JPH05304363A - Manufacture of ceramic multilayer board - Google Patents

Manufacture of ceramic multilayer board

Info

Publication number
JPH05304363A
JPH05304363A JP10948292A JP10948292A JPH05304363A JP H05304363 A JPH05304363 A JP H05304363A JP 10948292 A JP10948292 A JP 10948292A JP 10948292 A JP10948292 A JP 10948292A JP H05304363 A JPH05304363 A JP H05304363A
Authority
JP
Japan
Prior art keywords
insulating layer
pattern
thickness
paste
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10948292A
Other languages
Japanese (ja)
Inventor
Kazuyuki Okano
和之 岡野
Minehiro Itagaki
峰広 板垣
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10948292A priority Critical patent/JPH05304363A/en
Publication of JPH05304363A publication Critical patent/JPH05304363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a ceramic multilayer board in which a transfer malfunction occurring at the time of laminating is solved and which has excellent mass productivity and a low manufacturing cost in the method for manufacturing the board to realize a high density mounting of effective means for reducing in size of an electric apparatus. CONSTITUTION:After a first insulating layer 3 is printed on a wiring pattern 2 formed on a base film 1 at the time of manufacturing a transfer sheet 12, printing after a second insulating layer 5 or the following layer is sequentially conducted in a wide pattern to obtain the sheet 12 in which a protrusion of an edge 4 generated on the layer 3 is reduced or eliminated. The sheet 12 is thermally transferred to be laminated on a heat resistance board. Thus, the step of processing its edge part is eliminated to enhance its mass productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器等の回路形成
に使用するセラミック多層基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic multi-layer substrate used for forming circuits of electronic devices and the like.

【0002】[0002]

【従来の技術】相互に接続された配線パターン層の3次
元的な配列を内部に有するセラミック多層基板は、グリ
ーンシート多層法(特公昭40−8458号公報、特公
昭55−8837号公報、特公昭61−45876号公
報)、厚膜印刷法(特公昭57−19599号公報な
ど)および転写法など多くの製造方法が提案されてい
る。
2. Description of the Related Art A ceramic multilayer substrate having therein a three-dimensional array of interconnected pattern layers is known as a green sheet multilayer method (Japanese Patent Publication No. 40-8458, Japanese Patent Publication No. 55-8837, and Japanese Patent Publication No. 55-8837). Many manufacturing methods have been proposed, such as Japanese Patent Publication No. 61-45876), thick film printing method (Japanese Patent Publication No. 57-19599), and transfer method.

【0003】グリーンシート多層法においては焼成時に
収縮が起こるため、意図したパターンの配置を崩すこと
なく製造するためには、グリーンシートを作成するため
のスラリー組成や粉末の分散状態、あるいはシートの厚
み、加圧条件などが極めて精密に制御されなければなら
ない。これが実現されないと、焼成体にそりやうねりが
生じ、さらに大きな問題として各層間の位置ずれによる
ビア孔の導通不良が起こる。厚膜印刷法は、このような
グリーンシート多層法の問題点を解決することができ
る。何故ならば、この工法によれば焼成時の2次元方向
における成形体の寸法変化がなく、パターンの配置やビ
ア孔の位置がずれることがないからである。しかしなが
ら、この方法では導体パターンの逆パターンを絶縁ペー
ストで形成するというやり方(特公昭57−54956
号公報、特公昭58−26680号公報)を行った上
で、さらに導体パターン上に絶縁層を複数回印刷しなけ
れば表面が平坦で信頼性のある多層基板は得られない。
さらに必要な総数だけ焼成をくり返すということは、導
体および絶縁体にそれらの焼成と同様な条件の熱履歴を
くり返し与えなければならないという不都合を生じる。
すなわち、導体材料の絶縁層への拡散による絶縁抵抗の
劣化、熱による変質など、信頼性の観点から極めて好ま
しくない。
In the green sheet multi-layer method, shrinkage occurs during firing. Therefore, in order to manufacture the green sheet without destroying the intended pattern arrangement, the slurry composition for producing the green sheet, the powder dispersion state, or the sheet thickness. , The pressurizing condition, etc. must be controlled extremely precisely. If this is not achieved, warpage and undulation will occur in the fired body, and as a further serious problem, conduction failure of the via hole will occur due to misalignment between the layers. The thick film printing method can solve the problems of the green sheet multilayer method. This is because according to this construction method, there is no dimensional change of the molded body in the two-dimensional direction during firing, and the pattern arrangement and the position of the via hole are not displaced. However, in this method, a method of forming a reverse pattern of a conductor pattern with an insulating paste (Japanese Patent Publication No. 57-54956).
Japanese Patent Publication No. 58-26680), and an insulating layer is printed a plurality of times on the conductor pattern, a multilayer substrate having a flat surface and reliable cannot be obtained.
Further, repeating the firing by the necessary total number has a disadvantage that the conductor and the insulator must be repeatedly given a thermal history under the same conditions as those of firing.
That is, deterioration of insulation resistance due to diffusion of the conductor material into the insulating layer and deterioration due to heat are extremely undesirable from the viewpoint of reliability.

