JPH07166230A - Production of extra-low nitrogen steel - Google Patents

Production of extra-low nitrogen steel

Info

Publication number
JPH07166230A
JPH07166230A JP31196093A JP31196093A JPH07166230A JP H07166230 A JPH07166230 A JP H07166230A JP 31196093 A JP31196093 A JP 31196093A JP 31196093 A JP31196093 A JP 31196093A JP H07166230 A JPH07166230 A JP H07166230A
Authority
JP
Japan
Prior art keywords
molten steel
steel
oxygen
treatment
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31196093A
Other languages
Japanese (ja)
Inventor
Jun Hirama
潤 平間
Toshiaki Okimura
利昭 沖村
Yoshio Nakajima
義夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP31196093A priority Critical patent/JPH07166230A/en
Publication of JPH07166230A publication Critical patent/JPH07166230A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To promote denitriding reaction by CO gas foams caused by carbon (C) in a steel and stably obtain an extra-low nitrogen steel by vacuum degassing treatment. CONSTITUTION:Molten steel 32 for which a converter is brown out to regulate (C) to >=0.10wt.% is subjected to evacuating treatment while it is fed with oxygen 41 at a flow rate of >=0.05Nm<3>/min.ton. The atmosphere of the inside of a vessel 13 is preferably held to a reduced one of <=1330Pa vacuum degree. It is possible to interrupt the top-blow of oxygen at the latter stage of the treatment and to continue the evacuating treatment only. Thus, CO gas foams produced by the decarburizing reaction are utilized for the stirring of the molten steel 32 or the like, by which the extra-low nitrogen and extra-low carbon molten steel or extra-low and low carbon steel in which (N) is regulated to <=20ppm and (C) to <=0.08% can swiftly be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空脱ガス装置を使用
した減圧処理により、転炉鋼の脱窒及び脱炭を促進さ
せ、極低窒素鋼を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low nitrogen steel by accelerating denitrification and decarburization of converter steel by decompression treatment using a vacuum degassing device.

【0002】[0002]

【従来の技術】鋼材は、自動車用を始めとして種々の分
野で使用されているが、それぞれの用途において加工性
の向上が求められている。加工性は、非金属介在物や硬
質相の原因となる炭素,窒素等の不純物を低減すること
により向上する。鋼中炭素(以下、[C]という)や鋼
中窒素(以下、[N]という)を低減する方法として
は、従来から種々の提案が行われている。代表的なもの
に、RH,DH等の真空脱ガス装置を使用した減圧処理
がある。特開平4−176812号公報では、[C]を
0.03〜0.05%に転炉吹止めした溶鋼を減圧処理
する際、真空槽内の溶鋼に酸素含有ガスを供給し、脱炭
することにより極低炭素鋼を製造している。RH真空脱
ガスでは、たとえば図1に設備構成を示す真空脱ガス装
置が使用される。真空容器10は、一対の上昇管11及
び下降管12を容器底部に備えており、容器内部13が
適宜の真空源に接続されている。上昇管11には、不活
性ガス吹込み用のノズル14が設けられている。
2. Description of the Related Art Steel materials are used in various fields including those for automobiles, and improvement in workability is required for each application. Workability is improved by reducing impurities such as carbon and nitrogen that cause non-metallic inclusions and hard phases. As a method for reducing carbon in steel (hereinafter, referred to as [C]) and nitrogen in steel (hereinafter, referred to as [N]), various proposals have been conventionally made. A typical example is a decompression process using a vacuum degassing device such as RH and DH. In Japanese Patent Laid-Open No. 4-176812, when decompressing molten steel in which [C] is sprayed to 0.03 to 0.05% by a converter, an oxygen-containing gas is supplied to the molten steel in a vacuum tank to decarburize it. This produces ultra low carbon steel. In RH vacuum degassing, for example, a vacuum degassing apparatus whose equipment configuration is shown in FIG. 1 is used. The vacuum container 10 includes a pair of ascending pipe 11 and a descending pipe 12 at the bottom of the container, and the inside 13 of the container is connected to an appropriate vacuum source. The rising pipe 11 is provided with a nozzle 14 for blowing an inert gas.

