JPH0649528A - Vacuum decarburization refining method of extra-low carbon steel - Google Patents

Vacuum decarburization refining method of extra-low carbon steel

Info

Publication number
JPH0649528A
JPH0649528A JP20921392A JP20921392A JPH0649528A JP H0649528 A JPH0649528 A JP H0649528A JP 20921392 A JP20921392 A JP 20921392A JP 20921392 A JP20921392 A JP 20921392A JP H0649528 A JPH0649528 A JP H0649528A
Authority
JP
Japan
Prior art keywords
gas
molten steel
steel
low carbon
extra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20921392A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Shinya Kitamura
北村信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20921392A priority Critical patent/JPH0649528A/en
Publication of JPH0649528A publication Critical patent/JPH0649528A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently refine an extra-low carbon steel without lowering a decarburization rate down to an extra-low carbon region. CONSTITUTION:This refining method for the molten steel 3 consists in making combination use of the formation of an bubble active surface by a gaseous substance and the molten steel circulating function by a gas lift by immersing a container 2 of a large-diameter straight cylindrical shape into the molten steel 3 in a ladle 1 tapped from a refining furnace, such as converter or electric furnace, reducing the pressure in this straight cylindrical immersion chamber and supplying the gaseous substance from the bottom of the steel bath. The blowing of the gas from the bottom is deviated and the inert gas is blown in a range of the amt. (GS) of the gas of the immersion pipe/the amt. (GB) of the gas in the low part=1.0 to 3.0 from the position of 500 to 1500mm under the surface of the steel bath from a gas blowing nozzle 5 provided on the half periphery of the immersion pipe on the descending flow side on an opposite side. In addition, the bubble active surface of >=10% of the total surface area of the molten steel is formed within the vacuum chamber, by which the extra- low carbon steel is efficiently melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低炭素領域まで脱炭
速度を低下させることなく効率的な精錬が可能となる極
低炭素鋼の効率的な精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient refining method for ultra-low carbon steel which enables efficient refining without lowering the decarburization rate to the ultra-low carbon range.

【0002】[0002]

【従来の技術】極低炭素鋼の減圧脱炭方法としては、R
H、DHが広く用いられている。しかし、炭素濃度を2
0ppm以下に低下させる場合には脱炭速度が停滞し、
長時間を要するという問題があった。これを解決するた
めには、通常RHにおける還流用Arガス流量の増加や
浸漬管径の拡大、あるいはDHにおける槽昇降速度の増
加等による溶鋼還流速度の増大といった方法が取られて
いる。しかしながら、これらの方法のうち、還流用Ar
ガス流量の増加は耐火物の寿命の低下を招くため限界が
あり、浸漬管径の増大は寸法制約上の限界があり、槽昇
降速度の増加も溶鋼の追従性からの限界がある。
2. Description of the Related Art As a vacuum decarburization method for ultra-low carbon steel, R
H and DH are widely used. However, if the carbon concentration is 2
If it is reduced to 0 ppm or less, the decarburization rate will slow down,
There was a problem that it took a long time. In order to solve this, a method of increasing the flow rate of Ar gas for reflux in RH, expanding the diameter of the dipping pipe, or increasing the molten steel reflux rate by increasing the tank ascending / descending rate in DH is usually taken. However, among these methods, Ar for reflux
Increasing the gas flow rate has a limit because it shortens the life of the refractory, and increasing the immersion pipe diameter has a limit due to dimensional constraints, and increasing the tank ascending / descending speed also has a limit from the followability of molten steel.

