JPH05311396A - Formation of chromium nitride film - Google Patents

Formation of chromium nitride film

Info

Publication number
JPH05311396A
JPH05311396A JP12076992A JP12076992A JPH05311396A JP H05311396 A JPH05311396 A JP H05311396A JP 12076992 A JP12076992 A JP 12076992A JP 12076992 A JP12076992 A JP 12076992A JP H05311396 A JPH05311396 A JP H05311396A
Authority
JP
Japan
Prior art keywords
substrate
nitride film
chromium nitride
chromium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12076992A
Other languages
Japanese (ja)
Inventor
Naoto Kuratani
直人 鞍谷
Kiyoshi Ogata
潔 緒方
Satoru Nishiyama
哲 西山
Akinori Ebe
明憲 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12076992A priority Critical patent/JPH05311396A/en
Publication of JPH05311396A publication Critical patent/JPH05311396A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0017Refractory metal compounds
    • C04B2103/0018Cr

Abstract

PURPOSE:To form a chromium nitride film even on a substrate low in heat resistance and to increase the kinds of substrate capable of being coated with a chromium nitride film. CONSTITUTION:A chromium nitride film 12 is formed on the surface of a substrate 11 by the vacuum deposition of a substance contg. chromium and the irradiation A1 with nitrogen ion, and hence a mixed layer 13 of the substrate material, chromium and nitrogen is formed at the interface between the substrate 11 and the chromium nitride film 12. In this case, the substrate 11 need not be heated when the film is formed, hence even a substrate 11 low in heat resistance can be used, and the kinds of the substrates 11 capable of being coated with a chromium nitride film are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高硬度かつ高密着性
を有する窒化クロム膜を基体の表面に形成する窒化クロ
ム膜の成膜方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromium nitride film forming method for forming a chromium nitride film having high hardness and high adhesion on the surface of a substrate.

【0002】[0002]

【従来の技術】基体の表面に窒化クロム膜を成膜する方
法としては、例えばCVD法とPVD法がある。CVD
法は、例えばクロムを含む原料ガスと窒素を含む原料ガ
スとを高温で反応させて基体表面に窒化クロム薄膜を形
成する方法である。また、PVD法としては、これまで
アーク式真空蒸着法によって、窒化クロム膜が形成され
てきたが、この方法は、アーク放電を利用して基体表面
に窒化クロム薄膜を形成する方法である。つまり、この
アーク式真空蒸着法は、真空容器内に例えばクロムより
なる陰極(蒸発源)を配置し、陰極と真空容器の壁面と
の間でトリガを介してアーク放電を起こさせ、陰極を蒸
発させると同時にアークプラズマによる金属のイオン化
を図り、基体に負の電圧をかけておき、かつ真空容器に
反応ガス例えば窒素ガスを数10mmTorr程度入れること
により、イオン化した金属と反応ガスを基板の表面で反
応させて化合物を作るという方法である。
2. Description of the Related Art As a method for forming a chromium nitride film on the surface of a substrate, there are, for example, a CVD method and a PVD method. CVD
The method is, for example, a method in which a source gas containing chromium and a source gas containing nitrogen are reacted at a high temperature to form a chromium nitride thin film on the surface of the substrate. Further, as the PVD method, a chromium nitride film has been formed by an arc type vacuum deposition method so far, but this method is a method of forming a chromium nitride thin film on the surface of a substrate by using arc discharge. In other words, in this arc-type vacuum deposition method, a cathode (evaporation source) made of, for example, chromium is placed in a vacuum container, and arc discharge is caused between the cathode and the wall surface of the vacuum container via a trigger to evaporate the cathode. At the same time, the metal is ionized by the arc plasma, a negative voltage is applied to the substrate, and a reaction gas such as nitrogen gas is put into the vacuum container for several tens of mmTorr, so that the ionized metal and the reaction gas are discharged on the substrate surface. It is a method of reacting to make a compound.

