JPH05311226A - Reduced pressure-vacuum degassing refining method for molten metal - Google Patents

Reduced pressure-vacuum degassing refining method for molten metal

Info

Publication number
JPH05311226A
JPH05311226A JP11503292A JP11503292A JPH05311226A JP H05311226 A JPH05311226 A JP H05311226A JP 11503292 A JP11503292 A JP 11503292A JP 11503292 A JP11503292 A JP 11503292A JP H05311226 A JPH05311226 A JP H05311226A
Authority
JP
Japan
Prior art keywords
molten metal
molten steel
decompression
vacuum
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11503292A
Other languages
Japanese (ja)
Inventor
Kazumi Harashima
和海 原島
Takeo Imoto
健夫 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11503292A priority Critical patent/JPH05311226A/en
Publication of JPH05311226A publication Critical patent/JPH05311226A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and economically execute degassing refining to an ultra low concn. in a short time by applying reduced pressure-vacuum degassing treatment. CONSTITUTION:At the time of executing the degassing refining to the molten metal by setting a circulating type vacuum vessel or a cylindrical type vacuum vessel to the upper part of a ladle incorporating molten metal and introducing a part of the molten metal in a ladle into this vacuum vessel, the difference between the atmospheric pressure and the pressure just above the molten metal surface in the ladle is adjusted in the range of 0.2-2.0atm and the pressure in the vacuum vessel is exhausted to <=200mmHg. Further, in order to improve the degassing effect, Ar is blown into the molten metal in the vacuum vessel. Particularly, at the time of removing the carbon in the molten metal, oxygen concn. contained in this molten metal is adjusted in the range of 0.03-0.10mass%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼あるいは溶融合金
等の溶融金属に含有されている炭素〔C〕、窒素
〔N〕、水素〔H〕を200mmHg以下の減圧・真空
下で除去するための効率的な脱ガス精錬方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention is for removing carbon [C], nitrogen [N] and hydrogen [H] contained in molten metal such as molten steel or molten alloy under reduced pressure and vacuum of 200 mmHg or less. The present invention relates to an efficient degassing and refining method of.

【0002】[0002]

【従来の技術】鋼や合金等の金属に含まれる炭素や窒素
は、自動車用薄鋼板、飲料缶用薄鋼板として使用する鋼
板の場合には、加工性向上、時効防止のために、また極
細線スチール・コード用の鋼の場合には、伸延性向上の
ために、極微量であることが要求される。さらに、構造
用厚板鋼材・パイプライン用鋼管材は、割れ防止のため
水素含有量を極微量に制限する。
2. Description of the Related Art Carbon and nitrogen contained in metals such as steel and alloys are used in steel sheets for automobiles and beverage cans to improve workability and prevent aging, and to use ultrafine steel. In the case of steel for wire steel cord, a very small amount is required to improve ductility. Further, structural steel plates and pipeline steel pipes have a very low hydrogen content to prevent cracking.

【0003】一般に、製鉄業においては、溶鋼あるいは
溶融合金等の溶融金属(以下単に溶鋼と記す)の脱ガス
処理を、例えば第3版鉄鋼便覧II製銑製鋼編671〜6
85頁に示されているような、各種の減圧・真空精錬設
備を用いて実施している。溶鋼循環型減圧・真空槽を用
いた脱ガス法(RH脱ガス法)に関して、減圧・真空槽
(以下、単に真空槽と記す)内の溶鋼にガスを吹込む方
法は、例えは特開平2−217412号公報あるいは特
開平3−61316号公報によって公知であり、脱ガス
速度の向上にはそれなりの効果が期待できる。ただし、
かかる方法では真空槽内の溶鋼が少量であり、従って溶
鋼深さが極めて浅く、吹込まれたガスは十分反応に関与
せずに溶鋼から離脱する。脱ガス速度を向上させるため
に吹込みガス量を増加させても、吹込みガスは溶鋼から
吹き抜けて、溶鋼を飛散させ、いたずらにスプラッシュ
を増加させて、安定な脱ガス処理を不可能とする。
Generally, in the steel industry, degassing treatment of molten metal such as molten steel or molten alloy (hereinafter simply referred to as molten steel) is carried out, for example, in the 3rd edition Iron and Steel Handbook II, Ironmaking Steelmaking 671-6.
It is carried out using various decompression / vacuum refining equipment as shown on page 85. Regarding the degassing method (RH degassing method) using a molten steel circulation type depressurization / vacuum tank, a method of blowing gas into the molten steel in the depressurization / vacuum tank (hereinafter, simply referred to as a vacuum tank) is disclosed in, for example, Japanese Patent Laid-Open No. Hei 2 It is known from JP-A-217412 or JP-A-3-61316, and a certain effect can be expected in improving the degassing rate. However,
In such a method, the amount of molten steel in the vacuum tank is small, and therefore the molten steel depth is extremely shallow, and the injected gas is released from the molten steel without sufficiently participating in the reaction. Even if the blowing gas amount is increased to improve the degassing rate, the blowing gas blows out from the molten steel and scatters the molten steel, unnecessarily increasing splash and making stable degassing impossible. ..