【0003】また、材料とプロセス、第3巻(199
0)、168においてRHにおける槽内へのArガス吹
き込みによる反応界面積の増大方法が提示されている
が、極低炭素濃度域において効果を得るためには50N
l/(ton・min)以上という大量のガス吹き込み
が必要であり、槽内で激しいスプラッシュを発生させる
ため、操業性を著しく損ねるという問題がある。さら
に、特開昭57−200514号公報によれば、RHに
おいて還流用のガスを取鍋の底部より吹き込む方法が示
されているが、極低炭素濃度領域で効果を出すために大
量のガスを導入した場合には浸漬管耐火物下端部に気泡
が衝突するため耐火物損耗が激しいという問題を有して
いる。
Materials and processes, Volume 3 (199
0), 168, a method of increasing the reaction interfacial area by blowing Ar gas into the tank in RH is presented, but in order to obtain an effect in an extremely low carbon concentration range, 50 N
It requires a large amount of gas injection of 1 / (ton · min) or more, and causes a violent splash in the tank, which causes a problem of significantly impairing operability. Further, according to Japanese Patent Laid-Open No. 57-200514, there is disclosed a method in which a gas for reflux is blown from the bottom of a ladle in RH, but a large amount of gas is used in order to exert an effect in an extremely low carbon concentration region. When introduced, there is a problem that the refractory wear is severe because bubbles collide with the lower end of the refractory in the immersion pipe.

【0004】これに対して、特開昭53−67605号
公報には、円筒形の管を浸漬し管内を減圧する減圧精錬
炉が提示されているが、この方法では処理中に管内溶鋼
と管外溶鋼とを混合させることを目的として、複数回、
減圧/複圧を繰り返すため、溶鋼反応表面積が高真空下
にさらされる時間が短く、極低炭素鋼の溶製の場合には
長時間を要するという問題がある。一方、特開昭51−
55717号公報においては、円筒形の管を浸漬し管内
を減圧した上で取鍋底部のポーラスれんがよりArガス
をふきこむ減圧精錬炉が提示されている。しかし、これ
らで示されているような、円筒形の浸漬管に溶鋼を吸い
上げ、取鍋底部に設けたガス吹き込み孔から不活性ガス
を導入する方式のみでは、安定して極低炭素領域まで脱
炭できないため実用化には至っていなく、また、この方
法のみでは、処理中のスプラッシュ発生も安定して抑制
できず、また、転炉スラグを巻き込むため、高清浄度鋼
の安定した溶製も難しいという問題がある。
On the other hand, Japanese Unexamined Patent Publication No. 53-67605 discloses a decompression refining furnace in which a cylindrical tube is immersed to reduce the pressure in the tube. In this method, molten steel in the tube and the tube are treated during processing. Multiple times for the purpose of mixing with external molten steel,
Since repeated depressurization / double pressure is applied, the time for which the molten steel reaction surface area is exposed to a high vacuum is short, and there is a problem that a long time is required in the case of melting extremely low carbon steel. On the other hand, JP-A-51-
Japanese Patent No. 55717 discloses a decompression refining furnace in which a cylindrical tube is immersed to decompress the inside of the tube, and then Ar gas is blown into the porous brick at the bottom of the ladle. However, as shown in these, only the method of sucking molten steel into a cylindrical dip tube and introducing an inert gas from the gas injection hole provided at the bottom of the ladle can stably desorb the ultra-low carbon region. Since it cannot be charcoal, it has not been put to practical use.In addition, this method alone cannot stably suppress the generation of splashes during processing, and because it entrains converter slag, it also enables stable melting of high-cleanliness steel. There is a problem that it is difficult.

【0005】[0005]