【0004】これらの方法の欠点を改善することを目的
とした方法として、配線を内蔵した印刷セラミックシー
トを耐熱性基板上に熱転写して積層する方法がある。
As a method aiming at improving the drawbacks of these methods, there is a method in which a printed ceramic sheet containing wiring is thermally transferred and laminated on a heat resistant substrate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の熱転写による方法では、絶縁層印刷時にパターンエッ
ジに生じる盛り上がりのため加圧が不均一になり、その
ため生じる転写不良という重大な欠点を有している。こ
の転写不良をなくすために、絶縁総エッジの盛り上がり
部分を削ることによって除去する方法などが考えられて
いるが、その工程による製造コストの上昇は転写工法に
よるセラミック多層基板の量産性やコストパフォーマン
スを著しく低下させる。
However, the above-mentioned conventional method by thermal transfer has a serious drawback that the pressure is non-uniform due to the swelling that occurs at the pattern edge when the insulating layer is printed, resulting in defective transfer. .. In order to eliminate this transfer failure, a method of removing by removing the raised portion of the insulating total edge is considered, but the increase in manufacturing cost due to that process will increase the mass productivity and cost performance of the ceramic multilayer substrate by the transfer method. Significantly lowers.

【0006】また配線層を内蔵した転写シートであるた
め、配線層上に形成される絶縁層表面に配線層の厚みに
よる段差が現れ、配線材料の種類によってはこれが前記
した絶縁層エッジの盛り上がりと同様の転写不良を引き
起こすことがあるという課題も生じた。
Further, since it is a transfer sheet having a wiring layer built-in, a step due to the thickness of the wiring layer appears on the surface of the insulating layer formed on the wiring layer, and depending on the type of wiring material, this may be the swelling of the edge of the insulating layer. There is also a problem that similar transfer defects may occur.

【0007】本発明は上記課題を解決するものであり、
転写不良を発生しない、高い生産性を有するセラミック
多層基板の製造方法を提供することを目的とする。
The present invention is intended to solve the above problems,
An object of the present invention is to provide a method for manufacturing a ceramic multi-layer substrate which has high productivity and does not cause transfer defects.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ベースフィルム上に導電体ペーストを印刷
し、乾燥して配線パターンを形成し、それを覆うように
絶縁体ペーストを印刷し、乾燥した後、さらにその絶縁
体パターンより大きいおパターンで、その絶縁体パター
ンのエッジ部分を覆うように絶縁体ペーストを印刷し、
乾燥してなる転写シートを、耐熱性基板上に加熱転写し
て積層するものであり、また絶縁体ペーストによる最初
の絶縁層形成を配線パターンの乾燥膜厚よりも大きいエ
マルジョン厚みをもつ第1のスクリーン印刷版と、硬質
の金属またはセラミックまたはガラス製のスキージとを
用いて行い、その後前記最初の絶縁層および配線パター
ンの乾燥膜圧よりも大きいエマルジョン厚みを有する第
2のスクリーン印刷版を用いて次の絶縁層形成を行うこ
とをくり返して転写シートを製造するものである。
In order to achieve the above object, the present invention prints a conductive paste on a base film, dries it to form a wiring pattern, and prints an insulating paste so as to cover it. Then, after drying, print the insulating paste with a pattern larger than the insulating pattern so as to cover the edge part of the insulating pattern,
A transfer sheet formed by drying is heat-transferred and laminated on a heat-resistant substrate, and the first insulating layer formed by an insulating paste has a first emulsion layer thickness larger than the dry film thickness of the wiring pattern. Using a screen printing plate and a squeegee made of hard metal or ceramic or glass, and then using a second screen printing plate having an emulsion thickness greater than the dry film pressure of said first insulating layer and wiring pattern. The transfer sheet is manufactured by repeating the following insulating layer formation.

