらは真空容器7内に収容されている。容器7内
は排気装置8にて所望の真空度とされ得る。
In FIG. 2, 1 is a substrate, 2 is a holder for supporting the substrate 1, 3 is an evaporation source for evaporating a substance containing a boron element, 4 is an ion source for irradiating ions,
Reference numeral 5 is a film thickness monitor for measuring the number of boron vapor deposited on the substrate 1 and its film thickness, and 6 is an ion current measuring device for measuring the number of ions irradiated on the substrate 1. These are housed in the vacuum container 7. The inside of the container 7 can be made to have a desired vacuum degree by the exhaust device 8.

【0026】本発明に係る基体1を作るにあたっては、
まず基体1をホルダ2に支持させた後、真空容器7内を
所定の真空度に排気する。その後、基体1に、蒸発源3
を用いて、ホウ素元素を含有する物質3aを真空蒸着さ
せる。なお、真空蒸着に代えて、ホウ素元素含有物質を
スパッタすることで基体1上に膜形成してもよい。
In making the substrate 1 according to the present invention,
First, after the substrate 1 is supported by the holder 2, the inside of the vacuum container 7 is evacuated to a predetermined vacuum degree. After that, the evaporation source 3 is attached to the substrate 1.
Using, the substance 3a containing the boron element is vacuum-deposited. It should be noted that instead of vacuum vapor deposition, a film may be formed on the substrate 1 by sputtering a boron element-containing substance.

【0027】このホウ素元素を含有する物質の真空蒸着
(或いはスパッタ)と同時、又は交互に、又は蒸着後
に、イオン源4より窒素イオンを含有するイオン4a
を、当該蒸着面に照射する。この際、形成される窒化ホ
ウ素含有膜11中のホウ素と窒素の原子比(B/N組成
比)の調整は、膜厚モニター5を用いて基体1への蒸着
量をモニターし、イオン電流測定器6を用いて基体1へ
のイオンの照射量をモニターして行う。
Simultaneously with, or alternately with, vacuum deposition (or sputtering) of the substance containing the boron element, or after the deposition, the ions 4a containing nitrogen ions are supplied from the ion source 4.
Is irradiated on the vapor deposition surface. At this time, the atomic ratio (B / N composition ratio) of boron and nitrogen in the formed boron nitride-containing film 11 is adjusted by monitoring the deposition amount on the substrate 1 using the film thickness monitor 5 and measuring the ion current. The irradiation amount of ions to the substrate 1 is monitored using the container 6.

【0028】また、前記成膜においては、照射イオンの
加速エネルギを40KeV以下とし、また、形成される
膜中に存在するホウ素と窒素の原子比(B/N組成比)
が0.1以上50以下となるように、基体1に到達する
ホウ素原子と窒素イオンの比及び(又は)照射イオンの
加速エネルギを制御する。前記イオンの加速エネルギは
成膜中一定でも、連続的、断続的又はその組合せで変化
させてもよい。
In the film formation, the acceleration energy of irradiation ions is set to 40 KeV or less, and the atomic ratio of boron and nitrogen (B / N composition ratio) existing in the formed film.
Is controlled to be 0.1 or more and 50 or less, the ratio of boron atoms and nitrogen ions reaching the substrate 1 and / or the acceleration energy of irradiation ions is controlled. The acceleration energy of the ions may be constant during film formation, or may be changed continuously, intermittently, or a combination thereof.

