JPH04333574A - Coating film and its production - Google Patents

Coating film and its production

Info

Publication number
JPH04333574A
JPH04333574A JP13598891A JP13598891A JPH04333574A JP H04333574 A JPH04333574 A JP H04333574A JP 13598891 A JP13598891 A JP 13598891A JP 13598891 A JP13598891 A JP 13598891A JP H04333574 A JPH04333574 A JP H04333574A
Authority
JP
Japan
Prior art keywords
film
substrate
base
base film
constituent element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13598891A
Other languages
Japanese (ja)
Inventor
Satoru Nishiyama
哲 西山
Kiyoshi Ogata
潔 緒方
Akinori Ebe
明憲 江部
Naoto Kuratani
直人 鞍谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP13598891A priority Critical patent/JPH04333574A/en
Publication of JPH04333574A publication Critical patent/JPH04333574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the adhesion of a coating film to a substrate by providing a base film consisting of a substrate constituent element with the density decreasing from the substrate toward the film and a film constituent element between the substrate and the coating. CONSTITUTION:A vacuum vessel is evacuated to a specified vacuum, then a material 12 contg. a substrate constituent element is vaporized from a vaporization source 10, and a material 14 contg. a film constituent element is vaporized from a vaporization source 14. At this time, the amt. of the material 12 to be vaporized from the source 10 is continuously or intermittently decreased to form a base film 4 with the substrate constituent element decreasing from the substrate 2 toward a coating film 6, and then the coating film 6 is vapor- deposited. After the base film 4 is formed, simultaneously or alternately with the vapor-deposition an accelerated ion 22 is drawn out of an ion source 20, and the ratio of the number of the vaporized atoms reaching the substrate 2 to that of the ions is adjusted by a film thickness monitor 18 and an ion current monitor 24. The crystallinity, adhesion, stability, etc., of the film 6 are improved in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、基体の表面に膜を形
成した膜被覆物およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane-coated article in which a membrane is formed on the surface of a substrate, and a method for producing the same.

【0002】0002

【従来の技術】例えば基体の耐摩耗性を高める、あるい
は基体の熱伝導性を高める、等の種々の目的で、基体の
表面に膜を形成した膜被覆物が従来から作られている。
2. Description of the Related Art Membrane coatings, in which a film is formed on the surface of a substrate, have been conventionally produced for various purposes, such as increasing the abrasion resistance of the substrate or increasing the thermal conductivity of the substrate.

【0003】このような膜の形成は、PVD法(物理気
相成長法)やCVD法(化学気相成長法)によって行わ
れている。一般的に言って、CVD法は、基体温度を高
くして成膜するため、基体と膜の密着性に優れていると
いう利点を有しているが、基体には成膜温度に耐えるも
のしか使用できないという欠点を有している。これに対
して、PVD法はCVD法よりも低温下で成膜できるが
、CVD法に比較して膜の密着性が劣るという欠点を有
している。
[0003] Formation of such a film is performed by a PVD method (physical vapor deposition method) or a CVD method (chemical vapor deposition method). Generally speaking, the CVD method has the advantage of excellent adhesion between the substrate and the film because the film is formed at a high substrate temperature, but only the substrate can withstand the film formation temperature. It has the disadvantage that it cannot be used. On the other hand, although the PVD method can form a film at a lower temperature than the CVD method, it has the disadvantage that the adhesion of the film is inferior to that of the CVD method.

【0004】そのため近年は、プラズマやイオン照射を
積極的に利用して、比較的低温下で膜を作製できるCV
D法や、膜の密着性を改善できるPVD法が種々試みら
れている。
[0004] Therefore, in recent years, CV technology, which can actively utilize plasma and ion irradiation to produce films at relatively low temperatures, has been developed.
Various attempts have been made to use the D method and the PVD method that can improve film adhesion.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような試みにも拘わらず、従来の膜被覆物は基体の表面
に目的とする膜を直接形成したものであるため、■膜の
基体に対する濡れ性(なじみ)の悪さにより、膜の密着
性が劣る、■基体と膜との間の格子定数や熱膨張係数等
の違いにより、膜の結晶成長が妨げられたり、膜に内部
応力が誘起されたりするため、膜の密着性、安定性およ
び結晶性が劣る、等の問題がある。
[Problems to be Solved by the Invention] However, despite the above-mentioned attempts, conventional film coatings have the desired film directly formed on the surface of the substrate; Poor adhesion of the film due to poor compatibility (compatibility); Differences in lattice constants, coefficients of thermal expansion, etc. between the substrate and the film may impede crystal growth of the film or induce internal stress in the film. Therefore, there are problems such as poor adhesion, stability, and crystallinity of the film.