【本発明が解決しようとする課題】以上で示したよう
に、材料とプロセス、第3巻(1990)、168に示
された方法の場合には、激しいスプラッシュを生じると
いう問題点があり、また、特開昭57−200514号
公報に示された方法には耐火物損耗が激しいという問題
点を有していた。さらに、特開昭53−67605号公
報に示された方法では、処理中に減圧/複圧を繰り返す
ために溶鋼反応表面積が高真空下にさらされる時間が短
く、極低炭素鋼溶製の場合には長時間を要するという問
題があった。さらに、特開昭53−67605号公報や
特開昭51−55717号公報に示された方法で、溶鋼
の還流改善を積極的に図っても、安定して極低炭素領域
まで脱炭することができない上に、処理中のスプラッシ
ュ発生も安定して抑制できず、また、高清浄度鋼の安定
した溶製も難しいという問題があった。
As described above, in the case of the method shown in Volume 3 (1990), 168 of materials and processes, there is a problem that a violent splash occurs. The method disclosed in Japanese Patent Laid-Open No. 57-200514 has a problem that the wear of the refractory is severe. Further, in the method disclosed in Japanese Patent Laid-Open No. 53-67605, the molten steel reaction surface area is exposed to a high vacuum for a short time because repeated depressurization / double pressure is applied during the treatment. Has a problem that it takes a long time. Further, by the methods disclosed in JP-A-53-67605 and JP-A-51-55717, stable decarburization to an extremely low carbon region is achieved even if the reflux of molten steel is positively improved. In addition, there is a problem that splash generation during processing cannot be stably suppressed, and stable melting of high cleanliness steel is difficult.

【0006】従って、本発明の目的とするところは、激
しいスプラッシュの発生、耐火物損耗、清浄度の低下と
いう問題を起こすことなく、しかも、短時間処理で極低
炭素領域まで脱炭速度を低下させずに効率的な精錬を可
能とすることにある。
Therefore, the object of the present invention is to reduce the decarburization rate to an extremely low carbon region in a short time without causing problems such as severe splash, wear of refractory and deterioration of cleanliness. It is to enable efficient refining without doing so.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の従
来技術の問題点を解決するために、真空精錬下で取鍋内
溶鋼に大径の浸漬管を浸漬し、該浸漬管内にガス体を供
給して、気泡活性面の形成を全溶鋼表面の10%以上と
した脱炭法を先に出願した。本発明はさらに、真空下で
の脱炭について鋭意検討を行った結果、今回、気泡脱炭
を進行させるには真空面側のある特定の深さ内の気泡が
有効であるということを知見し得た。本発明はこの知見
に基づきなされたものである。
In order to solve the above-mentioned problems of the prior art, the inventors of the present invention immerse a large diameter immersion pipe in molten steel in a ladle under vacuum refining, and I applied for a decarburization method in which a gas body was supplied to form a bubble active surface at 10% or more of the total molten steel surface. Further, as a result of intensive studies on decarburization under vacuum, the present invention has found that bubbles within a certain depth on the vacuum surface side are effective for promoting bubble decarburization. Obtained. The present invention is based on this finding.

【0008】その要旨とするところは、転炉、電気炉な
どの精錬炉より出鋼された取鍋内溶鋼に、大径の直胴形
状の容器を浸漬するとともに、該直胴浸漬槽内を減圧
し、鋼浴の底部からガス体を供給し、ガス体による気泡
活性面の形成とガスリフトによる溶鋼循環機能を併用す
る溶鋼の精錬方法において、低部からのガス吹込みを偏
心させ、反対側の下降流サイドの浸漬管半周に設けた複
数個のガス吹込みノズルより、鋼浴表面下500〜15
00mmの位置から不活性ガスを、浸漬管ガス流量(G
S )と低部ガス流量(GB )との比率の関係においてG
S /GB =1.0〜3.0の範囲で吹き込み、且つ、真
空槽内に溶鋼全表面積の10%以上の気泡活性面を形成
することにより、溶鋼中炭素濃度を6ppm以下とする
ことにある。
[0008] The gist is that a large-diameter straight-body-shaped container is immersed in molten steel in a ladle that has been tapped from a refining furnace such as a converter or an electric furnace, and In the refining method of molten steel that decompresses and supplies the gas body from the bottom of the steel bath, and forms the bubble activated surface by the gas body and the molten steel circulation function by the gas lift, the gas injection from the lower part is eccentric and the opposite side 500 to 15 below the surface of the steel bath from a plurality of gas injection nozzles provided around the dip tube on the downflow side of
Inert gas from the position of 00 mm, gas flow rate of immersion pipe (G
G in relation to the ratio of S) and the lower portion the gas flow rate (G B)
Blowing in the range of S / G B = 1.0~3.0, and, by forming a 10% or more bubbles active surface of the molten steel total surface area in the vacuum chamber, to the carbon concentration in the molten steel and less 6ppm It is in.