【0029】また、そのような制御によって、形成され
る窒化ホウ素含有膜中に存在するホウ素と窒素の原子比
が、該膜中の各部で一定となるか、或いは焼結基体1の
表面から窒化ホウ素含有膜の表面に向かって連続的、段
階的或いはこれらの組合せにより順次減少するように成
膜する。以上に述べた成膜操作により、図1に示すよう
に、基体1表面に窒化ホウ素を含有する薄膜11が形成
される。また、前記成膜方法では、照射されるイオン4
aと蒸発原子とが衝突することにより、基体1内に蒸発
原子が押し込まれ、基体内で反跳し、基体1とそれに形
成される膜の界面にて両者の構成原子よりなる混合層が
形成されることにより膜の密着性が向上し、また、蒸発
原子とイオン4aとの衝突により蒸発原子が励起され、
その結果、c−BNやw−BNが容易に形成され、低温
下で密着性に優れたBN含有膜が形成される。
Further, by such control, the atomic ratio of boron to nitrogen existing in the formed boron nitride-containing film becomes constant at each part in the film or the surface of the sintered substrate 1 is nitrided. The boron-containing film is formed so that the surface of the boron-containing film decreases continuously, stepwise, or a combination thereof. By the film forming operation described above, a thin film 11 containing boron nitride is formed on the surface of the substrate 1 as shown in FIG. Further, in the film forming method, the irradiated ions 4
When a and evaporating atoms collide with each other, the evaporating atoms are pushed into the substrate 1 and recoil within the substrate, and a mixed layer composed of both constituent atoms is formed at the interface between the substrate 1 and the film formed thereon. By doing so, the adhesion of the film is improved, and the vaporized atoms are excited by the collision between the vaporized atoms and the ions 4a,
As a result, c-BN and w-BN are easily formed, and a BN-containing film having excellent adhesion at low temperature is formed.

【0030】次に図2示す成膜装置による本発明に係る
焼結体の製法の具体例とそれによって得られる窒化ホウ
素含有膜被覆の焼結体について説明する。なお、以下で
説明する焼結基体はいずれも所定曲率のプレス成形凹所
を有するプレス型状のものである。 実施例1 図2に示す装置を用いて、窒化珪素よりなる焼結基体1
を基体ホルダ2に設置し、5×10-7Torrの真空度
に真空容器7を保持した。その後、純度99.7%のホ
ウ素ペレット3aを電子ビーム蒸発源3を用いて蒸気化
し、基体1上に成膜した。それと同時に、イオン源4に
純度5N(99.999%)の窒素ガスを真空容器7内
が5×10-5Torrになるまで導入し、イオン化さ
せ、基体1に15KeVの加速エネルギで、基体1に立
てた法線に対して0°の角度で照射した。イオン源4に
はカスプ磁場を用いたバケット型イオン源を用いた。
Next, a specific example of a method for producing a sintered body according to the present invention by the film forming apparatus shown in FIG. 2 and a boron nitride-containing film-coated sintered body obtained thereby will be described. It should be noted that each of the sintered substrates described below is of a press type having a press molding recess having a predetermined curvature. Example 1 Using the apparatus shown in FIG. 2, a sintered substrate 1 made of silicon nitride
Was placed on the substrate holder 2, and the vacuum container 7 was held at a vacuum degree of 5 × 10 −7 Torr. Then, the boron pellet 3a having a purity of 99.7% was vaporized using the electron beam evaporation source 3 to form a film on the substrate 1. At the same time, nitrogen gas having a purity of 5N (99.999%) is introduced into the ion source 4 until the inside of the vacuum container 7 reaches 5 × 10 −5 Torr and ionized, and the substrate 1 is accelerated with an acceleration energy of 15 KeV. Irradiation was performed at an angle of 0 ° with respect to the normal line that was set up. As the ion source 4, a bucket type ion source using a cusp magnetic field was used.

【0031】なお、基体1は窒化珪素原料粉にY2 3
とAl2 3 よりなる焼結助材を添加して常圧下で焼結
させたものであり、焼結助材は原料粉に対して重量%で
5%を添加した。そして全体を1800度で、窒素雰囲
気下で焼結させた。成膜はB/Nの組成比が20になる
よう、ホウ素原子の窒素イオンによるスパッタ率等を考
慮して、ホウ素原子の蒸発量と窒素イオンの照射量を調
整し、約500nm厚の膜厚を得るように行った。
The substrate 1 is composed of silicon nitride raw material powder and Y 2 O 3 powder.
And a sintering aid made of Al 2 O 3 were added and sintered under normal pressure. The sintering aid was added at 5% by weight with respect to the raw material powder. Then, the whole was sintered at 1800 degrees under a nitrogen atmosphere. The film is formed to a thickness of about 500 nm by adjusting the evaporation amount of boron atoms and the irradiation amount of nitrogen ions in consideration of the sputtering rate of nitrogen atoms of boron atoms so that the composition ratio of B / N is 20. Went to get.