【0009】[0009]

【作用】したがって本発明によれば、図1(a)に示す
ように、ベースフィルム1に印刷し、乾燥された配線パ
ターン2上に第1の絶縁層3を印刷した際にエッジ部分
4に生じた盛り上がりは図1(b),(c)に示すよう
に第2回目以降の絶縁層印刷時のパターンを大きくして
エッジ部分4を第2の絶縁層5および第3の絶縁層6を
重ね印刷していくことにより、減少していく。この結
果、転写されるべき領域Aにおいては平坦で盛り上がり
のない転写シートを得ることができ、加熱転写を不良な
く行うことが可能となる。
Therefore, according to the present invention, as shown in FIG. 1A, when the first insulating layer 3 is printed on the wiring film 2 which is printed on the base film 1 and dried, the edge portion 4 is printed. As shown in FIGS. 1 (b) and 1 (c), the generated bulge enlarges the pattern at the time of printing the insulating layer after the second time, so that the edge portion 4 is removed from the second insulating layer 5 and the third insulating layer 6. It will be reduced by overprinting. As a result, in the area A to be transferred, it is possible to obtain a flat transfer sheet without swelling, and heat transfer can be performed without any defect.

【0010】また図2(a)および(b)に示すよう
に、絶縁体ペースト7の印刷に用いるスキージ8を硬い
材質のものとし、さらにスクリーン版のエマルジョン9
の厚みをすでに印刷形成された配線パターン2または配
線パターン2と第1の絶縁層3の乾燥膜厚よりも大きく
しておくことによって、スクリーン版のメッシュ10は
すでに印刷形成された配線パターン2または第1の絶縁
層3の表面に接触することなく絶縁体ペースト7の印刷
を行うことができる。すなわち、印刷直後のウエット状
態における絶縁層の表面がその中に埋設される配線パタ
ーンや他の絶縁層の乾燥膜厚によって影響を受けること
なく平坦な状態で印刷することが可能となる。したがっ
て、絶縁層を乾燥した際に生じる表面の段差は、絶縁体
ペーストの乾燥による収縮率のみに依存して現れること
になり、これをくり返すことによって大幅に減少させる
ことができ、加熱転写が不良なく行えるようになる。
As shown in FIGS. 2A and 2B, the squeegee 8 used for printing the insulating paste 7 is made of a hard material, and the emulsion 9 for the screen plate is used.
Of the wiring pattern 2 already formed by printing or the dry film thickness of the wiring pattern 2 and the first insulating layer 3 allows the mesh 10 of the screen plate to have the wiring pattern 2 already formed by printing or The insulating paste 7 can be printed without coming into contact with the surface of the first insulating layer 3. That is, the surface of the insulating layer in the wet state immediately after printing can be printed in a flat state without being affected by the wiring pattern embedded therein or the dry film thickness of another insulating layer. Therefore, the level difference on the surface that occurs when the insulating layer is dried appears depending only on the shrinkage rate of the insulating paste when it is dried, and can be greatly reduced by repeating this, and thermal transfer can be reduced. You can do it without any defects.

【0011】[0011]

【実施例】以下、本発明の一実施例について説明する。EXAMPLE An example of the present invention will be described below.

【0012】(実施例1)図1(a),(b)は本発明
の一実施例における転写シートの作製工程を示すもので
あり、図に示すように75μの厚みのPETフィルム
(商品名セラピール、東レ製)などのベースフィルム1
上に、市販の厚膜銀ペースト(品番DD−1411、京
エレ製)を用いて配線パターン2を印刷形成し、次にエ
マルジョン厚み25μ、ステンレス200メッシュのス
クリーン印刷版で、配線パターン2上に60×60mmの
正方形のパターンで下記に示す組成の絶縁体ペースト7
を印刷し、乾燥した。
Example 1 FIGS. 1 (a) and 1 (b) show a process for producing a transfer sheet in an example of the present invention. As shown in the figure, a PET film (product name: 75 μm thick) Base film 1 for therapies, manufactured by Toray, etc.
A wiring pattern 2 is printed and formed using a commercially available thick film silver paste (product number DD-1411, manufactured by Kyoele Co., Ltd.) on the wiring pattern 2 with a screen printing plate having an emulsion thickness of 25 μ and a stainless steel 200 mesh. Insulator paste 7 with the composition shown below in a 60 × 60 mm square pattern
Printed and dried.