【0006】そこでこの発明は、目的とする膜の基体に
対する濡れ性の改善および当該膜と基体との間の格子定
数差、熱膨張係数差等の緩和を図った膜被覆物およびそ
の製造方法を提供することを主たる目的とする。
Accordingly, the present invention provides a membrane coating and a method for manufacturing the same, which improve the wettability of the target membrane to the substrate and alleviate the difference in lattice constant, thermal expansion coefficient, etc. between the membrane and the substrate. The main purpose is to provide

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、この発明の膜被覆物は、前述したような基体と膜との
間に、基体構成元素および膜構成元素より成る下地膜で
あって、その内部における基体構成元素の密度が基体側
から当該下地膜の表面に向かうにつれて減少するように
分布したものを設けたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the film coating of the present invention comprises a base film consisting of a base constituent element and a film constituent element between the base body and the film as described above. , is characterized in that the density of the base constituent elements within the base film is distributed such that it decreases from the base side toward the surface of the base film.

【0008】またこの発明の製造方法は、基体の表面に
膜を形成して膜被覆物を作る際、まず基体の表面に基体
構成元素および前記膜構成元素の蒸着とイオン照射とを
行って下地膜を形成し、しかもこの蒸着は基体構成元素
の蒸着量を減らしながら行い、しかる後にこの下地膜の
表面に前記膜を形成することを特徴とする。
[0008] Furthermore, in the manufacturing method of the present invention, when forming a film on the surface of a substrate to produce a film-coated article, first, the substrate constituent elements and the film constituent elements are vapor-deposited and ion irradiated on the surface of the substrate. The method is characterized in that a base film is formed, and this vapor deposition is performed while reducing the amount of the base constituent element to be deposited, and then the film is formed on the surface of the base film.

【0009】[0009]

【作用】上記膜被覆物においては、上記のような組成の
変化した下地膜の存在によって、目的とする膜と基体と
の間の格子定数の差、熱膨張係数の差等が緩和される。 その結果、目的とする膜の結晶性、密着性および安定性
等が向上する。また、基体、下地膜および目的とする膜
の各界面付近には共通の元素がそれぞれ存在するので、
これらの膜の濡れ性が改善され、従ってこのことからも
膜と基体との密着性が向上する。
[Function] In the above-mentioned membrane coating, the presence of the underlayer film having a changed composition as described above alleviates the difference in lattice constant, thermal expansion coefficient, etc. between the target film and the substrate. As a result, the crystallinity, adhesion, stability, etc. of the target film are improved. In addition, common elements exist near the interfaces of the substrate, base film, and target film, so
The wettability of these films is improved, and this also improves the adhesion between the film and the substrate.

【0010】また上記製造方法によれば、基体の表面に
上記のような組成の変化した下地膜を容易に形成するこ
とができると共に、照射イオンの押し込み作用によって
下地膜と基体との界面付近に両者の構成元素を含む混合
層が形成され、これがあたかも楔のような働きをするの
で、基体に対する下地膜の密着性が一層向上し、それに
よって全体として見ても目的とする膜と基体との密着性
が一層向上する。
Further, according to the above manufacturing method, it is possible to easily form a base film having a changed composition as described above on the surface of the substrate, and the pushing action of the irradiated ions causes the base film to be formed near the interface between the base film and the base body. A mixed layer containing the constituent elements of both is formed, and this acts like a wedge, further improving the adhesion of the base film to the substrate, thereby achieving the desired bond between the film and the substrate as a whole. Adhesion is further improved.

【0011】[0011]

【実施例】図1は、この発明に係る膜被覆物の一例を示
す概略断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view showing an example of a membrane coating according to the present invention.