【0032】その後、イオンの加速エネルギ2KeV、
B/N組成比=1の条件で約5000nm厚成膜した。 実施例2 実施例1と同じ基体を用い、イオンの加速エネルギ−1
5KeV、B/N組成比=20の条件で約500nm厚
成膜し、その後、イオンの加速エネルギ200eV、B
/N組成比=1の条件で約500nm厚成膜した。な
お、その他の条件は実施例1と同じであった。
After that, the acceleration energy of ions is 2 KeV,
A film having a thickness of about 5000 nm was formed under the condition of B / N composition ratio = 1. Example 2 Using the same substrate as in Example 1, ion acceleration energy-1
A film having a thickness of about 500 nm is formed under the conditions of 5 KeV and B / N composition ratio = 20, and thereafter, ion acceleration energy is 200 eV, B
A film having a thickness of about 500 nm was formed under the condition of / N composition ratio = 1. The other conditions were the same as in Example 1.

【0033】実施例3 実施例1と同じ基体を用い、イオンの加速エネルギ35
KeV、B/N組成比=1の条件で約1000nm厚成
膜した。 実施例4 炭化珪素よりなる焼結基体1を用い、イオンの加速エネ
ルギ20KeV、B/N組成比=20の条件で約250
nm厚成膜し、その後、イオンの加速エネルギ2Ke
V、B/N組成比=4の条件で約250nm厚成膜し、
さらにイオンの加速エネルギ2KeV、B/N組成比=
1の条件で約500nm厚成膜した。なお、その他の条
件は実施例1と同じであった。
Example 3 Using the same substrate as in Example 1, ion acceleration energy 35
A film having a thickness of about 1000 nm was formed under the conditions of KeV and B / N composition ratio = 1. Example 4 A sintered substrate 1 made of silicon carbide was used, and the acceleration energy of ions was 20 KeV and the B / N composition ratio was 20.
nm thick film formation, and then ion acceleration energy 2 Ke
A film having a thickness of about 250 nm is formed under the conditions of V and B / N composition ratio = 4,
Further, the ion acceleration energy is 2 KeV and the B / N composition ratio =
A film having a thickness of about 500 nm was formed under the condition of 1. The other conditions were the same as in Example 1.

【0034】なお、この基体はSiC原料にB、Cをそ
れぞれ重量%で0.3%、0.5%添加して2000度
の下、Ar雰囲気中で常圧焼結させたβ−SiC焼結体
であった。 比較例1 実施例1と同じ窒化珪素焼結基体にイオンの加速エネル
ギ50KeV、B/N組成比=1の条件で約1000n
m厚成膜した。なお、その他の条件は実施例1と同じで
あった。
This substrate was β-SiC sintered by adding 0.3% and 0.5% by weight of B and C, respectively, to a SiC raw material and sintering at 2000 ° C. in an Ar atmosphere under atmospheric pressure. It was a union. Comparative Example 1 Approximately 1000 n on the same silicon nitride sintered substrate as in Example 1 under the conditions of ion acceleration energy of 50 KeV and B / N composition ratio = 1.
A film having a thickness of m was formed. The other conditions were the same as in Example 1.