【0013】 アルミナ+ホウケイ酸ガラス粉末 70重量% ブチラール樹脂+可塑剤 15重量% 溶剤(ブチルカルビトール) 15重量% 乾燥後の図1(a)に示す第1の絶縁層3の平坦な部分
の厚みは32μm、エッジ部分4の厚みは45μmとな
った。
Alumina + Borosilicate glass powder 70% by weight Butyral resin + Plasticizer 15% by weight Solvent (butyl carbitol) 15% by weight After drying, a flat portion of the first insulating layer 3 shown in FIG. The thickness was 32 μm, and the thickness of the edge portion 4 was 45 μm.

【0014】次に同じ仕様のスクリーン印刷版を用い、
62×62mmの正方形のパターンで打1の絶縁層3上に
2回目の印刷を行った。すなわち図1(b)に示すよう
に最初に印刷された第1の絶縁層3のエッジ部分4から
1mmだけ外側に第2の絶縁層5を設けた。この印刷によ
って、第1の絶縁層3と第2の絶縁層5からなる平坦な
部分の厚みは59μm、第1の絶縁層3の印刷時の生じ
たエッジ部分4の盛り上がりによる突出部10の厚みは
66μmとなった。
Next, using a screen printing plate having the same specifications,
The second printing was performed on the insulating layer 3 of Stroke 1 in a 62 × 62 mm square pattern. That is, as shown in FIG. 1B, the second insulating layer 5 was provided outside the edge portion 4 of the first printed insulating layer 3 by 1 mm. By this printing, the thickness of the flat portion composed of the first insulating layer 3 and the second insulating layer 5 is 59 μm, and the thickness of the protruding portion 10 due to the swelling of the edge portion 4 generated during printing of the first insulating layer 3. Was 66 μm.

【0015】さらに図1(c)に示すように第3の絶縁
層6の印刷を62×62mmの正方形のパターンで行い、
第2の絶縁層5の上に第3の絶縁層6を印刷して設け、
乾燥した後、各部分の厚みを調べたところ、第1の絶縁
層3の印刷時に生じたエッジ部分4の上部に相当する部
分の厚みは91μmで、第1の絶縁層3と第2の絶縁層
5および第3の絶縁層6からなる平坦な部分の厚み89
μmとほぼ同じであった。また3回目の印刷時に生じた
エッジ凸部11の厚みは71μmであって、前述の平坦
な部分よりも薄いことがわかった。
Further, as shown in FIG. 1 (c), printing of the third insulating layer 6 is performed in a square pattern of 62 × 62 mm,
The third insulating layer 6 is printed and provided on the second insulating layer 5,
After drying, when the thickness of each portion was examined, the thickness of the portion corresponding to the upper portion of the edge portion 4 generated during printing of the first insulating layer 3 was 91 μm, and the first insulating layer 3 and the second insulating layer 3 were separated. Thickness 89 of the flat portion made of the layer 5 and the third insulating layer 6
It was almost the same as μm. Further, it was found that the thickness of the edge convex portion 11 generated during the third printing was 71 μm, which was thinner than the above-mentioned flat portion.

【0016】以上のようにして作成した転写シート12
を5枚用意し、接着層を備えたアルミナ基板(図示せ
ず)上に順次加熱転写して積層体を作成した。この時の
転写条件は、ステンレス定盤の設定温度80℃、圧力9
0kg/cm2、加圧時間10秒とした。剥離後のベースフ
ィルム1上には図1(c)に示す領域Aの部分より外周
部分が残り、転写されるべき領域Aは完全にアルミナ基
板上に転写され、5層目まで転写不良は生じなかった。
この積層体を大気中で脱バインダ処理した後、焼成を行
って配線5層のセラミック多層基板が得られたが、これ
には絶縁層の亀裂やめくれなどの欠陥は認められなかっ
た。
The transfer sheet 12 prepared as described above
5 sheets were prepared and sequentially transferred onto an alumina substrate (not shown) provided with an adhesive layer by heating to form a laminate. The transfer conditions at this time are as follows: set temperature of the stainless steel surface plate is 80 ° C., pressure is 9
The pressure was 0 kg / cm 2 and the pressing time was 10 seconds. The outer peripheral portion is left on the base film 1 after peeling from the area A shown in FIG. 1C, and the area A to be transferred is completely transferred onto the alumina substrate, and transfer failure occurs up to the fifth layer. There wasn't.
This laminated body was subjected to binder removal treatment in the air and then fired to obtain a ceramic multilayer substrate having five wiring layers, but no defects such as cracks or curling of the insulating layer were observed.