【0012】この膜被覆物は、従来のように基体2の表
面に目的とする膜6を直接形成するのではなく、両者の
間に、基体2を構成する元素および膜6を構成する元素
から成る下地膜4を介在させている。しかもこの下地膜
4内における基体構成元素の密度を、基体2側から当該
下地膜4の表面に向かうにつれて連続的あるいは断続的
に減少するように分布させている。見方をかえれば、下
地膜4内における膜6を構成する元素の密度を、当該下
地膜4の表面に向かうにつれて増大するように分布させ
ている。
This film coating does not directly form the desired film 6 on the surface of the substrate 2 as in the conventional method, but instead forms a film between the two, consisting of the elements constituting the substrate 2 and the elements constituting the film 6. A base film 4 consisting of the following is interposed. Moreover, the density of the base material constituent elements within this base film 4 is distributed so as to decrease continuously or intermittently from the base body 2 side toward the surface of the base film 4. In other words, the density of the elements constituting the film 6 in the base film 4 is distributed so as to increase toward the surface of the base film 4.

【0013】基体2の種類は特定のものに限定されるも
のではなく、例えば各種の金属、セラミックス、ガラス
、更にはその他のものでも良い。
The type of substrate 2 is not limited to a specific one, and may be, for example, various metals, ceramics, glass, or other materials.

【0014】また、膜6の種類も特定のものに限定され
るものではなく、例えばBN、TiN等の窒化物膜、ダ
イヤモンド含有の炭素膜、更にはその他のものでも良い
Furthermore, the type of film 6 is not limited to a specific one, and may be, for example, a nitride film such as BN or TiN, a diamond-containing carbon film, or even other films.

【0015】このような膜被覆物においては、上記のよ
うに組成の変化した下地膜4の存在によって、目的とす
る膜6と基体2との間の格子定数の差が緩和されるため
、膜6の結晶性が向上する。また、目的とする膜6の下
に同じ構造を持つ下地膜4を作ることができるので、目
的とする膜6の結晶構造を制御することも可能になる。
In such a film coating, the difference in lattice constant between the target film 6 and the substrate 2 is alleviated by the presence of the base film 4 whose composition has changed as described above, so that the film The crystallinity of No. 6 is improved. Further, since the base film 4 having the same structure can be formed under the target film 6, it is also possible to control the crystal structure of the target film 6.

【0016】また、同じく下地膜4の存在によって、目
的とする膜6と基体2との間の熱膨張係数の差が緩和さ
れるため、膜6の内部応力が軽減され、膜6の密着性や
膜6の安定性等も向上する。
Furthermore, the presence of the base film 4 alleviates the difference in thermal expansion coefficient between the target film 6 and the substrate 2, thereby reducing the internal stress of the film 6 and improving the adhesion of the film 6. This also improves the stability of the film 6 and the like.

【0017】また、基体2、下地膜4および目的とする
膜6の各界面付近には共通の元素がそれぞれ存在するの
で、これらの膜4、6の濡れ性が改善され、従ってこの
ことからも膜6と基体2との密着性が向上する。
[0017] Furthermore, since a common element is present near each interface of the substrate 2, base film 4, and target film 6, the wettability of these films 4 and 6 is improved, and therefore, from this point of view, Adhesion between the film 6 and the base 2 is improved.

【0018】次に、上記のような膜被覆物の製造方法の
例を図2を参照しながら説明する。
Next, an example of a method for manufacturing the membrane coating as described above will be explained with reference to FIG.

【0019】真空容器(図示省略)内に、基体2を保持
するホルダ8が設けられており、それに向けて、二つの
蒸発源10、14およびイオン源20が配置されている
。また、ホルダ8の近傍には、この例では、計測・制御
用に膜厚モニタ18およびイオン電流モニタ24が配置
されている。
A holder 8 for holding the substrate 2 is provided in a vacuum container (not shown), and two evaporation sources 10 and 14 and an ion source 20 are arranged facing it. Further, in this example, a film thickness monitor 18 and an ion current monitor 24 are arranged near the holder 8 for measurement and control.

【0020】蒸発源10は、基体2の構成元素を含む物
質12を蒸発させることができ、蒸発源14は、前述し
たような目的とする膜6の構成元素を含む物質16を蒸
発させることができる。もっともこのような両物質12
、16の蒸発には、この例のように別個の蒸発源10、
14を用いて行っても良いし、同一の蒸発源を用いて例
えば加熱用の電子ビームを二つの蒸発材料に対してスキ
ャンすることによって両物質12、16を蒸発させても
良いし、両物質12、16の混合物を蒸発させても良い
。また、蒸発源の方式も、例えば蒸発材料を電子ビーム
や高周波を用いて加熱するものやターゲットをスパッタ
リングするもの等でも良く、特定の方式に限定されない
The evaporation source 10 can evaporate the substance 12 containing the constituent elements of the substrate 2, and the evaporation source 14 can evaporate the substance 16 containing the constituent elements of the target film 6 as described above. can. However, these two substances12
, 16, as in this example a separate evaporation source 10,
14, or both substances 12 and 16 may be evaporated by scanning the two evaporation materials with a heating electron beam using the same evaporation source. A mixture of 12 and 16 may be evaporated. Further, the method of the evaporation source is not limited to a specific method, and may be, for example, one that heats the evaporation material using an electron beam or high frequency, or one that sputters a target.