【0004】脱ガス反応は、溶鋼である液相と気体であ
る気相との界面(気・液界面)で進行する。このとき、
各脱ガス反応の速度は(1’)式〜(3’)式で示さ
れ、脱ガス速度を大きくするためには、反応速度定数kx
を大きくする必要がある。kxは反応面積に比例するの
で、従って脱ガス反応速度を増加させ、速やかに極低炭
素、極低窒素、極低酸素である溶鋼を溶製するために
は、気・液界面積を増加する方法とその具体的手段が必
要である。 〔脱炭処理〕〔C〕+〔O〕=CO …………………(1) d mass %〔C〕/dt=−kc・mass%〔C〕……………(1’) 〔脱水素処理〕〔H〕+〔H〕=H2 …………………(2) d mass %〔H〕/dt=−kc・mass%〔H〕……………(2’) 〔脱窒処理〕〔N〕+〔N〕=H2 …………………(2) d mass %〔N〕/dt=−kc・mass%〔N〕2…………(2’)
The degassing reaction proceeds at the interface (gas / liquid interface) between the liquid phase which is molten steel and the gas phase which is gas. At this time,
The rate of each degassing reaction is shown by the equations (1 ') to (3'). To increase the degassing rate, the reaction rate constant kx
Needs to be increased. Since kx is proportional to the reaction area, therefore, the degassing reaction rate should be increased, and in order to rapidly produce molten steel with extremely low carbon, extremely low nitrogen, and extremely low oxygen, the gas / liquid interface area should be increased. A method and its specific means are needed. [Decarburization treatment] [C] + [O] = CO …………………… (1) d mass% [C] / dt = -kc · mass% [C] …………… (1 ') [Dehydrogenation treatment] [H] + [H] = H 2 ……………… (2) d mass% [H] / dt = -kc · mass% [H] ………… (2 ' ) [Denitrification treatment] [N] + [N] = H 2 ……………… (2) d mass% [N] / dt = −kc · mass% [N] 2 ………… (2 ')

【0005】[0005]

【発明が解決しようとする課題】本発明は、溶鋼に対し
て減圧・真空処理を実施し、効率的かつ経済的に極低炭
素、極低窒素、極低水素溶鋼を溶製するための脱ガス精
錬方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention performs decompression / vacuum treatment on molten steel to remove molten steel for producing extremely low carbon, extremely low nitrogen, and extremely low hydrogen molten steel efficiently and economically. It is intended to provide a gas refining method.

【0006】[0006]

【課題を解決するための手段および作用】本発明の要旨
とするところは下記のとおりである。 (1) 循環型あるいは直胴型減圧・真空槽を、溶融金
属を収容した取鍋上部に設置して、取鍋内溶融金属の一
部を該減圧・真空槽に導入して溶融金属の減圧・真空脱
ガス精錬を実施するにあたり、大気圧と取鍋内溶融金属
表面直上の圧力との差を0.2〜2.0(atm)の範
囲に調整し、かつ減圧・真空槽内圧力を200mmHg
以下にすることを特徴とする溶融金属の減圧・真空脱ガ
ス精錬方法。
Means and Actions for Solving the Problems The gist of the present invention is as follows. (1) A circulation type or straight body type decompression / vacuum tank is installed above the ladle containing the molten metal, and a portion of the molten metal in the ladle is introduced into the decompression / vacuum tank to decompress the molten metal.・ When performing vacuum degassing refining, adjust the difference between the atmospheric pressure and the pressure directly above the molten metal surface in the ladle within the range of 0.2 to 2.0 (atm), and reduce the pressure and the pressure in the vacuum tank. 200 mmHg
A depressurized / vacuum degassing refining method for molten metal, comprising:

【0007】(2) 前項1記載の方法において、減圧
・真空槽内部に吸引・押上げられた溶融金属に、減圧・
真空槽の底部もしくは深層部に設置した複数個のガス吹
込みノズルおよび/あるいはガス吹込みプラグを介して
ArもしくはArと酸素ガスを吹込むことを特徴とする
溶融金属の減圧・真空脱ガス精錬方法。 (3) 前項1または2記載の方法において、溶融金属
中の炭素(〔C〕)を除去するに際し、該溶融金属に含
有される酸素(〔O〕)濃度を0.03〜0.10ma
ss%の範囲に調整することを特徴とする溶融金属の減
圧・真空脱ガス精錬方法。
(2) In the method described in the preceding paragraph 1, the molten metal sucked and pushed up in the vacuum chamber is depressurized.
Decompression and vacuum degassing refining of molten metal, characterized in that Ar or Ar and oxygen gas are blown through a plurality of gas blowing nozzles and / or gas blowing plugs installed at the bottom or deep layer of a vacuum tank. Method. (3) In the method described in 1 or 2 above, when removing carbon ([C]) in the molten metal, the concentration of oxygen ([O]) contained in the molten metal is 0.03 to 0.10 ma.
A depressurizing / vacuum degassing refining method for molten metal, characterized by adjusting to a ss% range.

【0008】(4) 前項2または3記載の方法におい
て、溶融金属中の炭素(〔C〕)を除去するに際し、該
溶融金属の炭素(〔C〕)濃度が0.005mass%
以下の領域において、減圧・真空槽内の溶融金属の単位
重量に対し、減圧・真空槽の底部もしくは深層部に設置
した複数個のガス吹込みノズルおよび/あるいはガス吹
込みプラグを介してArを1.5(Nl/min/ト
ン)以上吹込むことを特徴とする溶融金属の減圧・真空
脱ガス精錬方法。
(4) In the method described in the above item 2 or 3, when carbon ([C]) in the molten metal is removed, the carbon ([C]) concentration of the molten metal is 0.005 mass%.
In the following areas, per unit weight of molten metal in the depressurization / vacuum tank, Ar is supplied through a plurality of gas injection nozzles and / or gas injection plugs installed at the bottom or deep layer of the depressurization / vacuum tank. A decompression / vacuum degassing refining method for molten metal, which comprises blowing 1.5 (Nl / min / ton) or more.