【0017】(実施例2)(実施例1)と同様にして配
線パターン2を形成したベースフィルム1に、下記に示
す組成の絶縁体ペースト7を用いて60×60mmの正方
形のパターンで図1(a) アルミナ+ホウケイ酸ガラス粉末 65重量% ブチラール樹脂+ロジン+可塑剤 15重量% 溶剤(ブチルカルビトール) 20重量% に示す第1の絶縁層3を印刷形成した。スクリーン版の
仕様は、エマルジョン厚み25μmのステンレス150
メッシュとした。これによって得られた図1(a)の平
坦な部分の領域Aの厚みは45μm、エッジ部分4の厚
みは56μmとなった。
(Example 2) A base film 1 on which a wiring pattern 2 was formed in the same manner as in Example 1 was used to form an insulating paste 7 having the composition shown below in a square pattern of 60 × 60 mm. (A) Alumina + borosilicate glass powder 65% by weight Butyral resin + rosin + plasticizer 15% by weight Solvent (butyl carbitol) 20% by weight The first insulating layer 3 shown in FIG. The specifications of the screen plate are 150 mm stainless steel with an emulsion thickness of 25 μm.
It was a mesh. As a result, the thickness of the region A in the flat portion of FIG. 1 (a) was 45 μm, and the thickness of the edge portion 4 was 56 μm.

【0018】さらに同じ仕様のスクリーン版で、パター
ンを62×62としたものを用いて(実施例1)と同様
に図1(b)に示す第2の絶縁層5を印刷形成した。こ
れにより、図2(b)に示す平坦な部分の領域Aの厚み
は88μm、突出10の厚みは94μmとなった。
Further, using a screen plate having the same specifications and having a pattern of 62 × 62, the second insulating layer 5 shown in FIG. 1 (b) was formed by printing in the same manner as in (Example 1). As a result, the thickness of the region A in the flat portion shown in FIG. 2B was 88 μm, and the thickness of the protrusion 10 was 94 μm.

【0019】このようにして得た転写シート12を用
い、(実施例1)に示した転写条件で接着層を設けたア
ルミナ基板(図示せず)上に3層の転写を行ったとこ
ろ、(実施例1)と同様の積層体が得られ、熱処理を施
しても絶縁層に欠陥の生じないセラミック多層基板が製
造できた。
Using the transfer sheet 12 thus obtained, three layers were transferred onto an alumina substrate (not shown) provided with an adhesive layer under the transfer conditions shown in (Example 1). A laminate similar to that of Example 1) was obtained, and a ceramic multilayer substrate in which the insulating layer had no defects even when subjected to heat treatment could be manufactured.

【0020】これからわかるように、本発明における2
回目移行の絶縁層の印刷は、転写積層数や絶縁体ペース
ト7のレオロジー的性質によって、その回数を適当に選
んで行ってもよい。また、絶縁層の厚みは、絶縁耐圧や
絶縁抵抗および信頼性などの要請から必要となる厚み以
上に形成すれば、本発明の目的を達成することができ
る。
As can be seen from the above, in the present invention,
The printing of the insulating layer at the time of the transition may be performed by appropriately selecting the number of times depending on the number of transfer laminated layers and the rheological property of the insulating paste 7. Further, the object of the present invention can be achieved if the insulating layer is formed to have a thickness equal to or more than the thickness required from the requirements of withstand voltage, insulation resistance and reliability.

【0021】(実施例3)75μの厚みのPETフィル
ム(商品名セラピール、東レ製)よりなるベースフィル
ム1上に、市販の酸化銅ペースト(品番DD−310
0、京エレ製)を用いて配線パターン2を印刷形成し
た。これの膜厚は19〜20μmであった。
(Example 3) A commercially available copper oxide paste (product number DD-310) was formed on a base film 1 made of a PET film having a thickness of 75 μm (trade name: Serapile, manufactured by Toray).
The wiring pattern 2 was formed by printing. The film thickness of this was 19 to 20 μm.