【0003】[0003]

【発明が解決しようとする課題】CVD法を用いて窒化
クロム薄膜を成膜する方法では、原料ガスを分解,反応
させる必要から、基体を数百℃ないし千数百℃の高温下
に曝すため、耐熱性のある基体にしか成膜を行うことが
できず、窒化クロム膜が成膜可能な基体の種類が制限さ
れる。
In the method of forming a chromium nitride thin film by using the CVD method, since the raw material gas needs to be decomposed and reacted, the substrate is exposed to a high temperature of several hundreds to several hundreds of degrees Celsius. The film formation can be performed only on a heat-resistant substrate, and the types of substrates on which the chromium nitride film can be formed are limited.

【0004】また、アーク式真空蒸着法を用いて窒化ク
ロム膜を成膜する方法でも、膜と基体の密着性を上げる
ためには、基体を数百℃程度の高温下に曝す必要があ
り、やはり窒化クロム膜を成膜可能な基体の種類が制限
される。したがって、この発明の目的は、耐熱性の低い
基体に対しても窒化クロム膜を成膜可能とし、窒化クロ
ム膜を成膜可能な基体の種類を増加させることができる
窒化クロム膜の成膜方法を提供することである。
Further, even in the method of forming a chromium nitride film by using the arc type vacuum evaporation method, it is necessary to expose the substrate to a high temperature of about several hundreds of degrees Celsius in order to improve the adhesion between the film and the substrate. Again, the type of substrate on which the chromium nitride film can be formed is limited. Therefore, an object of the present invention is to form a chromium nitride film even on a substrate having low heat resistance and to increase the number of types of substrates on which a chromium nitride film can be formed. Is to provide.

【0005】[0005]

【課題を解決するための手段】この発明の窒化クロム膜
の成膜方法は、クロムを含有する物質の真空蒸着と窒素
イオンのイオン照射とを併用して基体の表面に窒化クロ
ム膜を成膜する。
A method for forming a chromium nitride film according to the present invention comprises forming a chromium nitride film on a surface of a substrate by using vacuum deposition of a substance containing chromium and ion irradiation of nitrogen ions. To do.

【0006】[0006]

【作用】この発明の構成によれば、基体の表面にクロム
を含む物質が蒸着され、また、基体の表面に窒素イオン
が照射されるので、基体の表面に窒化クロム膜が成膜さ
れることになる。この際、図1に示すように、イオン照
射A1 により、基体11と窒化クロム膜12との界面に
基体材料とクロムおよび窒素と混合層13が形成される
ことになる。この蒸着とイオン照射の併用による成膜
は、基体11を昇温させなくても窒化クロムを合成で
き、しかも低温下の処理においても、前記混合層の形成
によって、優れた密着性をもつ膜が基体上に形成される
ため、基体11としては耐熱性の低いものも使用可能で
あり、窒化クロム膜を成膜可能な基体11の種類を増加
させることができる。
According to the structure of the present invention, since a substance containing chromium is vapor-deposited on the surface of the substrate and the surface of the substrate is irradiated with nitrogen ions, a chromium nitride film is formed on the surface of the substrate. become. At this time, as shown in FIG. 1, the ion irradiation A 1 forms a mixed layer 13 of the base material, chromium, and nitrogen at the interface between the base 11 and the chromium nitride film 12. In the film formation using both vapor deposition and ion irradiation, chromium nitride can be synthesized without raising the temperature of the substrate 11, and even when the treatment is performed at a low temperature, a film having excellent adhesion can be obtained by forming the mixed layer. Since it is formed on the substrate, a substrate having low heat resistance can be used as the substrate 11, and the number of types of substrate 11 on which a chromium nitride film can be formed can be increased.

【0007】クロムを含む物質の蒸着と窒素イオンの照
射は、同時に行うか、もしくは、交互に行う。また、イ
オン照射の加速エネルギーは、一定とするか、もしくは
堆積量の増加に合わせて加減する。例えば、窒化クロム
膜の成膜初期の混合層形成時は加速エネルギーを強くし
て混合層を有効に形成し、混合層が形成された後の窒化
クロム層の単純な堆積時は窒化クロム膜の表面の損傷を
抑制する意味で加速エネルギーを弱める等する。
The deposition of the substance containing chromium and the irradiation of nitrogen ions are performed simultaneously or alternately. Further, the acceleration energy of the ion irradiation is kept constant or is adjusted according to the increase in the deposited amount. For example, when the mixed layer is formed in the initial stage of forming the chromium nitride film, the acceleration energy is increased to effectively form the mixed layer, and when the chromium nitride layer is simply deposited after the mixed layer is formed, the chromium nitride film The acceleration energy is weakened to suppress surface damage.