【0009】[0009]

【作用】本発明の技術思想の根源は、主な反応部である
真空槽5内に、より多くの溶鋼2を常時供給するため
に、図8、図9に示すように、大気と取鍋3内部溶鋼の
空間10を、取鍋シール縁4と真空槽鍔6をシール機構
15を介して隔離し、空間10に加圧用ガス導入管11
からガスを導入して該空間を加圧することにより、真空
槽に、以下の関係式で示される圧力差ΔPに比例した高
さまで溶鋼を吸引・押上げ、これにより、吹込みガスの
滞留時間を増加させる点にある。すなわち、従来実施さ
れてきた方法よりも、真空槽内溶鋼量と、真空槽内溶鋼
深さHを大幅に増大でき、吹込み気泡へ前記(1)〜
(3)式で生成するCO、H2 、N2 を十分多量に吸収
させることができ、脱ガス速度を極めて大きくできる。
The root of the technical idea of the present invention is to constantly supply a larger amount of molten steel 2 into the vacuum tank 5 which is the main reaction section, as shown in FIGS. 3 The space 10 of the internal molten steel is separated from the ladle sealing edge 4 and the vacuum tank collar 6 via the sealing mechanism 15, and the pressurizing gas introduction pipe 11 is introduced into the space 10.
By introducing gas from the above to pressurize the space, the molten steel is sucked and pushed up to the height proportional to the pressure difference ΔP represented by the following relational expression in the vacuum chamber, whereby the residence time of the blown gas is increased. There is a point to increase. That is, the amount of molten steel in the vacuum tank and the depth H of molten steel in the vacuum tank can be significantly increased as compared with the conventional method, and the above-mentioned (1)-
CO, H 2 , and N 2 generated by the formula (3) can be absorbed in a sufficiently large amount, and the degassing rate can be extremely increased.

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【数2】 [Equation 2]

【0012】 H :真空槽内の溶鋼の高さ(mm) L :取鍋溶鋼面からの真空槽内槽底までの高さ
(mm) Ptotal :真空槽内圧力(mmHg) ρmetal :溶鋼密度(g/cm3 ) ΔP :大気と空間10との圧力差(atm) このことにより、循環型真空槽を用いた時には、溶鋼環
流用ArへのCO、H 2 、N2 の吸収量が増大し、脱ガ
ス速度が増大する。一方、直胴型真空槽を用いた時に
は、取鍋底部に設置した溶鋼循環攪拌用プラグ16から
吹込んだAr気泡へのCO、H2 、N2 の吸収量が増大
し、脱ガス速度が増大する。
H: height of molten steel in the vacuum tank (mm) L: height from the molten steel surface of the ladle to the bottom of the vacuum tank
(Mm) Ptotal : Vacuum chamber pressure (mmHg) ρmetal : Density of molten steel (g / cm3) ΔP: Pressure difference (atm) between the atmosphere and the space 10, which makes it possible to obtain a molten steel ring when a circulation type vacuum tank is used.
CO, H to diverted Ar 2, N2The absorption amount of
The speed increases. On the other hand, when using a straight body type vacuum chamber
From the molten steel circulating stirring plug 16 installed at the bottom of the ladle
CO, H to Ar bubbles blown2, N2Increased absorption of
However, the degassing rate increases.

【0013】ただし、ΔPの値をあまり大きく取ると、
真空槽内の溶鋼量が大きくなりすぎ、溶鋼の循環が阻害
され、見掛け上、反応速度が低下する。従って、ΔPの
値は0.2〜2.0(atm)の範囲に制御する。吹込
みArの膨張による気泡・液界面積増加効果を十分に活
用するためには、減圧・真空槽内の圧力は高真空ほど有
利である。従って、実質的な真空度は200mmHg以
下の真空度を確保すべきである。
However, if the value of ΔP is set too large,
The amount of molten steel in the vacuum tank becomes too large, the circulation of molten steel is obstructed, and the reaction rate apparently decreases. Therefore, the value of ΔP is controlled within the range of 0.2 to 2.0 (atm). In order to fully utilize the effect of increasing the bubble / liquid interface area due to the expansion of the blown-in Ar, the pressure in the vacuum chamber / vacuum chamber is more advantageous as the vacuum is higher. Therefore, the substantial degree of vacuum should be 200 mmHg or less.

【0014】さらに、真空槽の深層部に設置した複数個
のガス吹込みノズル8および/あるいは真空槽底部に設
置したガス吹込みプラグ9を用いて、ガスを真空槽内の
溶鋼に分散して吹込むことにより、さらなる気・液反応
界面積を増大することができ、かつ吹込み気泡を溶鋼内
に分散して合体を防止することで大きな脱ガス速度が得
られる。
Further, by using a plurality of gas injection nozzles 8 installed in the deep portion of the vacuum chamber and / or a gas injection plug 9 installed in the bottom of the vacuum chamber, the gas is dispersed in the molten steel in the vacuum chamber. By blowing, the gas-liquid reaction interface area can be further increased, and by blowing bubbles in molten steel to prevent coalescence, a large degassing rate can be obtained.

【0015】本発明の方法で溶鋼に含有される炭素
(〔C〕)を除去する場合において、特に該溶鋼の
〔O〕濃度が0.005mass%以下では溶鋼内部か
らのCO気泡発生による脱炭反応量が極めて小さくな
り、吹込み気泡による気・液界面を介しての反応が主体
となる。従って、この反応を促進するためには、真空槽
内への吹込みガス量は、真空槽内に存在する溶鋼単位重
量あたり、1.5(Nl/min/トン)を確保して、
吹込みガスによる気泡・溶鋼界面積を確保することが有
効である。この時、溶鋼の〔O〕濃度を高濃度に保持す
ることが重要である。ただし、一方では、〔O〕は気・
液界面に吸着し、脱炭反応速度を低下させる。従って、
〔O〕濃度は0.03〜0.1mass%の範囲とす
る。
When carbon ([C]) contained in molten steel is removed by the method of the present invention, especially when the [O] concentration of the molten steel is 0.005 mass% or less, decarburization due to generation of CO bubbles from inside the molten steel. The reaction amount becomes extremely small, and the reaction mainly via the gas-liquid interface by the blown air bubbles becomes the main component. Therefore, in order to promote this reaction, the amount of gas blown into the vacuum tank should be 1.5 (Nl / min / ton) per unit weight of molten steel present in the vacuum tank.
It is effective to secure the bubble / molten steel boundary area by the blown gas. At this time, it is important to maintain the [O] concentration of the molten steel at a high concentration. However, on the other hand, [O] is
Adsorbs on the liquid interface and reduces the decarburization reaction rate. Therefore,
The [O] concentration is in the range of 0.03 to 0.1 mass%.