【0003】処理される溶鋼30は、取鍋20にチャー
ジされる。溶鋼30に上昇管11及び下降管12の下部
を浸漬すると、容器内部13の真空度に応じて上昇管1
1及び下降管12内を溶鋼30が上昇する。ノズル14
から不活性ガスを吹き込むとき、上昇管11内にある溶
鋼の見掛け比重が小さくなる。そのため、溶鋼30は、
上昇流31となって上昇管11を上昇し、真空容器10
に送り込まれる。真空容器10内の溶鋼32に含まれて
いるガス成分は、容器内部13の真空雰囲気に溶鋼32
が曝されてるので、溶鋼32から雰囲気に放出される。
ガス成分を含まない溶鋼32は、比重が大きくなり、下
降流33として真空容器10から取鍋20に返送され
る。溶鋼30は、取鍋20→上昇管11→容器内部13
→下降管12→取鍋20の順に繰返し還流し、N2 ,H
2 ,O2 等のガス成分が除去される。
Molten steel 30 to be treated is charged into a ladle 20. When the lower portions of the ascending pipe 11 and the descending pipe 12 are dipped in the molten steel 30, the ascending pipe 1
The molten steel 30 rises in the inside of 1 and the downcomer 12. Nozzle 14
When an inert gas is blown into the rising pipe 11, the apparent specific gravity of the molten steel in the rising pipe 11 becomes small. Therefore, molten steel 30
Ascending flow 31 rises up the ascending pipe 11, and the vacuum container 10
Sent to. The gas component contained in the molten steel 32 in the vacuum container 10 is contained in the molten steel 32 in the vacuum atmosphere inside the container 13.
Is exposed to the atmosphere from the molten steel 32.
The molten steel 32 containing no gas component has a large specific gravity and is returned from the vacuum container 10 to the ladle 20 as a downward flow 33. Molten steel 30 is ladle 20 → riser pipe 11 → container inside 13
→ repeatedly reflux in order of descending tube 12 → ladle 20, N 2, H
Gas components such as 2 , O 2 are removed.

【0004】[0004]

【発明が解決しようとする課題】[C]=0.05重量
%前後から減圧処理を開始する従来の真空脱ガスによる
とき、処理中の脱窒速度が小さく、且つ脱窒量も少な
い。これは、基礎研究に関する多数の報告例にみられる
ように、溶鋼に多量のフリーな[O]や[S]が含まれ
ていると、硫黄原子や酸素原子が溶鋼表面に吸着され、
気液反応界面積を実質的に低下させることに原因がある
ものと考えられる。吸着された硫黄原子や酸素原子は、
脱窒反応を抑制する方向に働く。この傾向は、フリーの
[O]や[S]が高い転炉溶鋼を脱ガスするときに問題
となる。具体的には、転炉吹錬で溶鋼を脱炭するとき、
CO分圧によって規制される平衡関係が[C]とフリー
[O]との間に成立しており、終点[C]を低くしよう
とするとフリー[O]が逆に増加する。フリー[O]
は、脱窒反応の阻害要因である吸着酸素を増加させる。
When the conventional vacuum degassing in which the depressurization process is started from about [C] = 0.05% by weight, the denitrification rate during the process is small and the denitrification amount is small. This is because, as seen in many reports on basic research, when the molten steel contains a large amount of free [O] and [S], sulfur atoms and oxygen atoms are adsorbed on the molten steel surface,
It is considered that the cause is that the gas-liquid reaction interface area is substantially reduced. The adsorbed sulfur and oxygen atoms are
It works to suppress the denitrification reaction. This tendency becomes a problem when degassing the free molten [O] or [S] converter steel. Specifically, when decarburizing molten steel by converter blowing,
An equilibrium relationship regulated by the CO partial pressure is established between [C] and free [O], and when the end point [C] is reduced, free [O] increases conversely. Free [O]
Increases the adsorbed oxygen, which is a factor that inhibits the denitrification reaction.

【0005】その結果、真空脱ガス処理の開始時に
[C]が低い溶鋼、換言すればフリー[O]レベルが高
い傾向にある低炭素鋼,極低炭素鋼等を溶製する際、脱
ガス処理に要する時間が長くなる。特に、[N]を低減
することが要求される鋼種を得ようとする場合、脱窒反
応が十分に進行せず、目標[N]まで低減することがで
きない現状である。本発明は、このような問題を解消す
べく案出されたものであり、脱ガス処理が施される転炉
鋼の[C]を0.10重量%以上の高いレベルに設定
し、吸着酸素の原因であるフリーな[O]を低減させる
と共に、脱炭反応で生じたCOガスを溶鋼の撹拌に積極
的に利用することにより、脱窒速度が低下しがちな減圧
処理工程における脱窒反応を促進させ、目標とする低
[N]及び低[C]又は極低[C]まで溶鋼を迅速に脱
ガスすることを目的とする。
As a result, when the molten steel having a low [C] at the start of the vacuum degassing treatment, in other words, the low carbon steel and the ultra low carbon steel which tend to have a high free [O] level, is degassed. The processing time becomes long. In particular, when trying to obtain a steel type required to reduce [N], the denitrification reaction does not proceed sufficiently, and it is the current situation that the target [N] cannot be reduced. The present invention has been devised to solve such a problem, and the [C] of the converter steel to be degassed is set to a high level of 0.10% by weight or more to absorb oxygen. The denitrification reaction in the depressurization process, which tends to decrease the denitrification rate, by reducing the free [O] that is the cause of the above and actively using the CO gas generated by the decarburization reaction for stirring molten steel. The purpose is to rapidly degas molten steel to a target low [N] and low [C] or extremely low [C].