【0008】クロムを含む物質の蒸着と窒素イオンの照
射との併用によって基体の表面に形成された窒化クロム
膜は、高硬度,高密着性を有し、耐摩耗性に優れ、また
耐蝕性,耐熱衝撃性も合わせもっているので、金型等の
表面のコーティングあるいは刃物の表面のコーティング
といった、耐摩耗性が要求される分野等に応用される。
The chromium nitride film formed on the surface of the substrate by the combined use of vapor deposition of a substance containing chromium and irradiation of nitrogen ions has high hardness and high adhesiveness, is excellent in wear resistance, and is corrosion resistant, Since it also has thermal shock resistance, it can be applied to fields requiring abrasion resistance, such as coating on the surface of dies and the like, or coating on the surface of blades.

【0009】窒素イオンを照射する際のイオンの加速エ
ネルギーは、100eV以上40keV以下に設定され
る。上記範囲に制限されるのは、イオンの加速エネルギ
ーが40keVを超えると基体の表面に形成される膜の
損傷が大きく、また100eV未満では成膜装置の構造
的限界で成膜を行えないからである。窒素とクロムとの
輸送比(N/Cr)は、0.5以上20以下に設定され
る。上記範囲に制限されるのは、輸送比が20を超える
とクロム膜の耐候性が悪くなり、0.5未満になると照射
するイオンによる蒸着原子のスパッタリングが過大にな
って成膜不可能となるからである。
The acceleration energy of ions when irradiating nitrogen ions is set to 100 eV or more and 40 keV or less. The above range is limited because when the ion acceleration energy exceeds 40 keV, the film formed on the surface of the substrate is greatly damaged, and when the ion acceleration energy is less than 100 eV, film formation cannot be performed due to the structural limit of the film forming apparatus. is there. The transport ratio (N / Cr) of nitrogen and chromium is set to 0.5 or more and 20 or less. If the transport ratio exceeds 20, the weather resistance of the chromium film deteriorates, and if it is less than 0.5, sputtering of vapor-deposited atoms by irradiation ions becomes excessive and film formation is impossible. Because.

【0010】図2は窒化クロム膜の成膜方法を実施する
ための成膜装置の概略図を示すものである。図2におい
て、1は真空容器、2は基体、3は基体2を保持する基
体ホルダである。4は蒸発源であり、5は蒸発物質を示
している。6はイオン源、7はイオン源6から基体2へ
照射されるイオンビームである。蒸発物質5はクロムを
含む物質である。イオン源6には窒素ガスが導入され、
窒素イオンがイオンビームとして基体2へ照射されるこ
とになる。
FIG. 2 is a schematic view of a film forming apparatus for carrying out the method for forming a chromium nitride film. In FIG. 2, 1 is a vacuum container, 2 is a substrate, and 3 is a substrate holder that holds the substrate 2. Reference numeral 4 is an evaporation source, and 5 is an evaporation material. 6 is an ion source, and 7 is an ion beam with which the substrate 2 is irradiated from the ion source 6. The evaporation material 5 is a material containing chromium. Nitrogen gas is introduced into the ion source 6,
The nitrogen ions are applied to the substrate 2 as an ion beam.

【0011】8は蒸発物質5の基体2へ蒸着される個数
や形成される膜の膜厚を測定する膜厚モニタであり、例
えば水晶振動子からなる。9は照射されるイオンの個数
を測定するイオン電流測定器で、例えばファラディカッ
プからなる。以上のような成膜装置を使用して、基体に
窒化クロム膜を成膜する方法について以下に詳しく説明
する。
Reference numeral 8 is a film thickness monitor for measuring the number of vaporized substances 5 vapor-deposited on the substrate 2 and the film thickness of a film to be formed, which is composed of, for example, a crystal oscillator. Reference numeral 9 denotes an ion current measuring device for measuring the number of ions to be irradiated, which is composed of, for example, a Faraday cup. A method of forming a chromium nitride film on a substrate using the above film forming apparatus will be described in detail below.