【0021】イオン源20も、そこからイオン22を加
速して引き出すことができるものであれば、その方式は
問わない。例えば、多極磁場型のいわゆるバケット型の
イオン源が大面積大電流等の点で好ましいが、勿論それ
以外のイオン源でも良い。これから引き出すイオン22
の種類は、基体2上に形成しようとする下地膜4の種類
等に応じて選べば良い。例えば、BN、TiN等の窒化
物膜を形成する場合は窒素イオンあるいはそれと不活性
ガスイオンとの混合イオンを、炭素膜等の非化合物膜を
形成する場合は不活性ガスイオンをそれぞれ選べば良い
The ion source 20 may be of any type as long as it can accelerate and extract the ions 22 from it. For example, a multi-pole magnetic field type so-called bucket-type ion source is preferable in terms of large area and large current, but other ion sources may of course be used. Aeon 22 to be drawn from this
The type may be selected depending on the type of base film 4 to be formed on the substrate 2, etc. For example, when forming a nitride film such as BN or TiN, use nitrogen ions or a mixture of nitrogen ions and inert gas ions, and when forming a non-compound film such as a carbon film, select inert gas ions. .

【0022】また、イオン22の加速エネルギーも、特
に限定されないが、その照射によって下地膜4内に欠陥
等の損傷が生じるのを軽減するために、40KeV程度
以下にするのが好ましい。
Further, the acceleration energy of the ions 22 is not particularly limited, but it is preferably about 40 KeV or less in order to reduce damage such as defects in the base film 4 due to the irradiation.

【0023】図1に示したような膜被覆物の製造に際し
ては、まず、所望の基体2をホルダ8に取り付け、真空
容器内を所定の真空度に排気した後、蒸発源10から前
述したような基体構成元素を含む物質12を蒸発させる
と共に、蒸発源14から前述したような膜構成元素を含
む物質14を蒸発させ、これらを基体2の表面に蒸着さ
せる。これによって、基体2の表面には、目的とする膜
6を構成する元素および基体2を構成する元素より成る
下地膜4が形成され始める。そしてこのような蒸着を行
いながら、蒸発源10からの基体構成元素を含む物質1
2の蒸発量を連続的あるいは断続的に減少させる。
In manufacturing the membrane coating shown in FIG. 1, first, the desired substrate 2 is attached to the holder 8, the inside of the vacuum container is evacuated to a predetermined degree of vacuum, and then the evaporation source 10 is evacuated as described above. At the same time, the substance 12 containing the substrate constituent elements is evaporated, and the substance 14 containing the above-mentioned film constituent elements is evaporated from the evaporation source 14, and these are deposited on the surface of the substrate 2. As a result, a base film 4 consisting of the elements constituting the target film 6 and the elements constituting the base body 2 begins to be formed on the surface of the base body 2 . While performing such evaporation, the substance 1 containing the base constituent elements from the evaporation source 10 is
2. Continuously or intermittently decreases the amount of evaporation.

【0024】かつ、上記蒸着と同時または交互に、ある
いは下地膜4の形成後に、イオン源20から加速された
イオン22を引き出してこれを基体2に向けて照射する
。このとき、基体2に到達する蒸発原子数とイオンの個
数比は、膜厚モニタ18およびイオン電流モニタ24を
用いて調整することができる。下地膜4の形成後にイオ
ン22を照射しても良いのは、そのエネルギーを適当に
選べば希望の深さの所にイオンを注入することができる
からである。
Simultaneously or alternately with the above vapor deposition, or after the formation of the base film 4, accelerated ions 22 are extracted from the ion source 20 and irradiated toward the substrate 2. At this time, the ratio of the number of evaporated atoms to the number of ions reaching the substrate 2 can be adjusted using the film thickness monitor 18 and the ion current monitor 24. The reason why the ions 22 may be irradiated after the formation of the base film 4 is that if the energy is appropriately selected, the ions can be implanted to a desired depth.