【0016】さらに、本発明を実施するにあたり、溶鋼
内部に気泡を分散させ、かつ気泡を微細化し、吹込み気
泡の合体を極力防止し、気・液界面積を増加させるため
の公知のガス吹込み手段が適用できる。本発明の方法を
適用して溶鋼の脱炭処理をするにあたり、溶鋼の酸素濃
度を保持あるいは増加するためには、酸素ガスあるいは
酸素含有ガスを溶鋼に直接吹込みノズル14を介して吹
込んでもよく、吹付けランス12を用いて溶鋼表面に吹
付けてもよい。
Further, in practicing the present invention, known gas blowers for dispersing bubbles inside the molten steel, refining the bubbles, preventing coalescence of blown bubbles as much as possible, and increasing the gas-liquid interface area. Including means can be applied. In carrying out the decarburization treatment of molten steel by applying the method of the present invention, in order to maintain or increase the oxygen concentration of the molten steel, oxygen gas or oxygen-containing gas may be blown directly into the molten steel through the blowing nozzle 14. Of course, the spray lance 12 may be used to spray the molten steel surface.

【0017】さらに、取鍋内の溶鋼を攪拌するために、
取鍋底部に設置したガス吹込み用のプラグ13を用いる
こともできる。
Furthermore, in order to stir the molten steel in the ladle,
It is also possible to use the plug 13 for gas injection installed at the bottom of the ladle.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1 図8に示すような、シール縁4付きの取鍋3に250ト
ンの溶鋼1を装入し、上部から鍔6付き溶鋼循環型減圧
・真空槽5を溶鋼に浸漬し、空間10を、シール機構1
5を介して大気から隔離し、真空槽内を排気して溶鋼を
減圧・真空槽内に吸引し、該溶鋼の脱炭処理を実施し
た。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 As shown in FIG. 8, 250 tons of molten steel 1 was charged into a ladle 3 with a sealing edge 4, and a molten steel circulation type decompression / vacuum tank 5 with a collar 6 was immersed in the molten steel from the upper part to leave a space 10 The sealing mechanism 1
The molten steel was decarburized by isolating the molten steel from the atmosphere via No. 5 and evacuating the inside of the vacuum tank to suck the molten steel into the vacuum / vacuum tank.

【0019】〔O〕濃度は0.04〜0.05mass
%の範囲である。溶鋼環流用Arガスを吹込みノズル7
を介して溶鋼に1800(Nl/min)の割合で供給
した。処理開始から5min後には、真空槽内圧力P
total は10mmHg以下となり、ガス供給管11を介
してArを導入し、空間10の圧力と大気圧との差ΔP
の値を0.6(atm)とした。同時に、真空槽内の深
層部に3ケ所設置したガス吹込みノズル8またはプラグ
8からArガスを真空槽内溶鋼単位重量あたり3.5
(Nl/min/トン)吹込んだ。
[O] concentration is 0.04 to 0.05 mass
% Range. Nozzle 7 for injecting Ar gas for molten steel circulation
Was supplied to the molten steel at a rate of 1800 (Nl / min). After 5 minutes from the start of processing, the pressure in the vacuum chamber P
The total becomes 10 mmHg or less, Ar is introduced through the gas supply pipe 11, and the difference ΔP between the pressure in the space 10 and the atmospheric pressure is ΔP.
Was set to 0.6 (atm). At the same time, Ar gas was supplied from the gas injection nozzles 8 or the plugs 8 installed at three deep places in the vacuum chamber to 3.5 per unit weight of molten steel in the vacuum chamber.
(Nl / min / ton)

【0020】〔C〕濃度の経時変化を図1に示す。本発
明により、極低炭素溶鋼が速やかに溶製できることが分
かる。比較例として、同一条件でΔPをゼロ(atm)
とした時の脱炭処理時の〔C〕濃度の経時変化を破線で
示した。本発明により従来の方法に比較して、脱炭速度
が極めて大きくなった。 実施例2 図9に示すような、シール縁4付きの取鍋3に250ト
ンの溶鋼1を装入し、上部から鍔6付き直胴型減圧・真
空槽5を溶鋼に浸漬し、空間10を、シール機構15を
介して大気から隔離し、真空槽内を排気して溶鋼を減圧
・真空槽内に吸引し、該溶鋼の脱炭処理を実施した。
[C] Changes in concentration over time are shown in FIG. According to the present invention, it is found that ultra low carbon molten steel can be rapidly melted. As a comparative example, ΔP is zero (atm) under the same conditions.
The change over time in the [C] concentration during decarburization is shown by the broken line. According to the present invention, the decarburization rate becomes extremely high as compared with the conventional method. Example 2 As shown in FIG. 9, 250 tons of molten steel 1 was charged into a ladle 3 with a sealing edge 4, and a straight-body type decompression / vacuum tank 5 with a collar 6 was immersed in the molten steel from the upper part to leave a space 10 Was isolated from the atmosphere via the seal mechanism 15, the vacuum tank was evacuated, the molten steel was depressurized and sucked into the vacuum tank, and the molten steel was decarburized.