【0012】まず、図2に示すように、基体2を基体ホ
ルダ3に固定して真空容器1に納め、所定の真空度に保
つ。その後、蒸発源4から蒸発した蒸発物質5、つまり
クロムを含む物質を基体2の膜形成面に蒸着させる。一
方、イオン源6に窒素ガスを導入し、イオン源6にて窒
素ガスをイオン化し、窒素イオンを基体2の膜形成面に
照射する。このイオン照射は、クロムを含む物質の基体
2の膜形成面への蒸着と同時に、または蒸着と交互に行
う。これによって、基体2の表面に窒化クロム膜(薄
膜)を形成する。なお、基体2の耐熱性が特に悪いもの
は、基体ホルダ3を水冷することにより、終始低温に保
てばよい。
First, as shown in FIG. 2, the substrate 2 is fixed to the substrate holder 3 and housed in the vacuum container 1 to maintain a predetermined degree of vacuum. After that, the evaporation substance 5 evaporated from the evaporation source 4, that is, the substance containing chromium is vapor-deposited on the film formation surface of the substrate 2. On the other hand, nitrogen gas is introduced into the ion source 6, the nitrogen gas is ionized by the ion source 6, and the nitrogen ions are applied to the film forming surface of the substrate 2. This ion irradiation is performed simultaneously with the vapor deposition of the substance containing chromium on the film formation surface of the substrate 2 or alternately with the vapor deposition. As a result, a chromium nitride film (thin film) is formed on the surface of the base 2. If the substrate 2 has particularly poor heat resistance, the substrate holder 3 may be water-cooled to keep it at a low temperature all the time.

【0013】この際、基体2とその上に形成された窒化
クロム膜との界面に基体材料と膜材料(クロム,窒素
等)との混合層が形成される。なお、蒸着はスパッタリ
ングによって行うことも可能である。この蒸着とイオン
照射を併用して膜を形成するときに、膜厚モニタ8およ
びイオン電流測定器9を用いて基体2へ到達する蒸着物
の膜厚とイオンの個数とを計測でき、その値を任意に設
定することで、所望の組成比をもった窒化クロム膜を所
定の膜厚に形成することができる。
At this time, a mixed layer of the base material and the film material (chromium, nitrogen, etc.) is formed at the interface between the base 2 and the chromium nitride film formed thereon. Note that the vapor deposition can also be performed by sputtering. When a film is formed by using this vapor deposition and ion irradiation together, the film thickness monitor 8 and the ion current measuring device 9 can be used to measure the film thickness of the vapor deposition reaching the substrate 2 and the number of ions. Can be set arbitrarily to form a chromium nitride film having a desired composition ratio to a predetermined film thickness.

【0014】[0014]

【実施例】以下に、実施例と比較例とを示す。 実施例1:高速度鋼(材質;SKH51)にクロムの蒸
着と窒素イオンの照射とを併用して窒化クロム膜を膜厚
1μmに形成した。このときの成膜条件は、イオン照射
の加速エネルギーを10keVとし、輸送比(N/C
r)を4とした。
EXAMPLES Examples and comparative examples will be shown below. Example 1 A chromium nitride film having a thickness of 1 μm was formed on high-speed steel (material: SKH51) by using chromium vapor deposition and nitrogen ion irradiation together. The film forming conditions at this time are as follows: the acceleration energy of ion irradiation is 10 keV and the transport ratio (N / C
r) was set to 4.

【0015】上記のようにして作成した窒化クロム膜に
ついて、ヌープ硬度HK (荷重10g)および密着力L
C を測定した。ヌープ硬度HK は2050〔kg/mm2
であり、密着力LC は19.7〔N〕であった。なお、密
着力LC はAEセンサ付自動スクラッチ試験機(引っか
き試験を行い、膜が剥離する荷重を測定するもの)によ
って測定した。また、成膜時は、基体ホルダを水によっ
て冷却することにより、基体を常に200℃以下になる
ようにした。以下、成膜時の温度,測定についても同様
である。
The Knoop hardness H K (load 10 g) and adhesion L of the chromium nitride film prepared as described above are used.
C was measured. Knoop hardness H K is 2050 [kg / mm 2 ]
And the adhesion L C was 19.7 [N]. The adhesive force L C was measured by an automatic scratch tester with an AE sensor (a scratch test is performed to measure the load at which the film peels). During film formation, the substrate holder was cooled with water so that the substrate was kept at 200 ° C. or lower. The same applies to the temperature and measurement during film formation.