【0035】比較例2 実施例4と同じ炭化珪素焼結基体を用い、イオンの加速
エネルギ15KeV、B/N組成比=50の条件で約5
00nm厚成膜した。その後、イオンの加速エネルギ2
00eV、B/N組成比=1の条件で約500nm厚成
膜した。なお、その他の条件は実施例4と同じであっ
た。
Comparative Example 2 The same silicon carbide sintered substrate as in Example 4 was used, and the ion acceleration energy was 15 KeV and the B / N composition ratio was 50.
A film having a thickness of 00 nm was formed. After that, the ion acceleration energy 2
A film having a thickness of about 500 nm was formed under the conditions of 00 eV and B / N composition ratio = 1. The other conditions were the same as in Example 4.

【0036】前記実施例1〜4、比較例1、2の各焼結
基体を用いて、酸化鉛(PbO)70重量%、酸化珪素
(SiO2 )27重量%、微量成分3重量%よりなるガ
ラス塊を窒素雰囲気中で温度500℃、プレス圧40K
g/cm2 でプレスした。また、比較例1、2の他に比
較例として膜を成膜していない実施例1、4と同じ基体
を用いて前記と同じプレス試験を行った。
Using each of the sintered substrates of Examples 1 to 4 and Comparative Examples 1 and 2, 70 wt% of lead oxide (PbO), 27 wt% of silicon oxide (SiO 2 ) and 3 wt% of trace components. Glass mass in a nitrogen atmosphere at a temperature of 500 ° C and a pressing pressure of 40K
Pressed at g / cm 2 . Further, in addition to Comparative Examples 1 and 2, the same press test as above was performed using the same substrate as in Examples 1 and 4 in which a film was not formed as a comparative example.

【0037】プレスする際には2分間当条件を維持し、
その後300℃に冷却後、ガラスを取り出した。そし
て、成型後のガラスの状態を確認したところ、実施例1
〜4のものには変色が見られなかったが、膜を成膜して
いない窒化珪素焼結基体を用いたプレスでは、ガラスに
変色が見られた。また膜を成膜していない炭化珪素焼結
基体を用いたものは、変色はなかったものの、成型後の
ガラス表面に焼結助材の付着が認められた。 また、実
施例1と比較例1、2の膜の硬度を10g荷重マイクロ
ビッカース硬度計にて測定したところ、それぞれ550
0、2200、2000であり、耐摩耗性に影響する硬
度は比較例1、2のものは実施例1より劣っていた。
When pressing, maintain this condition for 2 minutes,
Then, after cooling to 300 ° C., the glass was taken out. When the state of the glass after molding was confirmed, Example 1
No discoloration was observed in the samples Nos. 4 to 4, but discoloration was observed in the glass in the press using the silicon nitride sintered substrate on which no film was formed. Further, in the case of using the silicon carbide sintered substrate on which a film was not formed, although the discoloration was not observed, the adhesion of the sintering aid was recognized on the glass surface after molding. Further, the hardness of the films of Example 1 and Comparative Examples 1 and 2 was measured with a 10 g load Micro Vickers hardness tester, and it was found to be 550 respectively.
0, 2200, 2000, and the hardnesses affecting the wear resistance of Comparative Examples 1 and 2 were inferior to those of Example 1.

【0038】[0038]

【発明の効果】本発明によると、珪素の窒化物や珪素の
炭化物を含む焼結体であって、焼結体それ自体よりも一
層耐摩擦性、耐摩耗性、耐焼付き性に優れ、且つ、焼結
体自体によく密着して前記性能を長期にわたり安定して
発揮できる膜で被覆された焼結体とその製造方法を提供
することができる。
According to the present invention, a sintered body containing a nitride of silicon or a carbide of silicon, which is more excellent in abrasion resistance, wear resistance and seizure resistance than the sintered body itself, and It is possible to provide a sinter that is coated with a film that adheres well to the sinter itself and can stably exhibit the above performance for a long period of time, and a method for producing the sinter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】図1に示す焼結体の製造に用いる成膜装置の1
例の概略構成を示す図である。
FIG. 2 is a film forming apparatus 1 used for manufacturing the sintered body shown in FIG.
It is a figure which shows schematic structure of an example.