【0021】〔O〕濃度は0.04〜0.05mass
%の範囲である。溶鋼循環攪拌用Arガスを吹込みプラ
グ16を介して溶鋼に1600(Nl/min)の割合
で供給した。処理開始から5min後には、真空槽内圧
力Ptotal は10mmHg以下となり、ガス供給管11
を介してArを導入し、空間10の圧力と大気圧との差
ΔPの値を0.5(atm)とした。同時に、真空槽内
の深層部に設置したガス吹込みノズル8からArガスを
真空槽内溶鋼単位重量あたり3.5(Nl/min/ト
ン)吹き込んだ。
[O] concentration is 0.04 to 0.05 mass
% Range. Ar gas for circulating and agitating the molten steel was supplied to the molten steel at a rate of 1600 (Nl / min) through a blowing plug 16. After 5 minutes from the start of the treatment, the pressure in the vacuum chamber P total becomes 10 mmHg or less, and the gas supply pipe 11
Ar was introduced through the chamber and the value of the difference ΔP between the pressure in the space 10 and the atmospheric pressure was set to 0.5 (atm). At the same time, Ar gas was blown at 3.5 (Nl / min / ton) per unit weight of molten steel in the vacuum tank from the gas injection nozzle 8 installed in the deep layer in the vacuum tank.

【0022】〔C〕濃度の経時変化を図2に示す。本発
明により、極低炭素溶鋼が速やかに溶製できることが分
かる。比較例として、同一条件でΔPをゼロ(atm)
とした時の脱炭処理時の〔C〕濃度の経時変化を破線で
示した。本発明によれば、従来法に比較して、脱炭速度
が極めて大きく、速やかに極低炭素鋼が溶製できること
が明らかである。
[C] Changes in concentration with time are shown in FIG. According to the present invention, it is found that ultra low carbon molten steel can be rapidly melted. As a comparative example, ΔP is zero (atm) under the same conditions.
The change over time in the [C] concentration during decarburization is shown by the broken line. According to the present invention, it is apparent that the decarburization rate is extremely high and the ultra low carbon steel can be rapidly melted as compared with the conventional method.

【0023】実施例3 図8、図9に示す装置を用いて、250トンの溶鋼の脱
炭処理をΔPの値をゼロ〜2.0(atm)の範囲で変
更して実施した。〔O〕濃度は0.04〜0.05ma
ss%の範囲である。溶鋼循環型真空槽を用いた時の環
流Ar流量は1800(Nl/min)であり、直胴型
真空槽を用いた時の溶鋼循環攪拌用ガス流量は1200
(Nl/min)である。処理開始から5min後に
は、真空槽内圧力Ptotal は10mmHg以下となる。
Example 3 Using the apparatus shown in FIGS. 8 and 9, 250 tons of molten steel was decarburized by changing the value of ΔP in the range of 0 to 2.0 (atm). [O] concentration is 0.04 to 0.05 ma
It is in the range of ss%. The circulating Ar flow rate when using the molten steel circulation type vacuum tank was 1800 (Nl / min), and the molten steel circulation stirring gas flow rate when using the straight body type vacuum tank was 1200.
(Nl / min). After 5 minutes from the start of the treatment, the pressure in the vacuum chamber P total becomes 10 mmHg or less.

【0024】いずれの場合にも、真空槽内溶鋼単位重量
あたり3.5(Nl/min/トン)の割合でArを吹
込んだ場合についての脱炭処理も実施した。図3に、真
空槽内へのAr吹込み実施の有無による脱炭速度定数比
kcPx/kc OとΔPとの関係を示す。ここでのkcPx/kc O
の値は、〔O〕が0.003mass%以下の濃度領域
の脱炭速度定数比である。
In each case, decarburization was also carried out when Ar was blown at a rate of 3.5 (Nl / min / ton) per unit weight of molten steel in the vacuum tank. Fig. 3 shows the decarburization rate constant ratio with and without Ar injection into the vacuum chamber.
The relationship between kc Px / kc O and ΔP is shown. Where kc Px / kc O
The value of is the decarburization rate constant ratio in the concentration region where [O] is 0.003 mass% or less.

【0025】kc Oの値はΔP=ゼロの時の脱炭速度定数
であり、kcPxの値はΔP=x の時の脱炭速度定数であ
る。kcPx/kc O の値はΔPの値が0.2(atm)以上
になると増加し始め、真空槽内Ar吹込みを実施する
と、その効果はさらに著しく、極低炭素溶鋼の溶製が効
率的に実施できる。 実施例4 図8に示すような装置を用いて、250トンの溶鋼の脱
炭処理を実施した。この時の〔O〕濃度を0.010〜
0.110mass%の範囲で変更した。
The value of kc O is the decarburization rate constant when ΔP = zero, and the value of kc Px is the decarburization rate constant when ΔP = x. The value of kc Px / kc O begins to increase when the value of ΔP becomes 0.2 (atm) or more, and when Ar is blown in the vacuum chamber, the effect is more remarkable, and the melting of ultra-low carbon molten steel is efficient. Can be implemented Example 4 Using a device as shown in FIG. 8, 250 tons of molten steel was decarburized. At this time, the [O] concentration is set to 0.010 to
It was changed in the range of 0.110 mass%.

【0026】環流Ar流量は1800(Nl/min)
であり、処理開始から5min後には、真空槽内圧力P
total は10mmHg以下となり、ΔPの値を0.6
(atm)とした。真空槽内溶鋼単位重量あたり3.5
(Nl/min/トン)の割合でArを吹込んだ場合に
ついての脱炭処理も実施した。
Circulating Ar flow rate is 1800 (Nl / min)
After 5 minutes from the start of the treatment, the pressure in the vacuum chamber P
total becomes 10 mmHg or less, and the value of ΔP is 0.6
(Atm). 3.5 per unit weight of molten steel in the vacuum tank
A decarburization process was also performed when Ar was blown at a rate of (Nl / min / ton).