【0016】実施例2:高速度鋼(材質;SKH51)
にクロムの蒸着と窒素イオンの照射とを併用して窒化ク
ロム膜を膜厚1μmに形成した。このときの成膜条件
は、イオン照射のビームエネルギーを10keVとし、
輸送比(N/Cr)を6とした。上記のようにして作成
した窒化クロム膜について、ヌープ硬度HK および密着
力LC を測定した。ヌープ硬度HK は2100〔kg/mm
2 〕であり、密着力LCは20.7〔N〕であった。
Example 2: High speed steel (material: SKH51)
Then, a chromium nitride film was formed to a thickness of 1 μm by using chromium vapor deposition and nitrogen ion irradiation together. The film forming conditions at this time are as follows: ion irradiation beam energy is 10 keV,
The transport ratio (N / Cr) was set to 6. The Knoop hardness H K and the adhesion L C of the chromium nitride film produced as described above were measured. Knoop hardness H K is 2100 [kg / mm
2 ] and the adhesive force L C was 20.7 [N].

【0017】実施例3:高速度鋼(材質;SKH51)
にクロムの蒸着と窒素イオンの照射とを併用して窒化ク
ロム膜を膜厚1μmに形成した。このときの成膜条件
は、イオン照射のビームエネルギーを2keVとし、輸
送比(N/Cr)を6とした。上記のようにして作成し
た窒化クロム膜について、ヌープ硬度HK および密着力
C を測定した。ヌープ硬度HK は1884〔kg/m
m2 〕であり、密着力LCは16.2〔N〕であった。
Example 3: High speed steel (material: SKH51)
Then, a chromium nitride film was formed to a thickness of 1 μm by using chromium vapor deposition and nitrogen ion irradiation together. The film forming conditions at this time were such that the ion irradiation beam energy was 2 keV and the transport ratio (N / Cr) was 6. The Knoop hardness H K and the adhesion L C of the chromium nitride film produced as described above were measured. Knoop hardness H K is 1884 [kg / m
m 2 ], and the adhesive force L C was 16.2 [N].

【0018】比較例1:高速度鋼(材質;SKH51)
にアーク式真空蒸着法を利用して窒化クロム膜を膜厚2
μmに形成した。なお、成膜時は、基体を400℃にな
るように加熱させた。上記のようにして作成した窒化ク
ロム膜について、ヌープ硬度HK および密着力LC を測
定した。ヌープ硬度HK は1800〔kg/mm2 〕であ
り、密着力LCは15〔N〕であった。
Comparative Example 1: High speed steel (material: SKH51)
A chromium nitride film with a thickness of 2 using the arc-type vacuum deposition method.
formed to a thickness of μm. During the film formation, the substrate was heated to 400 ° C. The Knoop hardness H K and the adhesion L C of the chromium nitride film produced as described above were measured. The Knoop hardness H K was 1800 [kg / mm 2 ] and the adhesion L C was 15 [N].

【0019】以上の各実施例1〜3と比較例1とを比べ
ると、実施例1〜3は、比較例1のものよりも、成膜時
の温度が低いにもかかわらず、同等あるいは、それ以上
の硬度と密着力が得られた。
Comparing each of Examples 1 to 3 and Comparative Example 1 with each other, Examples 1 to 3 are equivalent to or have a lower film forming temperature than that of Comparative Example 1. Greater hardness and adhesion were obtained.