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、転炉で溶製した溶鋼を真空脱ガ
ス装置で減圧処理する際、転炉出鋼時の溶鋼中炭素濃度
を0.10重量%以上に設定し、減圧雰囲気に保持され
た溶鋼に0.05Nm3 /分・トン以上の流量で酸素又
は酸素富化ガスを供給し、鋼中窒素及び鋼中炭素をそれ
ぞれ20ppm以下及び0.08重量%以下に低下させ
ることを特徴とする。酸素又は酸素富化ガスが供給され
る溶鋼は、真空度1330Pa以下の減圧雰囲気に曝さ
れることが好ましい。処理される溶鋼としては、たとえ
ば[N]≦30ppmの溶鋼が使用される。また、
[C]が0.05〜0.02重量%を下回ったとき酸素
の供給を中止し、続いて鋼中炭素が目標濃度に達するま
で溶鋼を減圧処理することにより、極低窒素・低炭素溶
鋼又は極低窒素・極低炭素溶鋼が迅速に且つ効率よく得
られる。本発明では、たとえば図2に示すように、酸素
ランス40を上蓋に貫通させた真空容器10を使用し、
酸素ランス40から溶鋼32の表面に向けて酸素ガス4
1を吹き付ける。酸素ガス41は、[C]+[O]→C
Oの反応に従って溶鋼中の炭素と反応し、反応生成物で
あるCOガスを容器内部13に放出させる。酸素に代え
てAr−O2 混合ガス等の酸素富化ガスを使用した場合
でも、同様なCO脱酸が生じる。また、上吹きに代えて
横吹き,底吹き等で、或いは上吹きと組み合せて酸素を
供給しても、同様なCO脱酸が進行する。
In order to achieve the object, the manufacturing method of the present invention, when the molten steel melted in the converter is depressurized by a vacuum degassing apparatus, the carbon content in the molten steel at the time of tapping the converter Oxygen or oxygen-enriched gas was supplied at a flow rate of 0.05 Nm 3 / min · ton or more to the molten steel kept in a reduced pressure atmosphere by setting the concentration to 0.10 wt% or more to remove nitrogen in the steel and carbon in the steel. It is characterized by lowering to 20 ppm or less and 0.08 wt% or less, respectively. The molten steel to which oxygen or oxygen-enriched gas is supplied is preferably exposed to a reduced pressure atmosphere having a vacuum degree of 1330 Pa or less. As the molten steel to be treated, for example, molten steel of [N] ≦ 30 ppm is used. Also,
When [C] is less than 0.05 to 0.02% by weight, the supply of oxygen is stopped, and then the molten steel is depressurized until the carbon concentration in the steel reaches the target concentration. Alternatively, ultra-low nitrogen and ultra-low carbon molten steel can be obtained quickly and efficiently. In the present invention, for example, as shown in FIG. 2, a vacuum container 10 having an oxygen lance 40 penetrating an upper lid is used,
From the oxygen lance 40 toward the surface of the molten steel 32, the oxygen gas 4
Spray 1 Oxygen gas 41 is [C] + [O] → C
According to the reaction of O, it reacts with carbon in the molten steel, and CO gas which is a reaction product is released to the inside 13 of the container. Similar CO deoxidation occurs even when an oxygen-rich gas such as an Ar—O 2 mixed gas is used instead of oxygen. Also, instead of top blowing, side blowing, bottom blowing, or the like, or even when oxygen is supplied in combination with top blowing, similar CO deoxidation proceeds.