【0022】エマルジョン厚み35μ、ステンレス20
0メッシュのスクリーン印刷版で、その配線パターン上
に60×60mmの正方形のパターンで下記に示す組成の
絶縁体ペースト7を印刷した。
Emulsion thickness 35μ, stainless steel 20
On a 0 mesh screen printing plate, an insulating paste 7 having the composition shown below was printed on the wiring pattern in a square pattern of 60 × 60 mm.

【0023】 アルミナ+ホウケイ酸ガラス粉末 70重量% ブチラール樹脂+可塑剤 15重量% 溶剤(ブチルカルビトール) 15重量% このとき、スキージ8として径が6mmのアルミナ棒の表
面を鏡面研磨したものを用いた。乾燥後、図1(a)に
示す第1の絶縁層3の平坦な部分の領域Aの厚みは42
μm、エッジ部分4の厚みは55μmとなった。また平
坦な部分に現れた配線パターン2による段差は7〜8μ
mであった。
Alumina + borosilicate glass powder 70% by weight Butyral resin + plasticizer 15% by weight Solvent (butyl carbitol) 15% by weight At this time, as the squeegee 8, an alumina rod having a diameter of 6 mm is mirror-polished. I was there. After drying, the thickness of the region A of the flat portion of the first insulating layer 3 shown in FIG.
The edge portion 4 has a thickness of 55 μm. Moreover, the step due to the wiring pattern 2 appearing in the flat portion is 7 to 8 μm.
It was m.

【0024】次に、同じ仕様でエマルジョン厚みが60
μmのスクリーン印刷版を用い、62×62mmの正方形
のパターンで前述の第1の絶縁層3上に第2の絶縁層5
の印刷を行った。この印刷によって、図1(b)に示す
第1の絶縁層3と第2の絶縁層5からなる平坦な部分の
領域Aの厚みは79μm、第1の絶縁層3の印刷時に生
じたエッジ部分4の盛り上がりによる突出部10の厚み
は80μmとなり、平坦な部分における配線パターン2
による段差は2〜3μmとなった。
Next, with the same specifications, the emulsion thickness is 60
A second insulating layer 5 is formed on the above-mentioned first insulating layer 3 in a 62 × 62 mm square pattern using a screen printing plate of μm.
Was printed. As a result of this printing, the thickness of the region A of the flat portion consisting of the first insulating layer 3 and the second insulating layer 5 shown in FIG. 1B is 79 μm, and the edge portion generated during printing of the first insulating layer 3 The protrusion 10 has a thickness of 80 μm due to the swelling of the wiring pattern 4 and the wiring pattern 2 in the flat portion.
The difference in level due to was 2 to 3 μm.

【0025】以上のようにして作成した転写シート12
を5枚(実施例1)と同様の条件で加熱転写して配線層
5層の積層体を作成した。剥離後のベースフィルム1に
は図1(c)に示す領域Aの部分より外周部分が残り、
転写されるべき領域Aは完全にアルミナ基板上に転写さ
れ、5層目まで転写不良は生じなかった。この積層体を
大気中で脱バインダ処理した後、水素気流中での還元、
窒素気流中での焼成を行って銅配線のセラミック多層基
板が得られたが、これには絶縁層の亀裂やめくれなどの
欠陥は認められなかった。
The transfer sheet 12 prepared as described above
5 were heat-transferred under the same conditions as in Example 1 to prepare a laminated body of 5 wiring layers. The outer peripheral portion of the base film 1 after peeling remains from the area A shown in FIG.
The area A to be transferred was completely transferred onto the alumina substrate, and no transfer failure occurred up to the fifth layer. After debinding the laminated body in the atmosphere, reduction in a hydrogen stream,
A ceramic multilayer substrate with copper wiring was obtained by firing in a nitrogen stream, but no defects such as cracks or swelling of the insulating layer were observed in this.

【0026】本実施例からわかるように、配線材料が酸
化銅を原料とする銅であるような場合にも本発明は適用
できる。
As can be seen from this embodiment, the present invention can be applied to the case where the wiring material is copper made of copper oxide as a raw material.

【0027】(比較例)(実施例1)において、第1の
絶縁層3を印刷した後、第2,第3の絶縁層5および6
をそれぞれ印刷する際、第1の絶縁層3を印刷した場合
と同じ60×60mmの大きさで重ねて印刷を行った場合
の転写シートを作成した。これの平坦な部分の領域Aの
厚みは87μm、エッジ部分4の盛り上がった部分は9
8μmであった。
(Comparative Example) In (Example 1), after printing the first insulating layer 3, the second and third insulating layers 5 and 6 were formed.
When each of the above was printed, a transfer sheet was prepared in the case where the same size of 60 × 60 mm as the case of printing the first insulating layer 3 was overlapped and printed. The thickness of the flat area A is 87 μm, and the height of the edge portion 4 is 9 μm.
It was 8 μm.