【0020】[0020]

【発明の効果】この発明の窒化クロム膜の成膜方法によ
れば、クロムを含む物質の蒸着と窒素イオンのイオン照
射の併用による成膜は、成膜の対象となる基体を昇温さ
せることが不要となり、基体としては耐熱性の低いもの
も使用可能であり、窒化クロム膜の成膜可能な基体の種
類を増加させることができる。
According to the method for forming a chromium nitride film of the present invention, in the film formation by the combined use of vapor deposition of a substance containing chromium and ion irradiation of nitrogen ions, the temperature of the substrate to be formed is raised. Is unnecessary, a substrate having low heat resistance can be used, and the types of substrates on which a chromium nitride film can be formed can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の窒化クロム膜の成膜方法によって窒
化クロム膜を形成された基体の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a substrate on which a chromium nitride film is formed by the method for forming a chromium nitride film of the present invention.

【図2】この発明の窒化クロム膜の成膜方法において使
用する成膜装置の構成を示す概略図である。
FIG. 2 is a schematic view showing the structure of a film forming apparatus used in the method for forming a chromium nitride film according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基体 3 基体ホルダ 4 蒸発源 5 蒸発物質 6 イオン源 7 イオンビーム 8 膜厚モニタ 9 イオン電流測定器 11 基体 12 窒化クロム膜 13 混合層 1 vacuum container 2 substrate 3 substrate holder 4 evaporation source 5 evaporation material 6 ion source 7 ion beam 8 film thickness monitor 9 ion current measuring device 11 substrate 12 chromium nitride film 13 mixed layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江部 明憲 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akinori Ebe 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クロムを含有する物質の蒸着と窒素イオ
ンのイオン照射とを併用して基体の表面に窒化クロム膜
を成膜することを特徴とする窒化クロム膜の成膜方法。
1. A method for forming a chromium nitride film, which comprises forming a chromium nitride film on a surface of a substrate by using vapor deposition of a substance containing chromium and ion irradiation of nitrogen ions.
JP12076992A 1992-05-13 1992-05-13 Formation of chromium nitride film Pending JPH05311396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076992A JPH05311396A (en) 1992-05-13 1992-05-13 Formation of chromium nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076992A JPH05311396A (en) 1992-05-13 1992-05-13 Formation of chromium nitride film

Publications (1)

Publication Number Publication Date
JPH05311396A true JPH05311396A (en) 1993-11-22

Family

ID=14794551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076992A Pending JPH05311396A (en) 1992-05-13 1992-05-13 Formation of chromium nitride film

Country Status (1)

Country Link
JP (1) JPH05311396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090223A (en) * 1997-06-25 2000-07-18 Showa Denko K.K. Chromium nitride film and method for forming the same
US9598761B2 (en) 2009-05-26 2017-03-21 The Gillette Company Strengthened razor blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090223A (en) * 1997-06-25 2000-07-18 Showa Denko K.K. Chromium nitride film and method for forming the same
US9598761B2 (en) 2009-05-26 2017-03-21 The Gillette Company Strengthened razor blade
US9855665B2 (en) 2009-05-26 2018-01-02 The Gillette Company Llc Strengthened razor blade

Similar Documents

Publication Publication Date Title
US5009923A (en) Method of forming diamond film
JPS6135269B2 (en)
JPH0791654B2 (en) Thin film formation method
JPH0247253A (en) Method for formation of a black coating and a coating formed thereby
JPH05311396A (en) Formation of chromium nitride film
JPH07109561A (en) Chromium nitride film coated substrate
JPH07150337A (en) Production of nitride film
JP2875892B2 (en) Method of forming cubic boron nitride film
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JPH0372070A (en) Method for vapor-depositing compound at high rate
JPH07150336A (en) Film-coated substrate
JPS63238270A (en) Production of thin compound film
JPH06248420A (en) Hard film coated member
JPS6320447A (en) Method and apparatus for continuous coating of metallic strip with ceramics
JPS6320445A (en) Ion plating
JP3275360B2 (en) Film formation method
JPH07187678A (en) Substrate coated with chromium nitride film
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip
JPH0428861A (en) Film forming device using hollow cathode electron gun
JPS58100672A (en) Method and device for formation of thin film
JP2636577B2 (en) Method of forming titanium nitride film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPH06256933A (en) Formation of chromium nitride film
JPH0445257A (en) Production of nitride film coated base material and oxide film coated base material
JPH06116711A (en) Formation of alumina film