【0025】これによって、基体2の表面に、前述した
ように組成の変化した(即ち基体構成元素の密度が基体
2側から当該下地膜4の表面に向かうにつれて連続的あ
るいは断続的に減少するように分布した)下地膜4が形
成される。しかも、照射イオン22の押し込み作用によ
り、下地膜4と基体2との界面付近に両者4、12の構
成元素を含む混合層が形成され、これがあたかも楔のよ
うな働きをするので、基体2に対する下地膜4の密着性
が著しく向上する。
[0025] As a result, the composition of the surface of the substrate 2 has changed as described above (that is, the density of the constituent elements of the substrate decreases continuously or intermittently from the side of the substrate 2 toward the surface of the base film 4). A base film 4 is formed (distributed over the entire surface area). Moreover, due to the pushing action of the irradiated ions 22, a mixed layer containing constituent elements 4 and 12 is formed near the interface between the base film 4 and the substrate 2, and this acts like a wedge. The adhesion of the base film 4 is significantly improved.

【0026】その後、上記工程によって形成した下地膜
4の表面に、目的とする膜6(図1参照)を形成する。 この膜6を形成する方法は、CVD法でもPVD法でも
良く、特定のものに限定されない。
Thereafter, a desired film 6 (see FIG. 1) is formed on the surface of the base film 4 formed in the above steps. The method for forming this film 6 may be a CVD method or a PVD method, and is not limited to a specific method.

【0027】以上の工程によって、図1で説明したよう
な膜被覆物を作ることができる。
[0027] Through the above steps, a membrane coating as explained in FIG. 1 can be made.

【0028】次に、この発明に従ったより具体的な実施
例と、従来例相当の比較例の幾つかについて説明する。
Next, more specific examples according to the present invention and some comparative examples corresponding to conventional examples will be described.

【0029】実施例1 ステンレス(SUS304)基体に窒化ホウ素膜をイオ
ンビームスパッタ法を用いて形成する際、まず基体上に
IVD法(蒸着とイオン照射を併用する方法)によって
、ホウ素と鉄より成る下地膜を形成した。具体的に述べ
ると、ホウ素(純度2N)と鉄(純度3N)の基体への
真空蒸着と同時にアルゴンイオンを照射することによっ
て行った。そして、この下地膜の膜厚は2000Åであ
り、イオンの加速エネルギーは10KeV、また成膜の
当初は、基体に到達するホウ素原子数+鉄原子とイオン
の個数との比(即ち(B+Fe )/イオン。以下同じ
)は10であり、かつ鉄原子とイオンの個数比(即ちF
e /イオン。以下同じ)は5であったが、成膜される
下地膜の膜厚が増えるにつれて、鉄原子の蒸発量を減ら
し、最後の200Åの成膜では、ホウ素のみの蒸発とイ
オンの照射を行った。その後、この下地膜の上にイオン
ビームスパッタ法によって窒化ホウ素膜を形成した。そ
の際、スパッタターゲットには窒化ホウ素焼結体(純度
2N)を、イオンにはアルゴンイオンをそれぞれ用い、
このイオンの加速エネルギーは1KeVに設定し、膜厚
1μm形成した。
Example 1 When forming a boron nitride film on a stainless steel (SUS304) substrate using the ion beam sputtering method, a film made of boron and iron was first formed on the substrate by the IVD method (a method that uses both vapor deposition and ion irradiation). A base film was formed. Specifically, this was carried out by vacuum evaporating boron (purity 2N) and iron (purity 3N) onto a substrate and simultaneously irradiating argon ions. The thickness of this base film is 2000 Å, the ion acceleration energy is 10 KeV, and at the beginning of film formation, the ratio of the number of boron atoms reaching the substrate + the number of iron atoms and ions (that is, (B + Fe ) / ions (hereinafter the same) is 10, and the number ratio of iron atoms to ions (i.e. F
e/ion. (same below) was 5, but as the thickness of the base film to be formed increased, the amount of evaporation of iron atoms was reduced, and in the final film formation of 200 Å, only boron was evaporated and ions were irradiated. . Thereafter, a boron nitride film was formed on this base film by ion beam sputtering. At that time, a boron nitride sintered body (purity 2N) was used as the sputtering target, and argon ions were used as the ions.
The acceleration energy of this ion was set to 1 KeV, and a film thickness of 1 μm was formed.