【0007】[0007]

【作用】本発明に従った脱ガス処理は、[C]が0.1
0重量%以上で転炉吹止めされた溶鋼を使用している。
[C]が0.10重量%以上と高い溶鋼では、減圧処理
中のフリー[O]は、[C]が300ppm付近に低下
するまでは50ppm未満の低いレベルで推移する。そ
のため、溶鋼表面に吸着される酸素原子が量的に減少
し、脱窒反応に対する吸着酸素の妨害作用が抑制され
る。[C]レベルが高いことから、供給酸素量を大きく
設定し、単位時間当りの脱炭量を大きく保つことができ
る。また、脱炭反応が盛んに行われ、多量のCOガス気
泡が溶鋼中に発生する。COガス気泡は、溶鋼表面の撹
拌やスプラッシュの発生等を活発化し、気液反応界面積
を増大させる。すなわち、脱ガス処理される溶鋼の
[C]を0.10重量%以上とすることにより、脱窒反
応が促進され、極低窒素濃度の溶鋼が迅速に得られる。
In the degassing process according to the present invention, [C] is 0.1
Molten steel that is blown down by the converter at 0 wt% or more is used.
In molten steel with a high [C] of 0.10% by weight or more, the free [O] during the depressurization process remains at a low level of less than 50 ppm until the [C] decreases to around 300 ppm. Therefore, the amount of oxygen atoms adsorbed on the surface of the molten steel is quantitatively reduced, and the interfering action of adsorbed oxygen on the denitrification reaction is suppressed. Since the [C] level is high, it is possible to set a large amount of oxygen supply and maintain a large amount of decarburization per unit time. Further, the decarburization reaction is actively carried out, and a large amount of CO gas bubbles are generated in the molten steel. The CO gas bubbles activate stirring of the molten steel surface, generation of splash, and the like, and increase the gas-liquid reaction interface area. That is, when the [C] of the molten steel to be degassed is 0.10% by weight or more, the denitrification reaction is promoted, and the molten steel having an extremely low nitrogen concentration can be rapidly obtained.

【0008】吸着酸素となるフリーな[O]の低減及び
COガス気泡による溶鋼の撹拌作用は、出鋼時の[C]
を0.10重量%以上としたときに顕著となる。[C]
が0.10重量%未満になると、溶鋼に含まれているフ
リー[O]が高くなり、吸着酸素による脱窒妨害作用が
現れ始める。また、脱窒反応に有効な気液界面積を増大
させる上で、酸素供給速度を0.05Nm3 /分・トン
以上とすることが必要である。酸素供給速度が0.05
Nm3 /分・トン未満では、界面の撹乱や反応界面積の
増大に必要なCOガス気泡の発生が少なく、脱炭速度が
低下する。供給酸素による作用は、真空度1330Pa
以下の減圧雰囲気に溶鋼を曝すとき顕著となる。真空度
が1330Pa以下になると、溶鋼表面に吸着されてい
る酸素濃度が減少すると共に脱炭反応で生成したCOガ
スが雰囲気中に放出され易くなり、減圧下におけるCO
脱酸が促進される。それに伴って、鋼中窒素[N]が迅
速に除去される。
The reduction of free [O] that becomes adsorbed oxygen and the stirring action of molten steel by CO gas bubbles are due to [C] at the time of tapping.
Becomes remarkable when 0.10% by weight or more. [C]
When less than 0.10% by weight, free [O] contained in the molten steel becomes high, and denitrification-inhibiting action by adsorbed oxygen begins to appear. Further, in order to increase the gas-liquid interface area effective for the denitrification reaction, it is necessary to set the oxygen supply rate to 0.05 Nm 3 / min · ton or more. Oxygen supply rate is 0.05
If it is less than Nm 3 / min · ton, CO gas bubbles required for disturbance of the interface and increase of the reaction interfacial area are less generated, and the decarburization rate is reduced. The effect of oxygen supply is vacuum degree of 1330Pa
It becomes remarkable when the molten steel is exposed to the following reduced pressure atmosphere. When the degree of vacuum is 1330 Pa or less, the concentration of oxygen adsorbed on the surface of the molten steel is reduced, and the CO gas generated by the decarburization reaction is easily released into the atmosphere.
Deoxidation is promoted. Along with this, nitrogen [N] in steel is rapidly removed.

【0009】このような条件で減圧処理する場合、
[C]が0.05〜0.02重量%程度までは、フリー
[O]に起因する悪影響が実質的にないので、酸素の供
給を継続しながら脱ガス処理することが好ましい。しか
し、[C]が0.05〜0.02重量%を下回る処理後
期に酸素の供給を継続すると、溶鋼に取り込まれるフリ
ー[O]が増加し、吸着酸素による悪影響が現れる傾向
がみられる。このような場合、処理後期に酸素供給を中
止することにより、それまでに脱窒が十分進行している
ため、低炭素・高フリー[O]となる処理後期における
脱窒速度の低下による実害が回避され、極低窒素・低炭
素鋼又は極低窒素・極低炭素鋼が高生産性で溶製され
る。
When decompressing under such conditions,
Up to about 0.05 to 0.02% by weight of [C], there is substantially no adverse effect due to free [O], so it is preferable to carry out degassing while continuing the supply of oxygen. However, if the supply of oxygen is continued in the latter stage of the treatment in which [C] is less than 0.05 to 0.02% by weight, the amount of free [O] taken into the molten steel increases, and the adverse effect of adsorbed oxygen tends to appear. In such a case, by stopping the oxygen supply in the latter stage of the treatment, denitrification has progressed sufficiently by then, and the actual detrimental effect due to the decrease in the denitrification rate in the latter stage of the treatment, which results in low carbon and high free [O], occurs. It is avoided and ultra low nitrogen / low carbon steel or ultra low nitrogen / ultra low carbon steel is melted with high productivity.