【0009】[0009]

【作用】本発明は以下に記載する気泡脱炭を促進させる
ことに立脚している。今、取鍋底部から吹き込まれた不
活性ガスは溶鋼の静圧を受けているためにCO分圧が比
較的高く、脱炭反応が進行しにくくなっている。本発明
者らは種々の実験を行うことにより、吹き込まれた気泡
が溶鋼から受ける静圧の影響が小さくなる、つまり気泡
と溶鋼界面のCO分圧が十分に低くなり、気泡脱炭を促
進する領域としては、真空表面下の1500mm以内で
あるとの知見を見出した。つまり、1500mmより深
い位置からガス吹込みを行っても気泡脱炭は進行しない
ことになる。今、取鍋低部からガス吹込みを行った場合
について考えてみると、低部より吹き込まれたガスは溶
鋼との比重差により浮上する。そして、気泡が上昇し、
静圧の影響を受けなくなる領域まで来ると気泡脱炭は進
行するが、低部からの吹込みガスは常に上昇流を形成し
ているため、この領域に滞留している時間は非常に短
く、従って低部から供給されるガスによって気泡脱炭を
進行させることは困難である。
The present invention is based on promoting the bubble decarburization described below. Since the inert gas blown from the bottom of the ladle is subjected to the static pressure of molten steel, the CO partial pressure is relatively high and the decarburization reaction is difficult to proceed. By performing various experiments, the present inventors reduce the influence of static pressure exerted on the blown bubbles from the molten steel, that is, the CO partial pressure at the interface between the bubbles and the molten steel becomes sufficiently low to promote bubble decarburization. It was found that the area was within 1500 mm below the vacuum surface. That is, bubble decarburization does not proceed even if gas is blown from a position deeper than 1500 mm. Now, considering the case where gas is blown from the lower part of the ladle, the gas blown from the lower part floats due to the difference in specific gravity from the molten steel. And the bubbles rise,
Bubble decarburization proceeds when it reaches the region where it is not affected by static pressure, but the gas blown from the lower part always forms an upward flow, so the time it stays in this region is very short, Therefore, it is difficult to proceed the bubble decarburization with the gas supplied from the lower part.

【0010】そこで、本発明者は気泡脱炭を効率的に起
こさせる方法として、低部からのガス吹込みを偏心さ
せ、反対側の下降流サイドの浸漬管半周より不活性ガス
を吹込むことにより、気泡脱炭を著しく向上させる方法
を発明した。この方法によれば、取鍋底部から供給され
るガスによって真空槽表面に気泡活性面を形成し、表面
脱炭を促進させた上で、浸漬管からの吹込みガスにより
気泡脱炭を起こさせるため、総括の脱炭反応としては非
常に大きな脱炭反応速度となる。
Therefore, as a method for efficiently causing bubble decarburization, the present inventor decenters gas injection from the lower part and injects an inert gas from the half circumference of the dip tube on the opposite downflow side. Have invented a method for significantly improving bubble decarburization. According to this method, the gas supplied from the bottom of the ladle forms a bubble activated surface on the surface of the vacuum chamber to promote the surface decarburization, and then the gas blown from the dipping tube causes the bubble decarburization to occur. Therefore, the overall decarburization reaction has a very large decarburization reaction rate.