【符号の説明】[Explanation of symbols]

1 基体 11 窒化ホウ素含有膜 2 基体ホルダ 3 蒸発源 3a ホウ素元素含有物質 4 イオン源 4a イオン 5 膜厚モニター 6 イオン電流測定器 7 真空容器 8 排気装置 1 Substrate 11 Boron Nitride Containing Film 2 Substrate Holder 3 Evaporation Source 3a Boron Element-Containing Substance 4 Ion Source 4a Ion 5 Film Thickness Monitor 6 Ion Current Measuring Device 7 Vacuum Container 8 Exhaust Device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 緒方 潔 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kiyoshi Ogata 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 真空蒸着及び(又は)スパッタリングと
イオン照射とを併用することにより形成された窒化ホウ
素含有膜にて表面の一部又は全部が被覆されていること
を特徴とする珪素の窒化物及び(又は)珪素の炭化物を
含む焼結体。
1. A silicon nitride characterized in that a part or all of the surface is covered with a boron nitride-containing film formed by using vacuum evaporation and / or sputtering and ion irradiation in combination. And / or a sintered body containing a carbide of silicon.
【請求項2】 前記窒化ホウ素含有膜におけるホウ素と
窒素の原子比が0.1以上50以下である請求項1記載
の焼結体。
2. The sintered body according to claim 1, wherein the atomic ratio of boron to nitrogen in the boron nitride-containing film is 0.1 or more and 50 or less.
【請求項3】 前記窒化ホウ素含有膜中に存在するホウ
素と窒素の原子比が該膜の各部において一定である請求
項1記載の焼結体。
3. The sintered body according to claim 1, wherein the atomic ratio of boron to nitrogen present in the boron nitride-containing film is constant in each part of the film.
【請求項4】 前記窒化ホウ素含有膜中に存在するホウ
素と窒素の原子比が前記焼結体の表面から該窒化ホウ素
含有膜の表面に向かって順次減少している請求項1記載
の焼結体。
4. The sintering according to claim 1, wherein the atomic ratio of boron to nitrogen existing in the boron nitride-containing film is gradually decreased from the surface of the sintered body toward the surface of the boron nitride-containing film. body.
【請求項5】 珪素の窒化物及び(又は)珪素の炭化物
を含む焼結体上にホウ素元素含有物質を真空蒸着法及び
(又は)スパッタリング法にて付与し、該付与と同時、
交互又は該付与のあとにイオン源よりイオンを照射して
窒化ホウ素含有膜を形成するようにし、且つ、該成膜に
おいて前記焼結体に到達するホウ素原子と窒素イオンの
比及び前記照射イオンの加速エネルギを制御することに
より前記窒化ホウ素含有膜中のホウ素と窒素の原子比を
制御することを特徴とする請求項1記載の焼結体の製造
方法。
5. A boron element-containing substance is applied onto a sintered body containing a nitride of silicon and / or a carbide of silicon by a vacuum vapor deposition method and / or a sputtering method, and at the same time as the application.
Alternately or after the application, ions are irradiated from an ion source to form a boron nitride-containing film, and the ratio of boron atoms and nitrogen ions reaching the sintered body in the film formation and the irradiation ions The method for producing a sintered body according to claim 1, wherein the atomic ratio of boron to nitrogen in the film containing boron nitride is controlled by controlling the acceleration energy.
【請求項6】 前記成膜において照射するイオンの加速
エネルギを40KeV以下とする請求項5記載の方法。
6. The method according to claim 5, wherein the acceleration energy of the ions to be irradiated in the film formation is 40 KeV or less.
【請求項7】 前記成膜において前記焼結体に到達する
ホウ素原子と窒素イオンの比及び前記照射イオンの加速
エネルギを前記窒化ホウ素含有膜中に存在するホウ素と
窒素の原子比が0.1以上50以下になるように制御す
る請求項5又は6記載の方法。
7. The ratio of boron atoms to nitrogen ions reaching the sintered body and the acceleration energy of the irradiation ions in the film formation are such that the atomic ratio of boron to nitrogen present in the boron nitride-containing film is 0.1. The method according to claim 5 or 6, wherein the control is performed so as to be 50 or less.
【請求項8】 前記成膜において前記焼結体に到達する
ホウ素原子と窒素イオンの比及び前記照射イオンの加速
エネルギを前記窒化ホウ素含有膜中に存在するホウ素と
窒素の原子比が該膜の各部において一定となるように制
御する請求項5、6又は7記載の方法。
8. In the film formation, the ratio of boron atoms and nitrogen ions that reach the sintered body and the acceleration energy of the irradiation ions are such that the atomic ratio of boron and nitrogen present in the boron nitride-containing film is The method according to claim 5, 6 or 7, wherein the control is performed so as to be constant in each part.
【請求項9】 前記成膜において前記焼結体に到達する
ホウ素原子と窒素イオンの比及び前記照射イオンの加速
エネルギを前記窒化ホウ素含有膜中に存在するホウ素と
窒素の原子比が前記焼結体の表面から該膜の表面に向か
って順次減少するように制御する請求項5、6又は7記
載の方法。
9. In the film formation, the ratio of boron atoms to nitrogen ions reaching the sintered body and the acceleration energy of the irradiation ions are determined by the atomic ratio of boron to nitrogen existing in the boron nitride-containing film. 8. The method according to claim 5, 6 or 7, which is controlled so as to decrease gradually from the surface of the body toward the surface of the film.
JP4684792A 1992-03-04 1992-03-04 Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor Pending JPH05247626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684792A JPH05247626A (en) 1992-03-04 1992-03-04 Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684792A JPH05247626A (en) 1992-03-04 1992-03-04 Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH05247626A true JPH05247626A (en) 1993-09-24