【0030】比較例1 実施例1と同じ基体を用い、その上に、下地膜を作らず
にイオンビームスパッタ法により窒化ホウ素膜を直接形
成した。その際、スパッタターゲットには窒化ホウ素焼
結体(純度2N)を、イオンにはアルゴンイオンをそれ
ぞれ用い、このイオンの加速エネルギーは1KeVに設
定し、膜厚1μm形成した。
Comparative Example 1 Using the same substrate as in Example 1, a boron nitride film was directly formed on it by ion beam sputtering without forming a base film. At that time, a boron nitride sintered body (purity 2N) was used as a sputtering target, argon ions were used as ions, the acceleration energy of the ions was set at 1 KeV, and a film thickness of 1 μm was formed.

【0031】評価 実施例1と比較例1との窒化ホウ素膜の密着性を比較し
たところ(膜の密着性評価にはスクラッチ試験を用い、
膜が剥離する臨界荷重にて評価)、実施例1のものは3
0Nであり、比較例1のものは5Nであった。即ち、実
施例のものは目的とする窒化ホウ素膜の密着性が著しく
向上していることが分かる。また、実施例1と比較例1
との窒化ホウ素膜の結晶構造を比較したところ(膜の構
造評価はX線回折法にて評価)、実施例1にはダイヤモ
ンドに次ぐ硬度を有する立方晶閃亜鉛鉱構造の窒化ホウ
素(c−BN)が検出されたのに対し、比較例1は六方
晶系の窒化ホウ素(h−BN)しか検出されなかった。 そこでこの膜の10g荷重ビッカース硬度を測定すると
、実施例1のものは約4000、比較例1のものは約2
500であった。即ち、実施例のものは目的とする窒化
ホウ素膜の結晶性が向上していることが分かる。
Comparison of the adhesion of boron nitride films between Evaluation Example 1 and Comparative Example 1 (scratch test was used to evaluate the adhesion of the films;
(Evaluated at critical load at which the membrane peels off), Example 1 was 3
0N, and that of Comparative Example 1 was 5N. That is, it can be seen that the adhesiveness of the intended boron nitride film is significantly improved in the example. In addition, Example 1 and Comparative Example 1
When comparing the crystal structure of the boron nitride film with (the film structure was evaluated using X-ray diffraction method), it was found that in Example 1, boron nitride (c- BN) was detected, whereas in Comparative Example 1, only hexagonal boron nitride (h-BN) was detected. Therefore, when we measured the Vickers hardness of this film under a 10g load, it was approximately 4000 for Example 1 and approximately 2 for Comparative Example 1.
It was 500. That is, it can be seen that the crystallinity of the intended boron nitride film is improved in the example.

【0032】実施例2 IVD法により、ステンレス(SUS304)上にTi
 −B−Nから成る三元系の膜を形成する際、まず同じ
IVD法により、ホウ素と鉄より成る下地膜を形成した
。 これは、ホウ素(純度2N)と鉄(純度3N)の基体へ
の真空蒸着と同時に窒素イオンを照射することによって
行った。そして、この下地膜の膜厚は2000Åであり
、イオンの加速エネルギーは10KeV、また成膜の当
初は、基体へ到達するホウ素原子数+鉄原子とイオンの
個数との比は10であり、かつ鉄原子とイオンの個数比
は5であったが、成膜される下地膜の膜厚が増えるにつ
れて、鉄原子の蒸発量を減らし、最後の200Åの成膜
では、ホウ素のみの蒸発とイオンの照射を行った。その
後、この下地膜の上にIVD法によりTi −B−N膜
を形成した。その際、Ti (純度4N)とホウ素(純
度2N)を同時に下地膜上に蒸着させると同時に、窒素
イオンを照射した。このイオンの加速エネルギーは1K
eVに設定し、基体へ到達するTi とホウ素の原子数
比(Ti /B)は2、また基体へ到達するTi 原子
数とイオンの個数との比(Ti /イオン)は1であっ
た。膜厚は1μmであった。
Example 2 Ti was deposited on stainless steel (SUS304) by IVD method.
When forming a ternary film made of -BN, a base film made of boron and iron was first formed by the same IVD method. This was done by simultaneously vacuum depositing boron (2N purity) and iron (3N purity) onto the substrate and irradiating it with nitrogen ions. The thickness of this base film is 2000 Å, the ion acceleration energy is 10 KeV, and at the beginning of film formation, the ratio of the number of boron atoms reaching the substrate + the number of iron atoms to the number of ions is 10, and The number ratio of iron atoms to ions was 5, but as the thickness of the base film to be formed increased, the amount of iron atoms evaporated was reduced, and in the final film formation of 200 Å, only boron evaporated and ions were evaporated. Irradiation was performed. Thereafter, a Ti-B-N film was formed on this base film by the IVD method. At that time, Ti (purity 4N) and boron (purity 2N) were simultaneously deposited on the base film, and at the same time, nitrogen ions were irradiated. The acceleration energy of this ion is 1K
eV, the atomic ratio of Ti to boron reaching the substrate (Ti 2 /B) was 2, and the ratio of the number of Ti atoms reaching the substrate to the number of ions (Ti 2 /ion) was 1. The film thickness was 1 μm.