【0011】このように、表面脱炭を促進させた上で気
泡脱炭を促進させるための条件を種々の実験で検討した
結果、取鍋低部からのガス吹込みを偏心させた上で反対
側の下降流側の浸漬管半周に設けた複数個のガス吹込み
ノズルより鋼浴表面下500〜1500mmの位置から
不活性ガスを、浸漬管ガス流量(GS )と低部ガス流量
(GB )との比率の関係においてGS /GB =1.0〜
3.0の範囲で吹き込み、且つ、真空槽内に溶鋼全表面
積の10%以上の気泡活性面を形成することにより、成
し遂げられることを明らかにした。
As described above, as a result of examining various conditions for accelerating the surface decarburization and then the bubble decarburization, the gas injection from the lower part of the ladle was eccentric and the opposite was observed. Side downflow side, the inert gas is introduced from a position of 500 to 1500 mm below the surface of the steel bath from a plurality of gas injection nozzles provided on the half circumference of the immersion pipe, the immersion pipe gas flow rate (GS) and the lower part gas flow rate (G S ). G S / G B = 1.0~ in relation ratio between B)
It was clarified that this can be achieved by blowing in the range of 3.0 and forming a bubble activated surface of 10% or more of the total surface area of molten steel in the vacuum chamber.

【0012】図1に示す如く取鍋1底部の中心位置以外
よりガス吹込みノズル5より吹込みを行った場合、浮上
する気泡に伴って、溶鋼3の循環流が形成される。この
とき、ガス吹込み位置とは反対側の下降流が形成される
側の浸漬管2の半周からガス吹込みノズル5からガス吹
込みを行うと浸漬管から吹き込まれた不活性ガスは底部
から供給されたガスによって形成された下降流と気泡の
浮力がバランスするつまり、下降流により気泡の浮上が
抑えこまれるために、長時間、気泡脱炭が進みやすい深
さに気泡が滞留し、さらに整流化された下降流と上昇気
泡が衝突することにより気泡は分散するため、飛躍的に
脱炭が進むことになる。また、このとき、浸漬管からの
吹込みガスが500mmより浅い場合には、整流化され
た下降流が形成されていないため、吹き込まれた気泡が
直ちに浮上してしまい、気泡脱炭が進行しなくなる。さ
らに、吹込み位置が1500mmより深い場合では、下
降流で浴の底部(気泡脱炭が起こらない領域)へ気泡が
巻き込まれて、次いで、速い上昇流に乗り急速浮上する
ために気泡脱炭の進行が悪くなる。
As shown in FIG. 1, when gas is injected from the gas injection nozzle 5 from a position other than the center position of the bottom of the ladle 1, a circulating flow of the molten steel 3 is formed along with the floating bubbles. At this time, when gas is blown from the gas blowing nozzle 5 from the half circumference of the dipping tube 2 on the side where the downward flow is formed on the side opposite to the gas blowing position, the inert gas blown from the dipping tube is discharged from the bottom. The downflow formed by the supplied gas balances the buoyancy of the bubbles. That is, the upflow of the bubbles is suppressed by the downflow, so that the bubbles stay at a depth where bubble decarburization easily proceeds, and The bubbles are dispersed due to the collision between the rectified downward flow and the rising bubbles, so that the decarburization progresses dramatically. Further, at this time, when the gas blown from the dip tube is shallower than 500 mm, the rectified downward flow is not formed, so the blown bubbles immediately float up and the bubble decarburization proceeds. Disappear. Furthermore, when the blowing position is deeper than 1500 mm, bubbles are entrained in the bottom of the bath (a region where bubble decarburization does not occur) in the descending flow, and then, in order to rapidly ascend on the fast ascending flow, the bubble decarburization is performed. Progress becomes worse.

【0013】また、底部からのガス流量と浸漬管からの
ガス流量の比率について、底部からのガス流量が過大で
あると、下降流が速すぎて気泡が浴低部へ巻き込まれ
て、気泡脱炭の進行が妨げられてしまい、過少であると
表面脱炭が進行しなくなるなどの障害を生じる。さら
に、浸漬管からのガス流量が過大であると、気泡が合体
粗大化し浮力が大きくなって吹き込まれると直ちに浮上
してしまい、気泡脱炭が進行が妨げられ、且つ、多量の
スプラッシュが発生するため、槽内の地金付着も激しく
なり操業性の悪化を招くことになる。また、浸漬管から
のガスが過少であると、今度は気泡脱炭量そのものが少
なくなる。
Regarding the ratio of the gas flow rate from the bottom to the gas flow rate from the dip tube, if the gas flow rate from the bottom is too high, the downward flow is too fast and the bubbles are entrained in the bath lower part, resulting in bubble desorption. The progress of charcoal is hindered, and if it is too small, surface decarburization will not proceed and other obstacles will occur. Further, if the gas flow rate from the immersion pipe is too large, the bubbles coalesce and coarsen, and the buoyancy becomes large and the bubbles float up immediately when blown, hindering the progress of bubble decarburization and generating a large amount of splash. Therefore, the adhesion of the metal in the tank will be severe and the operability will be deteriorated. If the amount of gas from the dipping pipe is too small, the amount of bubble decarburization itself will decrease.