【0010】[0010]

【実施例】図2に示したRH脱ガス装置を使用して溶鋼
を脱窒することに本発明を適用した実施例を説明する。
ただし、本発明はこれに拘束されるものではなく、DH
等の他の形式の脱ガス装置に対しても同様に適用される
ことは勿論である。実施例1では、転炉で[C]=0.
19重量%及びフリー[O]=71ppmに精錬し、得
られた溶鋼30を取鍋20にチャージした。次いで、真
空容器10の上昇管11及び下降管12を溶鋼30に浸
漬した後、容器内部13を真空度500Paに維持し、
0.09Nm3 /分・トンの流量で酸素41を酸素ラン
ス40から溶鋼32の表面に13分間吹き付けた。その
後、酸素の供給を中止し、40Paで10分間減圧処理
を施した。更に、Al系脱酸剤及び成分調整用の副原料
を添加し、溶製工程を終了した。このときの操業諸元
を、実施例2及び比較例1〜3と対比させて表1に示
す。
EXAMPLE An example in which the present invention is applied to denitrifying molten steel by using the RH degassing apparatus shown in FIG. 2 will be described.
However, the present invention is not limited to this, and the DH
Of course, the same applies to other types of degassing devices such as. In Example 1, [C] = 0.
The molten steel 30 obtained by refining to 19 wt% and free [O] = 71 ppm was charged into the ladle 20. Next, after immersing the ascending pipe 11 and the descending pipe 12 of the vacuum container 10 in the molten steel 30, the inside 13 of the container is maintained at a vacuum degree of 500 Pa,
Oxygen 41 was blown from the oxygen lance 40 onto the surface of the molten steel 32 for 13 minutes at a flow rate of 0.09 Nm 3 / min · ton. Then, the supply of oxygen was stopped, and the pressure was reduced at 40 Pa for 10 minutes. Furthermore, an Al-based deoxidizer and auxiliary raw materials for component adjustment were added, and the melting process was completed. The operating specifications at this time are shown in Table 1 in comparison with Example 2 and Comparative Examples 1 to 3.

【0011】[0011]

【表1】 [Table 1]

【0012】各溶鋼の[N],[C]及びフリー[O]
は、RH脱ガス処理の開始から終了までの間に、それぞ
れ図3〜5に示すように変化した。処理前後における溶
鋼の[N]を、各減圧処理ごとに表2に示す。
[N], [C] and free [O] of each molten steel
Changed from the start to the end of the RH degassing process as shown in FIGS. Table 2 shows the [N] of the molten steel before and after the treatment for each depressurization treatment.

【0013】[0013]

【表2】 [Table 2]

【0014】実施例1では、処理開始時に20ppmを
超えていた[N]が図3及び図4に示すように脱炭の進
行と共に低下し、約13分で20ppmに達した。
[C]は、図4に示すように酸素の供給によって急激に
低下し、最終的には21ppmに達した。フリー[O]
は、図5に示すように、処理前半では40ppm未満の
低いレベルで推移していたが、[C]が0.05重量%
まで低下した時点で上昇し始め、処理後期では400p
pmを超えていた。しかし、酸素供給を伴った処理前期
の段階で[N]がすでに11ppmに達していたため、
脱窒反応に対する酸素の阻害作用を実質的に回避でき
た。その結果、[N]が11ppmと極めて低く、
[C]=0.0021重量%の極低窒素・極低炭素鋼が
得られた。
In Example 1, [N] which exceeded 20 ppm at the start of the treatment decreased with the progress of decarburization as shown in FIGS. 3 and 4, and reached 20 ppm in about 13 minutes.
As shown in FIG. 4, [C] drastically decreased due to the supply of oxygen, and finally reached 21 ppm. Free [O]
As shown in FIG. 5, although it remained at a low level of less than 40 ppm in the first half of the treatment, [C] was 0.05% by weight.
Started to rise when it dropped to 400p in the latter half of the treatment
It was over pm. However, since [N] had already reached 11 ppm at the early stage of the treatment with oxygen supply,
The inhibitory effect of oxygen on the denitrification reaction could be substantially avoided. As a result, [N] was extremely low at 11 ppm,
[C] = 0.0021% by weight of ultra low nitrogen and ultra low carbon steel was obtained.