【0033】比較例2 IVD法により、実施例2と同じ基体の上に、下地膜を
作らずに直接Ti −B−N膜を形成した。その際、T
i (純度4N)とホウ素(純度2N)を同時に基体上
に蒸着させると同時に、窒素イオンを照射した。このイ
オンの加速エネルギーは1KeVに設定し、基体へ到達
するTi とホウ素の原子数比は2、また基体へ到達す
るTi 原子数とイオンの個数との比は1であった。膜
厚は1μmであった。
Comparative Example 2 A Ti-B-N film was directly formed on the same substrate as in Example 2 by the IVD method without forming a base film. At that time, T
i (purity: 4N) and boron (purity: 2N) were simultaneously deposited onto the substrate, and at the same time nitrogen ions were irradiated. The acceleration energy of this ion was set to 1 KeV, the atomic ratio of Ti to boron reaching the substrate was 2, and the ratio of the number of Ti atoms reaching the substrate to the number of ions was 1. The film thickness was 1 μm.

【0034】評価 実施例2と比較例2とのTi −B−N膜の密着性を比
較したところ(膜の密着性評価にはスクラッチ試験を用
い、膜が剥離する臨界荷重にて評価)、実施例2のもの
は30Nであったが、比較例2のものは15Nであった
。このことから、実施例のものの方が目的とする膜の密
着性が高いことが分かる。
Comparing the adhesion of the Ti-B-N films in Evaluation Example 2 and Comparative Example 2 (a scratch test was used to evaluate the adhesion of the film, and the evaluation was performed using the critical load at which the film peels off). The strength of Example 2 was 30N, while that of Comparative Example 2 was 15N. From this, it can be seen that the adhesiveness of the intended film is higher in the example.

【0035】[0035]

【発明の効果】以上のようにこの発明の膜被覆物におい
ては、前述したような組成の変化した下地膜の存在によ
って、目的とする膜と基体との間の格子定数の差、熱膨
張係数の差等が緩和される。その結果、目的とする膜の
結晶性、密着性および安定性等が向上する。また、基体
、下地膜および目的とする膜の各界面付近には共通の元
素がそれぞれ存在するので、これらの膜の濡れ性が改善
され、従ってこのことからも膜と基体との密着性が向上
する。
Effects of the Invention As described above, in the film coating of the present invention, due to the presence of the underlying film with a changed composition as described above, the difference in lattice constant and thermal expansion coefficient between the target film and the substrate can be reduced. The difference between the two will be alleviated. As a result, the crystallinity, adhesion, stability, etc. of the target film are improved. In addition, common elements exist near the interfaces of the substrate, base film, and target film, so the wettability of these films is improved, and this also improves the adhesion between the film and the substrate. do.

【0036】また、この発明の製造方法によれば、基体
の表面に前述したような組成の変化した下地膜を容易に
形成することができると共に、照射イオンの押し込み作
用によって下地膜と基体との界面付近に両者の構成元素
を含む混合層が形成され、これがあたかも楔のような働
きをするので、基体に対する下地膜の密着性が一層向上
し、それによって全体として見ても目的とする膜と基体
との密着性が一層向上する。
Furthermore, according to the manufacturing method of the present invention, it is possible to easily form a base film with a changed composition as described above on the surface of the substrate, and the push-in action of the irradiated ions also allows the base film to bond with the base film. A mixed layer containing the constituent elements of both is formed near the interface, and this acts like a wedge, further improving the adhesion of the base film to the substrate, thereby making it possible to achieve the desired film as a whole. Adhesion to the substrate is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  この発明に係る膜被覆物の一例を示す概略
断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a membrane coating according to the present invention.