【0027】図4に、脱炭速度定数比kc[O] x/kc O
〔O〕濃度との関係を示した。ここで、kc Oの値は
〔O〕=0.01mass%の時の脱炭速度定数であ
り、kc[O] xの値は〔O〕=x mass%の時の脱炭速度
定数である。kc[O] x/kc O の値は〔O〕の増加と共に
増加する。真空槽内Ar吹込みを実施すると、その効果
はさらに著しく、極低炭素溶鋼の溶製が効率的に実施で
きる。ただし、〔O〕が0.10mass%を越えると
kc[O] x/kc O の値は減少する。
FIG. 4 shows the relationship between the decarburization rate constant ratio kc [O] x / kc O and the [O] concentration. Here, the value of kc O is the decarburization rate constant when [O] = 0.01 mass%, and the value of kc [O] x is the decarburization rate constant when [O] = x mass%. .. The value of kc [O] x / kc O increases with increasing [O]. When Ar is blown into the vacuum chamber, the effect is more remarkable, and the extremely low carbon molten steel can be efficiently produced. However, when [O] exceeds 0.10 mass%,
The value of kc [O] x / kc O decreases.

【0028】従って、実際に効率よく脱炭を実行するた
めには、〔O〕濃度は0.030mass%以上とし、
0.10mass%以下とすべきである。 実施例5 図8、図9に示すような装置を用いて、250トンの溶
鋼の脱ガス処理を実施した。溶鋼の〔O〕濃度は0.0
01〜0.005mass%の範囲のキルド鋼である。
Therefore, in order to actually carry out decarburization efficiently, the [O] concentration should be 0.030 mass% or more.
It should be 0.10 mass% or less. Example 5 Using a device as shown in FIGS. 8 and 9, 250 tons of molten steel was degassed. [O] concentration of molten steel is 0.0
It is a killed steel in the range of 01 to 0.005 mass%.

【0029】溶鋼循環型真空槽を用いた時の環流Ar流
量は1800(Nl/min)であり、直胴型真空槽を
用いた時の溶鋼循環攪拌用ガス流量は1200(Nl/
min)である。処理開始から5min後には、真空槽
内圧力Ptotal は10mmHg以下となり、ΔPの値を
0〜1.65(atm)の範囲で変更した。直胴型と循
環型のいずれの場合にも、真空槽内溶鋼単位重量あたり
3.0(Nl/min/トン)の割合でArを吹込んだ
脱ガス処理も実施した。
The circulating Ar flow rate when using the molten steel circulation type vacuum tank was 1800 (Nl / min), and the molten steel circulation stirring gas flow rate when using the straight body type vacuum tank was 1200 (Nl / min).
min). After 5 minutes from the start of the treatment, the pressure in the vacuum chamber P total became 10 mmHg or less, and the value of ΔP was changed in the range of 0 to 1.65 (atm). In both the straight body type and the circulation type, degassing treatment was also performed by blowing Ar at a rate of 3.0 (Nl / min / ton) per unit weight of molten steel in the vacuum tank.

【0030】図5に、真空槽内へのAr吹込み実施の有
無による脱窒速度定数比 kN Px/kN O 、脱水素速度定数
比 kH Px/kH O とΔPとの関係を示す。k N O 、k H O
の値は各々ΔP=ゼロの時の脱窒、脱水素速度定数であ
り、kN Px、k H Pxの値は各々ΔP=x の時の脱窒、脱水
素速度定数である。各速度定数比kN Px/kN O とkH Px/k
H O は、ΔPの値が0.2(atm)以上になると増加
し始め、真空槽内Ar吹込みを実施すると、その効果は
より著しく、効率的な脱ガス処理が実行できる。
FIG. 5 shows that Ar was blown into the vacuum chamber.
Denitrification rate constant ratio k withoutN Px/ kN O, Dehydrogenation rate constant
Ratio kH Px/ kH OAnd the relationship between ΔP and ΔP. kN O, KH O
Are the denitrification and dehydrogenation rate constants when ΔP = zero.
, KN Px, KH PxValues are denitrification and dehydration when ΔP = x
It is the elementary rate constant. Rate constant ratio kN Px/ kN OAnd kH Px/ k
H OIncreases when the value of ΔP exceeds 0.2 (atm)
Then, when Ar is blown in the vacuum chamber, the effect is
A more remarkable and efficient degassing process can be performed.

【0031】実施例6 図8、図9に示すような装置を用いて、250トンの溶
鋼の脱炭処理を実施した。この時の〔O〕濃度は0.0
5〜0.06mass%の範囲である。循環型真空槽を
用いた場合、環流Ar流量は1800(Nl/min)
であり、直胴型真空槽を用いた時の溶鋼循環攪拌用ガス
流量は1200(Nl/min)である。処理開始から
5min後には、真空槽内圧力Ptotal を所定の圧力に
保持した。ただし、ΔPの値を0.6(atm)とし
た。
Example 6 Using a device as shown in FIGS. 8 and 9, 250 tons of molten steel was decarburized. At this time, the [O] concentration is 0.0
It is in the range of 5 to 0.06 mass%. When a circulation type vacuum tank is used, the circulating Ar flow rate is 1800 (Nl / min)
Thus, the flow rate of the molten steel circulating stirring gas when using the straight body type vacuum tank is 1200 (Nl / min). After 5 minutes from the start of the treatment, the vacuum chamber internal pressure P total was maintained at a predetermined pressure. However, the value of ΔP was set to 0.6 (atm).

【0032】いずれの場合にも、真空槽内溶鋼単位重量
あたり4.0(Nl/min/トン)の割合でArを吹
込んだ脱炭処理も実施した。図6に、脱炭速度定数比kc
Tx/kc T とPtotal との関係を示した。ここで、kc T
の値はPtotal =760mmHgの時の脱炭速度定数で
あり、kcTxの値はP total =x mmHgの時の脱炭速
度定数である。
In each case, the unit weight of molten steel in the vacuum chamber
Blows Ar at a rate of 4.0 (Nl / min / ton)
Intensive decarburization treatment was also carried out. Fig. 6 shows the decarburization rate constant ratio kc
Tx/ kcTAnd PtotalHas shown a relationship with. Where kc T 
Value of Ptotal= Decarburization rate constant at 760 mmHg
Yes, kcTxValue of P total= Decarburization speed when x mmHg
It is a constant.