【0014】よって、浸漬管からのガス流量(GS )と
底部からのガス流量(GB )の比率としてはGS /GB
=1.0〜3.0の範囲が最適となる。
[0014] Thus, G S / G B as the ratio of the gas flow from the dip tube (G S) and the gas flow rate from the bottom (G B)
The optimum range is 1.0 to 3.0.

【0015】[0015]

【実施例】図1に示した如く、取鍋1、浸漬管2、溶鋼
3、ポーラスプラグ4、ガス吹込みノズル5において、
175ton規模の真空精錬装置を用いた場合の実施例
を表1に示す。転炉での吹止め炭素濃度は0.03〜
0.04%とし、底吹きArガス流量は一律、300N
l/分にて真空精錬を行った。
EXAMPLE As shown in FIG. 1, in a ladle 1, a dip tube 2, a molten steel 3, a porous plug 4 and a gas injection nozzle 5,
Table 1 shows an example of using a 175 ton scale vacuum refining apparatus. Blown carbon concentration in the converter is 0.03〜
0.04%, bottom blown Ar gas flow rate is uniform, 300N
Vacuum refining was performed at 1 / min.

【0016】表1から明らかなように本発明方法が極低
炭素鋼の溶製に際し、非常に優れた方法であることがわ
かる。
As can be seen from Table 1, the method of the present invention is a very excellent method for melting ultra low carbon steel.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明を用いることにより、激しいスプ
ラッシュの発生を伴うことなく、しかも、短時間処理で
極低炭素濃度域まで脱炭速度を低下させることなく効率
的に精錬を行うことが可能となった。
EFFECTS OF THE INVENTION By using the present invention, it is possible to efficiently carry out refining without causing a violent splash, and in a short time treatment without lowering the decarburization rate to an extremely low carbon concentration range. Became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による減圧精錬法の実施の態様の一例を
示す図。
FIG. 1 is a diagram showing an example of an embodiment of a vacuum refining method according to the present invention.

【図2】浸漬管のノズル配置を示す図。FIG. 2 is a diagram showing a nozzle arrangement of a dip tube.

【図3】浸漬管からのガス吹込み深さと脱炭速度定数の
関係を表す図。
FIG. 3 is a diagram showing a relationship between a gas injection depth from an immersion pipe and a decarburization rate constant.

【図4】浸漬管ガス流量(GS )/低部ガス流量(G
B )比と脱炭速度定数の関係を表す図。
[Fig. 4] Immersion tube gas flow rate (G S ) / Lower part gas flow rate (G S )
B ) Diagram showing the relationship between ratio and decarburization rate constant.

【図5】従来法と本発明法の脱炭挙動の経時変化(片対
数表示)の比較図。
FIG. 5 is a comparison diagram of changes over time (in semi-logarithmic display) in decarburization behavior between the conventional method and the method of the present invention.