Family

ID=12758735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684792A Pending JPH05247626A (en) 1992-03-04 1992-03-04 Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH05247626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020236A (en) * 2023-10-10 2023-11-10 康硕(山西)智能制造有限公司 Scraping flat base for metal 3D printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020236A (en) * 2023-10-10 2023-11-10 康硕(山西)智能制造有限公司 Scraping flat base for metal 3D printing
CN117020236B (en) * 2023-10-10 2024-01-02 康硕(山西)智能制造有限公司 Scraping flat base for metal 3D printing

Similar Documents

Publication Publication Date Title
US4762729A (en) Method of producing cubic boron nitride coated material
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
Perrone State-of-the-art reactive pulsed laser deposition of nitrides
JPH05247626A (en) Sintered compact incorporating silicon nitride coated with boron nitride containing film and/or silicon carbide and manufacture therefor
EP0429993B1 (en) Method of forming thin film containing boron nitride, magnetic head and method of preparing said magnetic head
JP2770650B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JP3491288B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JP2513338B2 (en) Method for forming boron nitride thin film coated substrate
JPH07150337A (en) Production of nitride film
JP3254727B2 (en) Method for forming boron nitride-containing film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPS6316464B2 (en)
JP2767972B2 (en) Method for producing TiAl-based intermetallic compound layer
JP3473089B2 (en) Boron nitride-containing film-coated substrate
JPH07258822A (en) Boron nitride containing film and its production
JPH03229857A (en) Formation of thin film of boron nitride
JPH0582473B2 (en)
JPH07150336A (en) Film-coated substrate
JPH11209194A (en) Composition hard film, forming method of the film and wear resistant part
JPH02175694A (en) Diamond coating
JPH0718414A (en) Film stuck body and its production
JPH06172967A (en) Boron nitride-containing film-coated base and its production
JPH06330282A (en) Substrate coated with boron nitride-containing film and its production
JPH04310515A (en) Highly hard ceramic coating film and its production
JPS61174378A (en) Production of rigid material coated with boron nitride

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011211