【0033】kcTx/kc T の値はPtotal の値が高真空に
なるほど増加するが、実際に効率良く脱炭を実行するた
めには、Ptotal の値は200mmHg以下とすべきで
ある。 実施例7 図8に示すような装置を用いて、250トンの溶鋼の脱
炭処理を実施した。この時の〔O〕濃度は0.05〜
0.06mass%の範囲である。
Although the value of kc Tx / kc T increases as the value of P total becomes higher in vacuum, the value of P total should be 200 mmHg or less in order to actually perform decarburization efficiently. Example 7 Using a device as shown in FIG. 8, 250 tons of molten steel was decarburized. At this time, the [O] concentration is 0.05 to
It is in the range of 0.06 mass%.

【0034】環流Ar流量は1800(Nl/min)
であり、処理開始から5min後には、真空槽内圧力P
total を10mmHg以下に保持した。ただし、ΔPの
値を0.6(atm)とした。減圧・真空槽内に吹込む
Arガスの流量FArを0〜25(Nl/min/トン)
の範囲で変更した。
Circulating Ar flow rate is 1800 (Nl / min)
After 5 minutes from the start of the treatment, the pressure in the vacuum chamber P
The total was kept below 10 mmHg. However, the value of ΔP was set to 0.6 (atm). Flow rate F Ar of Ar gas blown into the vacuum chamber is 0 to 25 (Nl / min / ton)
Changed within the range.

【0035】図7に、〔O〕濃度が0.005mass
%以下の濃度領域での脱炭速度定数比kcArx /kc O とF
Arとの関係を示す。ここでのkcO の値は、FAr=ゼロの
時の脱炭速度定数であり、kcArx の値は、FAr=x の
時の脱炭速度定数である。kcArx /kc O の値はFArの増
加と共に増加する。実質的に、効率良く脱炭処理を実行
するためには、FArの値は1.5(Nl/min/ト
ン)以上を確保する必要がある。
In FIG. 7, the [O] concentration is 0.005 mass.
Decarburization rate constant ratio kc Arx / kc O and F
The relationship with Ar is shown. The value of kc O here is the decarburization rate constant when F Ar = zero, and the value of kc Arx is the decarburization rate constant when F Ar = x. The value of kc Arx / kc O increases with increasing F Ar . Substantially, in order to carry out the decarburization treatment efficiently, it is necessary to secure the value of F Ar at 1.5 (Nl / min / ton) or more.

【0036】[0036]

【発明の効果】本発明によれば、溶鋼の脱ガス速度が増
大し、効率的かつ経済的に超極低炭素、極低窒素、極低
水素濃度の溶鋼の溶製ができるようになった。
INDUSTRIAL APPLICABILITY According to the present invention, the degassing rate of molten steel is increased, and molten steel with ultra-low carbon, ultra-low nitrogen and ultra-low hydrogen concentration can be produced efficiently and economically. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】〔C〕濃度の経時変化を示す図である。FIG. 1 is a diagram showing a change with time of [C] concentration.

【図2】〔C〕濃度の経時変化を示す図である。FIG. 2 is a diagram showing a change with time of [C] concentration.

【図3】脱炭速度定数比kcPx/kc O とΔPとの関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a decarburization rate constant ratio kc Px / kc O and ΔP.

【図4】脱炭速度定数比kc[O]x/kc O と〔O〕濃度との
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the decarburization rate constant ratio kc [O] x / kc O and the [O] concentration.

【図5】脱ガス速度定数比 kN Px/kN O 、 kH Px/kH O
とΔPとの関係を示す図である。
[Figure 5] Degassing rate constant ratio k N Px / k N O , k H Px / k H O
It is a figure which shows the relationship between ΔP and.

【図6】脱炭速度定数比kcTx/kc T とPtotal との関係
を示す図である。
FIG. 6 is a diagram showing a relationship between a decarburization rate constant ratio kc Tx / kc T and P total .

【図7】脱炭速度定数比KcArx /kc O とFArとの関係を
示す図である。
FIG. 7 is a diagram showing a relationship between a decarburization rate constant ratio Kc Arx / kc O and F Ar .

【図8】本発明を実施するための溶鋼循環型脱ガス設備
の一例を示す図である。
FIG. 8 is a diagram showing an example of molten steel circulation type degassing equipment for carrying out the present invention.

【図9】本発明を実施するための直胴型脱ガス設備の一
例を示す図である。
FIG. 9 is a diagram showing an example of a straight-body type degassing equipment for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1:取鍋内溶鋼 2:真空槽内部に吸引・押上げられた溶鋼 3:取鍋 4:取鍋シール縁 5:真空槽 6:真空槽鍔 7:ガス吹込みノズル 8:ガス吹込みノズル 9:ガス吹込みプラグ 10:空間 11:加圧用ガス導入管 12:酸素ガス吹付けランス 13:ガス吹込用プラグ 14:酸素吹込みノズル 15:シール機構 16:溶鋼循環攪拌用プラグ 1: Molten steel in ladle 2: Molten steel sucked and pushed up inside vacuum tank 3: Ladle 4: Ladle sealing edge 5: Vacuum tank 6: Vacuum tank collar 7: Gas injection nozzle 8: Gas injection nozzle 9: Gas injection plug 10: Space 11: Pressurization gas introduction pipe 12: Oxygen gas injection lance 13: Gas injection plug 14: Oxygen injection nozzle 15: Seal mechanism 16: Molten steel circulation stirring plug