【0028】これを(実施例1)に示した転写条件で接
着層を設けたアルミナ基板上に転写したところ、ベース
フィルム剥離時、ベースフィルム1上に絶縁層の中央部
分、すなわち領域Aの部分が残るという転写不良が発生
した。
When this was transferred onto an alumina substrate provided with an adhesive layer under the transfer conditions shown in (Example 1), when the base film was peeled off, the central portion of the insulating layer, that is, the portion of the area A, was formed on the base film 1. A transfer failure that left a mark occurred.

【0029】[0029]

【発明の効果】上記実施例より明らかなように本発明
は、ベースフィルム上に導電体ペーストを印刷し、乾燥
して配線パターンを形成した後、それを覆うように絶縁
体ペーストを印刷し、乾燥して絶縁層を形成し、さらに
その絶縁層のパターンより大きいパターンで、そのエッ
ジ部分を覆うように絶縁ペーストを印刷し、乾燥して他
の絶縁層を形成するという方法で転写シートを製造する
ものであり、また最初の絶縁層形成を、配線パターンの
乾燥膜厚よりも大きいエマルジョン厚みをもつ第1のス
クリーン印刷版と、硬質の金属またはセラミックまたは
ガラス製のスキージとを用いて行い、その後前記絶縁層
および配線パターンの乾燥膜厚よりも大きいエマルジョ
ン厚みとした第2のスクリーン印刷版を用いて次の絶縁
層形成を行うことをくり返して転写シートを製造すると
いう構成を取ることにより、耐熱製基板上に加熱転写し
て積層する際の転写不良をなくすことができ、セラミッ
ク多層基板を生産性よく製造することかつできるもので
ある。
As is apparent from the above embodiments, the present invention is to print a conductive paste on a base film, dry it to form a wiring pattern, and then print an insulating paste to cover it. A transfer sheet is manufactured by drying to form an insulating layer, printing an insulating paste with a pattern larger than that of the insulating layer so as to cover the edge portion, and drying to form another insulating layer. In addition, the first insulating layer is formed by using a first screen printing plate having an emulsion thickness larger than the dry film thickness of the wiring pattern and a squeegee made of hard metal, ceramic or glass, After that, the second insulating layer is formed using the second screen printing plate having an emulsion thickness larger than the dry film thickness of the insulating layer and the wiring pattern. By adopting the structure of manufacturing the transfer sheet by returning it, it is possible to eliminate the transfer failure when heat transferring and stacking on the heat resistant substrate, and it is possible to manufacture the ceramic multilayer substrate with high productivity. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の一実施例における第1の最初の
絶縁層の印刷を行った後の転写シートの構造を示す断面
図 (b)同第2の次の絶縁層の印刷を行った後の転写シー
トの構造を示す断面図 (c)同第3の次の絶縁層の印刷を行った後の転写シー
トの構造を示す断面図
FIG. 1 (a) is a cross-sectional view showing the structure of a transfer sheet after printing a first first insulating layer according to an embodiment of the present invention (b) printing a second next insulating layer Sectional view showing the structure of the transfer sheet after performing (c) Sectional view showing the structure of the transfer sheet after printing the third next insulating layer

【図2】(a)本発明の一実施例における絶縁性ペース
トを配線パターン上に印刷する状態を示す要部断面図 (b)同実施例における第1の絶縁層上に絶縁体ペース
トを印刷する状態を示す要部
FIG. 2 (a) is a cross-sectional view of an essential part showing a state in which an insulating paste according to an embodiment of the present invention is printed on a wiring pattern. (B) An insulating paste is printed on a first insulating layer in the same embodiment. The main part showing the state

【符号の説明】[Explanation of symbols]