【図2】  この発明に係る製造方法を実施する装置の
一例を示す概略図である。
FIG. 2 is a schematic diagram showing an example of an apparatus for carrying out the manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

2  基体 4  下地膜 6  目的とする膜 10,14  蒸発源 12  基体構成元素を含む物質 16  膜構成元素を含む物質 20  イオン源 22  イオン 2 Base 4 Base film 6 Target membrane 10,14 Evaporation source 12 Substances containing base constituent elements 16 Substances containing film constituent elements 20 Ion source 22 Ion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  基体の表面に膜を形成した膜被覆物に
おいて、前記基体と膜との間に、基体構成元素および膜
構成元素より成る下地膜であって、その内部における基
体構成元素の密度が基体側から当該下地膜の表面に向か
うにつれて減少するように分布したものを設けたことを
特徴とする膜被覆物。
1. In a film coating in which a film is formed on the surface of a substrate, between the substrate and the film, there is provided a base film consisting of a substrate constituent element and a film constituent element, the density of the base constituent element being within the base film. 1. A membrane coating, characterized in that the membrane coating is provided with a distribution that decreases from the substrate side toward the surface of the base membrane.
【請求項2】  基体の表面に膜を形成して膜被覆物を
作る際、まず基体の表面に基体構成元素および前記膜構
成元素の蒸着とイオン照射とを行って下地膜を形成し、
しかもこの蒸着は基体構成元素の蒸着量を減らしながら
行い、しかる後にこの下地膜の表面に前記膜を形成する
ことを特徴とする膜被覆物の製造方法。
2. When forming a film on the surface of a substrate to produce a film coating, first, vapor deposition and ion irradiation of the substrate constituent elements and the film constituent elements are performed on the surface of the substrate to form a base film;
Moreover, the method for producing a film coating is characterized in that the vapor deposition is performed while reducing the amount of the base constituent element vaporized, and then the film is formed on the surface of the base film.
JP13598891A 1991-05-09 1991-05-09 Coating film and its production Pending JPH04333574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13598891A JPH04333574A (en) 1991-05-09 1991-05-09 Coating film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13598891A JPH04333574A (en) 1991-05-09 1991-05-09 Coating film and its production

Publications (1)

Publication Number Publication Date
JPH04333574A true JPH04333574A (en) 1992-11-20

Family

ID=15164574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13598891A Pending JPH04333574A (en) 1991-05-09 1991-05-09 Coating film and its production

Country Status (1)

Country Link
JP (1) JPH04333574A (en)

Similar Documents

Publication Publication Date Title
Håkansson et al. Microstructures of TiN films grown by various physical vapour deposition techniques
Greczynski et al. Novel strategy for low-temperature, high-rate growth of dense, hard, and stress-free refractory ceramic thin films
Bendavid et al. Deposition and modification of titanium nitride by ion assisted arc deposition
JPH0588310B2 (en)
Window et al. Strain, ion bombardment and energetic neutrals in magnetron sputtering
Wu et al. Growth of dense, hard yet low-stress Ti0. 40Al0. 27W0. 33N nanocomposite films with rotating substrate and no external substrate heating
US6200649B1 (en) Method of making titanium boronitride coatings using ion beam assisted deposition
Yamashita et al. Cross-sectional transmission electron microscopy observations of c-BN films deposited on Si by ion-beam-assisted deposition
JPH07109561A (en) Chromium nitride film coated substrate
JPH04333574A (en) Coating film and its production
Wang et al. Atomic force microscopy study on topography of films produced by ion‐based techniques
Bieli et al. A comparison of TiN films produced by reactive dc sputtering and ion-assisted deposition
JP2744069B2 (en) Thin film formation method
JPH06248420A (en) Hard film coated member
JPH07150337A (en) Production of nitride film
Agarwal et al. Vacuum-deposited carbon coatings
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JP2952683B2 (en) Method for producing nitride film-coated substrate and oxide film-coated substrate
JP2513338B2 (en) Method for forming boron nitride thin film coated substrate
Cheng et al. Microstructural studies of IAD and PVD Cr coatings by cross section transmission electron microscopy
Fujimoto Coating Film Formation of Boron Nitride by Means of Dynamic Mixing Method
JPS61201772A (en) Method and device for forming thin film
JPH04333561A (en) Formation of nitride film
JPH06172967A (en) Boron nitride-containing film-coated base and its production
JP2636577B2 (en) Method of forming titanium nitride film