【0015】実施例2では、[C]=0.169重量%
で転炉吹止めした溶鋼に対し、0.06Nm3 /分・ト
ンの流量で酸素上吹きしながら真空度500Paの減圧
処理を16分間施した。この場合、実施例1と比較して
脱窒速度が遅く、[N]が15ppmに達するまでに処
理開始から15分が必要であった。しかし、最終的に
は、[N]=13ppmまで脱窒された。酸素供給速度
が実施例1に比較して小さいことから、脱炭速度がやや
遅く、[C]=0.061重量%の低炭素レベルに達す
るまでに21分かかった。フリー[O]は、全処理期間
を通じて常に100ppm未満のレベルで推移した。実
施例2によるとき、処理時間が長くなっているものの、
極低窒素の低炭素鋼が得られた。
In Example 2, [C] = 0.169% by weight
The molten steel that had been blown down by the converter in step 1 was subjected to a pressure reduction treatment at a vacuum degree of 500 Pa for 16 minutes while being blown with oxygen at a flow rate of 0.06 Nm 3 / min · ton. In this case, the denitrification rate was slower than that in Example 1, and it took 15 minutes from the start of treatment until [N] reached 15 ppm. However, it was finally denitrified to [N] = 13 ppm. Due to the lower oxygen supply rate compared to Example 1, the decarburization rate was rather slow, taking 21 minutes to reach the low carbon level of [C] = 0.061 wt%. Free [O] remained at a level below 100 ppm throughout the entire treatment period. Although the processing time is long according to the second embodiment,
A very low nitrogen, low carbon steel was obtained.

【0016】比較例1は、通常の極低炭素鋼を溶製する
場合と同様に、転炉で0.043重量%の低炭素レベル
まで脱炭し、続いてRH脱ガス装置を使用して減圧処理
した例である。この場合、処理開始時のフリー[O]が
680ppmと高いことから、極低炭素レベルまで脱炭
が迅速に進行し、処理時間17分で[C]が9ppmに
到達した。しかし、脱窒速度が最も遅く、最終処理時の
[N]が19ppmと比較的高い値を示し、脱窒量は3
ppmに留まっていた。比較例2では、転炉出鋼時で
[C]=0.179重量%及びフリー[O]=50pp
mの溶鋼に、到達真空度470Paで減圧処理のみをを
行った。脱炭速度は、実施例に比較して遅く、処理時間
18分で[C]が0.13重量%に留まっていた。脱窒
反応も緩やかに進行し、最終[N]は20ppmに到達
するに留まった。他方、フリー[O]は、脱酸直前まで
30〜40ppmと低いレベルにあった。
In Comparative Example 1, as in the case of melting ordinary ultra-low carbon steel, decarburization was performed in a converter to a low carbon level of 0.043% by weight, followed by using an RH degasser. This is an example of a reduced pressure treatment. In this case, since the free [O] at the start of the treatment was as high as 680 ppm, decarburization proceeded rapidly to an extremely low carbon level, and [C] reached 9 ppm at the treatment time of 17 minutes. However, the denitrification rate was the slowest, and [N] at the final treatment showed a relatively high value of 19 ppm, and the denitrification amount was 3
It remained at ppm. In Comparative Example 2, [C] = 0.179% by weight and free [O] = 50 pp when the converter was tapped.
The molten steel of m was subjected only to the depressurization treatment at the ultimate vacuum degree of 470 Pa. The decarburization rate was slower than that of the example, and [C] remained at 0.13% by weight in the treatment time of 18 minutes. The denitrification reaction also proceeded slowly, and the final [N] reached 20 ppm. On the other hand, free [O] was at a low level of 30 to 40 ppm just before deoxidation.