1 ベースフィルム 2 配線パターン 3 第1の絶縁層(最初の絶縁層) 5 第2の絶縁層(次の絶縁層) 7 絶縁体ペースト 8 スキージ 9 エマルジョン 12 転写シート 1 Base Film 2 Wiring Pattern 3 First Insulating Layer (First Insulating Layer) 5 Second Insulating Layer (Next Insulating Layer) 7 Insulator Paste 8 Squeegee 9 Emulsion 12 Transfer Sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ベースフィルム上に導電体ペーストを印刷
し、乾燥して配線パターンを形成した後、それを覆うよ
うに絶縁体ペーストを印刷し、乾燥し、さらに前記絶縁
体パターンより大きいパターンで、そのエッジ部分を覆
うように絶縁体ペーストを印刷し、乾燥してなる転写シ
ートを、耐熱性の基板上に加熱転写して積層することを
特徴とするセラミック多層基板の製造方法。
1. A conductor paste is printed on a base film and dried to form a wiring pattern, and then an insulator paste is printed so as to cover the conductor pattern and dried, and a pattern larger than the insulator pattern is formed. A method for manufacturing a ceramic multi-layer substrate, comprising: printing an insulating paste so as to cover an edge portion of the insulating paste; and drying a transfer sheet, which is heat-transferred and laminated on a heat-resistant substrate.
【請求項2】絶縁体ペーストによる最初の絶縁層形成を
配線パターンの乾燥膜厚よりも大きいエマルジョン厚み
をもつ第1のスクリーン印刷版と、硬質の金属またはセ
ラミックまたはガラス製のスキージとを用いて行い、そ
の後前記最初の絶縁層および配線パターンの乾燥膜厚よ
りも大きいエマルジョン厚みとを有する第2のスクリー
ン印刷版を用いて次の絶縁層形成を行うことをくり返し
て転写シートを製造することを特徴とする請求項1記載
のセラミック多層基板の製造方法。
2. A first screen printing plate having an emulsion thickness larger than a dry film thickness of a wiring pattern, and a hard metal or ceramic or glass squeegee for the first formation of an insulating layer by an insulating paste. A second screen printing plate having the emulsion thickness larger than the dry thickness of the first insulating layer and the wiring pattern, and then performing the subsequent insulating layer formation to repeatedly produce a transfer sheet. The method for producing a ceramic multilayer substrate according to claim 1, wherein the ceramic multilayer substrate is manufactured.
JP10948292A 1992-04-28 1992-04-28 Manufacture of ceramic multilayer board Pending JPH05304363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10948292A JPH05304363A (en) 1992-04-28 1992-04-28 Manufacture of ceramic multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10948292A JPH05304363A (en) 1992-04-28 1992-04-28 Manufacture of ceramic multilayer board

Publications (1)

Publication Number Publication Date
JPH05304363A true JPH05304363A (en) 1993-11-16

Family

ID=14511365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10948292A Pending JPH05304363A (en) 1992-04-28 1992-04-28 Manufacture of ceramic multilayer board

Country Status (1)

Country Link
JP (1) JPH05304363A (en)

Similar Documents

Publication Publication Date Title
US6852569B2 (en) Method of fabricating multilayer ceramic substrate
JP2000285731A (en) Manufacture of conductor paste and ceramic multilayer substrate
JP2002368422A (en) Multilayer ceramic board and its manufacturing method
JP4576670B2 (en) Manufacturing method of ceramic substrate
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JP3646587B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JPH09260844A (en) Ceramic multilayered board manufacturing method
JPH06100377A (en) Production of multilayer ceramic board
JPH05304363A (en) Manufacture of ceramic multilayer board
JPH07202428A (en) Production of multilayer circuit board
JPH04305996A (en) Fabrication of multilayer interconnection board
JPH0374820A (en) Manufacture of laminated porcelain capacitor and manufacture of green sheet used therefor
JPH06326470A (en) Manufacture of multilayered ceramic board
JPH05167253A (en) Manufacture of multilayer ceramic board
JP3173213B2 (en) Manufacturing method of ceramic multilayer wiring board
JPH04356997A (en) Manufacture of multilayer wiring board
JP3289430B2 (en) Ceramic multilayer substrate and method of manufacturing the same
JPH0613756A (en) Conductive paste composition
JP2515165B2 (en) Method for manufacturing multilayer wiring board
JPH0575262A (en) Manufacture of ceramic multilayer circuit board
JP2003283130A (en) Manufacturing method for ceramic multi-layer substrate
JPH05191047A (en) Manufacture of multilayer ceramic circuit board
JPH0521958A (en) Laminate for multilayered printed circuit board and manufacture thereof
JP2551064B2 (en) Manufacturing method of ceramic multilayer substrate
JPH05145236A (en) Manufacture of ceramic multilayered wiring board