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 循環型あるいは直胴型減圧・真空槽を、
溶融金属を収容した取鍋上部に設置して、取鍋内溶融金
属の一部を該減圧・真空槽に導入して溶融金属の減圧・
真空脱ガス精錬を実施するにあたり、大気圧と取鍋内溶
融金属表面直上の圧力との差を0.2〜2.0(at
m)の範囲に調整し、かつ減圧・真空槽内圧力を200
mmHg以下にすることを特徴とする溶融金属の減圧・
真空脱ガス精錬方法。
1. A circulation type or straight body type decompression / vacuum tank,
It is installed on the top of the ladle containing the molten metal, and a part of the molten metal in the ladle is introduced into the decompression / vacuum tank to decompress the molten metal.
In carrying out the vacuum degassing refining, the difference between the atmospheric pressure and the pressure directly above the molten metal surface in the ladle is 0.2 to 2.0 (at
m) and adjust the decompression / vacuum chamber pressure to 200
Decompression of molten metal characterized by being less than mmHg
Vacuum degassing refining method.
【請求項2】 請求項1記載の方法において、減圧・真
空槽内部に吸引・押上げられた溶融金属に、減圧・真空
槽の底部もしくは深層部に設置した複数個のガス吹込み
ノズルおよび/あるいはガス吹込みプラグを介してAr
もしくはArと酸素ガスを吹込むことを特徴とする溶融
金属の減圧・真空脱ガス精錬方法。
2. The method according to claim 1, wherein the molten metal sucked and pushed up inside the decompression / vacuum chamber has a plurality of gas injection nozzles installed at the bottom or deep layer of the decompression / vacuum chamber. Or Ar via a gas injection plug
Alternatively, a decompression / vacuum degassing refining method for molten metal, which comprises blowing Ar and oxygen gas.
【請求項3】 請求項1または2記載の方法において、
溶融金属中の炭素(〔C〕)を除去するに際し、該溶融
金属に含有される酸素(〔O〕)濃度を0.03〜0.
10mass%の範囲に調整することを特徴とする溶融
金属の減圧・真空脱ガス精錬方法。
3. The method according to claim 1 or 2, wherein
When removing carbon ([C]) in the molten metal, the concentration of oxygen ([O]) contained in the molten metal is 0.03 to 0.
A depressurizing / vacuum degassing refining method for molten metal, which comprises adjusting the content of the molten metal within a range of 10 mass%.
【請求項4】 請求項2または3記載の方法において、
溶融金属中の炭素(〔C〕)を除去するに際し、該溶融
金属の炭素(〔C〕)濃度が0.005mass%以下
の領域において、減圧・真空槽内の溶融金属の単位重量
に対し、減圧・真空槽の底部もしくは深層部に設置した
複数個のガス吹込みノズルおよび/あるいはガス吹込み
プラグを介してArを1.5(Nl/min/トン)以
上吹込むことを特徴とする溶融金属の減圧・真空脱ガス
精錬方法。
4. The method according to claim 2 or 3,
When removing carbon ([C]) in the molten metal, in the region where the carbon ([C]) concentration of the molten metal is 0.005 mass% or less, relative to the unit weight of the molten metal in the decompression / vacuum chamber, Melting characterized by blowing Ar of 1.5 (Nl / min / ton) or more through a plurality of gas injection nozzles and / or gas injection plugs installed at the bottom or deep layer of the decompression / vacuum tank. Metal decompression / vacuum degassing refining method.
JP11503292A 1992-05-07 1992-05-07 Reduced pressure-vacuum degassing refining method for molten metal Withdrawn JPH05311226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11503292A JPH05311226A (en) 1992-05-07 1992-05-07 Reduced pressure-vacuum degassing refining method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11503292A JPH05311226A (en) 1992-05-07 1992-05-07 Reduced pressure-vacuum degassing refining method for molten metal

Publications (1)

Publication Number Publication Date
JPH05311226A true JPH05311226A (en) 1993-11-22

Family

ID=14652527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11503292A Withdrawn JPH05311226A (en) 1992-05-07 1992-05-07 Reduced pressure-vacuum degassing refining method for molten metal

Country Status (1)

Country Link
JP (1) JPH05311226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624217A1 (en) * 1985-07-17 1987-01-29 Nissan Motor GASS SENSOR ELEMENT
EP0949339A1 (en) * 1998-04-06 1999-10-13 Thyssen Krupp Stahl AG RH vacuum process with controlled circulation rate for the decarburization of steel melts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624217A1 (en) * 1985-07-17 1987-01-29 Nissan Motor GASS SENSOR ELEMENT
EP0949339A1 (en) * 1998-04-06 1999-10-13 Thyssen Krupp Stahl AG RH vacuum process with controlled circulation rate for the decarburization of steel melts

Similar Documents

Publication Publication Date Title
JP2593175B2 (en) Method for producing ultra-low carbon steel by vacuum degassing
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
EP1757706B1 (en) Method for refining molten steel
JPH06145763A (en) Reduced pressure and vacuum degassing method of molten steel
JPH05311227A (en) Reduced pressure-vacuum degassing refining method for molten metal
JP2773883B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JPH07118731A (en) Method for vacuum-degassing molten steel under reduced pressure
KR100743211B1 (en) Vacuum treatment of cast metal with simultaneous helium-injection stirring
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JPH05239535A (en) Method for melting extreme-low carbon steel
JPH0754034A (en) Production of ultralow carbon steel
JP3785257B2 (en) Method for degassing stainless steel
JPH0448027A (en) Method and device for reduced pressure and vacuum refining of molten steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
JPH05239533A (en) Method for melting extreme low carbon steel
JPH06116624A (en) Method for vacuum-refining molten steel
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
JPH03134115A (en) Method and apparatus for producing highly clean and extremely low carbon steel
JPH07166230A (en) Production of extra-low nitrogen steel
JPH0649528A (en) Vacuum decarburization refining method of extra-low carbon steel
JPH06145769A (en) Smelting method of extra-low nitrogen steel
JPH02197515A (en) Smelting method for dead soft steel having high cleanness
JPH0456716A (en) Method for smelting dead soft steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803