【0017】比較例3は、[C]=0.165重量%で
転炉出鋼した後、0.03Nm3 /分・トンの流量で酸
素を供給しながらRH脱ガス処理を24分継続し、更に
酸素上吹きを中止して減圧処理を行った例である。この
場合、酸素供給が実施例1の1/3であることから、脱
炭速度が遅く、[C]が0.05重量%に達するまでに
処理開始から24分がかかった。脱炭反応は、その後の
脱ガス処理に伴って極低炭素レベルまで進行し、最終
[C]は23ppmに達した。脱窒速度は、実施例と比
較して遅く、到達[N]が17ppmに過ぎなかった。
このことから、比較例3のように小さな酸素供給速度で
は、十分な脱炭効果が得られないことが確認された。こ
の対比から明らかなように、脱ガス処理開始時の[C]
を0.10重量%以上とし、減圧下に保持された溶鋼に
流量0.05Nm3 /分・トン以上の酸素を吹き付ける
とき、[C]が脱炭反応に有効に消費され、それに伴っ
て発生するCOガス気泡で溶鋼の撹拌等が活発化するこ
とが判る。その結果、脱窒反応に有害な吸着酸素の影響
を排除した条件下で、脱窒に有効な反応界面積が増大
し、迅速な脱窒反応により到達[N]を極めて低いレベ
ルまで短時間に下げることが可能になった。しかも、
[C]及びフリー[O]を低レベル又は極低レベルにす
ることが可能となった。
In Comparative Example 3, after the steel was taken out from the converter with [C] = 0.165% by weight, the RH degassing treatment was continued for 24 minutes while supplying oxygen at a flow rate of 0.03 Nm 3 / min · ton. Further, it is an example in which the top blowing of oxygen was stopped and the pressure reduction treatment was performed. In this case, since the oxygen supply was 1/3 of that in Example 1, the decarburization rate was slow, and it took 24 minutes from the start of the treatment until [C] reached 0.05% by weight. The decarburization reaction proceeded to an extremely low carbon level with the subsequent degassing treatment, and the final [C] reached 23 ppm. The denitrification rate was slow as compared with the examples, and the reached [N] was only 17 ppm.
From this, it was confirmed that a sufficient decarburizing effect cannot be obtained with a small oxygen supply rate as in Comparative Example 3. As is clear from this comparison, [C] at the start of degassing treatment
Of 0.10% by weight or more, and when a molten steel held under reduced pressure is blown with oxygen at a flow rate of 0.05 Nm 3 / min · ton or more, [C] is effectively consumed in the decarburization reaction and is generated accordingly. It can be seen that the stirring of molten steel is activated by the CO gas bubbles that are generated. As a result, the reaction interfacial area effective for denitrification increases under the condition that the effect of adsorbed oxygen, which is detrimental to the denitrification reaction, is eliminated. It became possible to lower it. Moreover,
It has become possible to set [C] and free [O] to a low level or an extremely low level.

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、鋼中炭素濃度[C]が0.10重量%以上となるよ
うに転炉吹止めした溶鋼に、0.05Nm3 /分・トン
以上の流量で酸素を供給しながら減圧処理している。供
給された酸素は、鋼中炭素と活発に反応し、反応生成物
であるCOガス気泡によって溶鋼を激しく撹拌及びスプ
ラッシュさせている。これにより、脱窒反応に有効な溶
鋼の界面積が大きくなり、溶鋼が迅速に脱窒される。ま
た、[C]が高いことから、減圧処理される溶鋼に含ま
れているフリーな[O]が少なく、脱窒反応に有害な吸
着酸素の影響も抑制される。このように、本発明による
とき、[N]≦15ppmの極低窒素・低炭素鋼又は極
低窒素・極低炭素鋼が安定的に製造される。
As described above, according to the present invention, in the molten steel which is blown by the converter so that the carbon concentration [C] in the steel becomes 0.10% by weight or more, 0.05 Nm 3 / min. The pressure is reduced while supplying oxygen at a flow rate of at least tons. The supplied oxygen actively reacts with carbon in the steel, and CO gas bubbles as a reaction product vigorously stirs and splashes the molten steel. Thereby, the interfacial area of the molten steel effective for the denitrification reaction becomes large, and the molten steel is quickly denitrified. In addition, since [C] is high, the amount of free [O] contained in the molten steel to be depressurized is small, and the influence of adsorbed oxygen harmful to the denitrification reaction is suppressed. As described above, according to the present invention, the extremely low nitrogen / low carbon steel or the extremely low nitrogen / ultra low carbon steel of [N] ≦ 15 ppm is stably manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のRH脱ガス装置を使用した減圧処理FIG. 1 Decompression treatment using a conventional RH degasser

【図2】 本発明に従った減圧処理に使用されるRH脱
ガス装置
FIG. 2 RH degasser used for depressurization according to the invention

【図3】 RH脱ガス処理中における各溶鋼の[N]変
[Fig. 3] Change in [N] of each molten steel during RH degassing

【図4】 RH脱ガス処理中における各溶鋼の[C]変
FIG. 4 [C] change of each molten steel during RH degassing process

【図5】 RH脱ガス処理中における各溶鋼のフリー
[O]変化
FIG. 5: Free [O] change of each molten steel during RH degassing process