【符号の説明】[Explanation of symbols]

1…取鍋 2…浸漬管 3…溶鋼 4…ポーラスプラ
グ 5…ガス吹込みノズル
1 ... Ladle 2 ... Immersion pipe 3 ... Molten steel 4 ... Porous plug 5 ... Gas injection nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 精錬炉より出鋼された取鍋内溶鋼に、大
径の直胴形状の容器を浸漬するとともに、該直胴浸漬槽
内を減圧し、鋼浴の底部からガス体を供給しガス体によ
る気泡活性面の形成とガスリフトによる溶鋼循環機能を
併用する溶鋼の減圧脱炭精錬方法において、低部からの
ガス吹込みを偏心させ、反対側の下降流サイドの浸漬管
半周に設けた複数個のガス吹込みノズルより、鋼浴表面
下500〜1500mmの位置から不活性ガスを、浸漬
管ガス流量(GS )と低部ガス流量(GB )の比率の関
係においてGS /GB =1.0〜3.0の範囲で吹き込
み、且つ、真空槽内に溶鋼全表面積の10%以上の気泡
活性面を形成することを特徴とする効率的な極低炭素鋼
の減圧脱炭精錬方法。
1. A large-diameter straight-body-shaped container is immersed in molten steel in a ladle that has been tapped from a refining furnace, the interior of the straight-body immersion tank is decompressed, and a gas body is supplied from the bottom of the steel bath. In the decarburizing decarburization refining process for molten steel, which uses both the formation of bubble active surfaces by the gas body and the circulation function of molten steel by gas lift, the gas injection from the lower part is eccentric, and it is installed on the half circumference of the dipping pipe on the opposite side and from a plurality of gas blowing nozzles, G in the inert gas from the position of the steel bath surface under 500~1500Mm, relationship of the ratio of the immersion tube gas flow rate (G S) and the lower portion the gas flow rate (G B) S / blowing in the range of G B = 1.0 to 3.0, and, for efficient ultra-low carbon steel and forming a 10% or more bubbles active surface of the molten steel total surface area into the vacuum chamber vacuum degassing Charcoal refining method.
JP20921392A 1992-08-05 1992-08-05 Vacuum decarburization refining method of extra-low carbon steel Withdrawn JPH0649528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20921392A JPH0649528A (en) 1992-08-05 1992-08-05 Vacuum decarburization refining method of extra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20921392A JPH0649528A (en) 1992-08-05 1992-08-05 Vacuum decarburization refining method of extra-low carbon steel

Publications (1)

Publication Number Publication Date
JPH0649528A true JPH0649528A (en) 1994-02-22

Family

ID=16569228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20921392A Withdrawn JPH0649528A (en) 1992-08-05 1992-08-05 Vacuum decarburization refining method of extra-low carbon steel

Country Status (1)

Country Link
JP (1) JPH0649528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014029325A1 (en) * 2012-08-24 2014-02-27 马钢(集团)控股有限公司 Straight barrel type vacuum refining device and method for use the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014029325A1 (en) * 2012-08-24 2014-02-27 马钢(集团)控股有限公司 Straight barrel type vacuum refining device and method for use the same
US9809868B2 (en) 2012-08-24 2017-11-07 Magang (Group) Holding Co. Ltd. Straight barrel type vacuum refining device and method for use the same

Similar Documents

Publication Publication Date Title
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
JPH0754034A (en) Production of ultralow carbon steel
JPH0649528A (en) Vacuum decarburization refining method of extra-low carbon steel
JPH05214430A (en) Method for vacuum-refining molten steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2648769B2 (en) Vacuum refining method for molten steel
JPH06228629A (en) Method for refining high purity stainless steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JPH0741835A (en) Method for vacuum-refining molten steel by gas injection
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JPH05339624A (en) Smelting method for dead soft steel by circular column type ladle degassing device
JPH06212241A (en) Method for vacuum-refining molten steel by using large diameter immersion tube
JP3720984B2 (en) Highly efficient vacuum refining method
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic
JPH05311227A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPH03134115A (en) Method and apparatus for producing highly clean and extremely low carbon steel
JPH0741838A (en) Rh vacuum degassing treatment
JP3070416B2 (en) Vacuum degassing method for molten steel
JP3140852B2 (en) Refining method of ultra low carbon steel
JPH06212242A (en) Method for vacuum-refining molten steel in ladle
JPH0610028A (en) Production of ultralow carbon steel
JPH0589443U (en) Immersion pipe for molten steel treatment
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005