【符号の説明】 10:真空容器 13:容器内部 30,32:
溶鋼 40:酸素ランス 41:酸素ガス
[Explanation of Codes] 10: Vacuum container 13: Inside of container 30, 32:
Molten steel 40: Oxygen lance 41: Oxygen gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 転炉で溶製した溶鋼を真空脱ガス装置で
減圧処理する際、転炉出鋼時の溶鋼中炭素濃度を0.1
0重量%以上に設定し、減圧雰囲気に保持された溶鋼に
0.05Nm3 /分・トン以上の流量で酸素又は酸素富
化ガスを供給し、鋼中窒素20ppm以下及び鋼中炭素
0.08重量%以下の極低窒素鋼を製造する方法。
1. When the molten steel produced in the converter is decompressed by a vacuum degassing apparatus, the carbon concentration in the molten steel at the time of tapping the converter is 0.1.
Oxygen or oxygen-enriched gas is supplied to molten steel held in a reduced-pressure atmosphere at a flow rate of 0.05 Nm 3 / min · ton or more, and the content of nitrogen in steel is 20 ppm or less and carbon in steel is 0.08. A method for producing ultra-low nitrogen steel in an amount of less than or equal to% by weight.
【請求項2】 真空度1330Pa以下の減圧雰囲気に
溶鋼を曝す請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the molten steel is exposed to a reduced pressure atmosphere having a vacuum degree of 1330 Pa or less.
【請求項3】 真空脱ガスされる前の溶鋼の鋼中窒素濃
度が10〜30ppmの範囲にある請求項1記載の製造
方法。
3. The production method according to claim 1, wherein the nitrogen concentration in the molten steel before vacuum degassing is in the range of 10 to 30 ppm.
【請求項4】 溶鋼中炭素が0.05〜0.02重量%
を下回ったとき酸素又は酸素富化ガスの供給を中止し、
続いて鋼中炭素が目標濃度に達するまで溶鋼を減圧処理
する請求項1記載の製造方法。
4. Carbon in molten steel is 0.05 to 0.02% by weight.
Supply of oxygen or oxygen-enriched gas is stopped when
The method according to claim 1, wherein the molten steel is subsequently depressurized until the carbon concentration in the steel reaches a target concentration.
JP31196093A 1993-12-13 1993-12-13 Production of extra-low nitrogen steel Withdrawn JPH07166230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31196093A JPH07166230A (en) 1993-12-13 1993-12-13 Production of extra-low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31196093A JPH07166230A (en) 1993-12-13 1993-12-13 Production of extra-low nitrogen steel

Publications (1)

Publication Number Publication Date
JPH07166230A true JPH07166230A (en) 1995-06-27

Family

ID=18023512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31196093A Withdrawn JPH07166230A (en) 1993-12-13 1993-12-13 Production of extra-low nitrogen steel

Country Status (1)

Country Link
JP (1) JPH07166230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280936B1 (en) * 2011-09-23 2013-07-02 주식회사 포스코 Method for refining molten steel
JP2015030868A (en) * 2013-08-01 2015-02-16 Jfeスチール株式会社 Method for refining extra-low nitrogen pure iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280936B1 (en) * 2011-09-23 2013-07-02 주식회사 포스코 Method for refining molten steel
JP2015030868A (en) * 2013-08-01 2015-02-16 Jfeスチール株式会社 Method for refining extra-low nitrogen pure iron

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP6593233B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
KR930005067B1 (en) Method for refining molten steel in a vacuum
JPH07166230A (en) Production of extra-low nitrogen steel
CN1176224C (en) Vacuum treatment method of molten steel dephosphorus
KR101796088B1 (en) Refining method of alloy steel
CN117545861A (en) Refining method of molten steel
JPH07224317A (en) Production of high cleanliness steel
KR100925598B1 (en) Method for Refining Return Molten Steel
KR100406411B1 (en) Method of deoxidize molten steel for hard steel wire rods at steel tapping
JPH07150222A (en) Method for denistificating molten steel from high nitrogen concentration zone
JPH07224313A (en) Production of high clenliness steel utilizing co deoxidation
JP7468567B2 (en) Method for denitrification of molten steel
EP1757706A2 (en) Method for refining molten steel and apparatus therefor
JP2005015890A (en) Method for producing low-carbon high-manganese steel
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
RU2257417C2 (en) Melt metal vacuum treatment method
JPH07207329A (en) Production of high cleanliness steel having little oxide inclusion
JP3769779B2 (en) Method for melting ultra-low carbon Cr-containing steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
JP3785257B2 (en) Method for degassing stainless steel
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPS63161113A (en) Method for refining steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306