JPH0530281B2 - - Google Patents

Info

Publication number
JPH0530281B2
JPH0530281B2 JP61234508A JP23450886A JPH0530281B2 JP H0530281 B2 JPH0530281 B2 JP H0530281B2 JP 61234508 A JP61234508 A JP 61234508A JP 23450886 A JP23450886 A JP 23450886A JP H0530281 B2 JPH0530281 B2 JP H0530281B2
Authority
JP
Japan
Prior art keywords
mol
humidity
resistance
sintered body
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61234508A
Other languages
Japanese (ja)
Other versions
JPS6390101A (en
Inventor
Noboru Shikatani
Michiaki Sakaguchi
Masato Nagano
Akihiko Nagaoka
Fumio Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP61234508A priority Critical patent/JPS6390101A/en
Publication of JPS6390101A publication Critical patent/JPS6390101A/en
Publication of JPH0530281B2 publication Critical patent/JPH0530281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は空調機器、湿度制御システム、湿度計
等に使用される湿度センサ、特にセラミツクス系
の湿度センサに関するものである。 (従来の技術) センシングデバイスとしての湿度センサの最近
の傾向を見ると、セラミツクス系と有機高分子系
との二つに大別される。このような湿度センサが
具備すべき条件を列挙すると次の通りである。 (1) 実用計測湿度範囲が広いこと。 (2) 応答特性が良好であること。 (3) ヒステリシスが少ないこと。 (4) 経時変化が少ないこと。 (5) 耐熱、耐寒性があり、劣化が少ないこと。 (6) 機械的強度が大きいこと。 (7) 小形に構成できること。 (8) 低コストであること。 有機高分子系の湿度センサは上記(2)および(5)の
点において問題があるのに対しセラミツクス系の
湿度センサは(4)の点が問題となるだけであるの
で、現在はセラミツクスを素材とした湿度センサ
が主として開発されている。 セラミツクス系の湿度センサで問題となる経時
変化は、酸化物表面に化学吸着OH基が形成さ
れ、このOH基の量の増大とともに徐々に高抵抗
値化することに起因するものであることが解明さ
れている。したがつて、化学吸着されたOH基を
400℃以上の加熱処理で除去することにより高抵
抗化を回避することが提案されている。この目的
のために焼結体の近傍に加熱処理用の加熱クリー
ニングヒータを付設した湿度センサが開発されて
いる。 (発明が解決しようとする問題点) 上述したように、焼結体の近傍に加熱用ヒータ
を配置した湿度センサは寸法が大きくなるととも
に電力消費量も大きくなるという欠点がある。近
年のセンシングデバイスに対するニーズは、用途
の多様化と相俟つて湿度センサの性能の向上とと
もに小型化、省電力化に対する要求も高まつてい
るが、従来の湿度センサはこのような要求に十分
に答え得るものではなかつた。 さらに、従来のセラミツク湿度センサは機械的
強度が小さいため、自己支持型とすることが困難
であり、基体の上に形成する必要があつた。その
ため、部品点数が多くなり、管理項目が増加する
他、基板成分との相互拡散の発生による性能変動
や工程の複雑さといつた欠点がある。 本発明の目的は、セラミツク湿度センサとして
の本来の特性は損なわず、しかもOH基の化学吸
着による高抵抗化を招くことがなく、したがつて
加熱クリーニング用ヒータを必要とせず、その結
果として小形に構成することができ、消費電力が
少ないとともに経時抵抗変化が少なく、さらに機
械的強度が高く、自己支持型とすることができる
にも拘らず厚さを薄くすることができ、したがつ
て応答性に優れた湿度センサを提供しようとする
ものである。 (課題を解決するための手段) 本発明の湿度センサは、55〜95モル%のTa2O5
と、5〜45モル%のBaTiO3を主成分とし、この
主成分を100モルとしたときにLi2OおよびLi2
CO3等のLi塩を0.1〜5モルの割合で外配した組
成を有する自己支持型の多孔化焼結体と、その表
面および裏面に形成した電極とを具えることを特
徴とするものである。 (作用) このような本発明による湿度センサにおいて
は、主成分であるTa2O5およびBaTiO3の含有量
を55〜95モル%および5〜45モル%とするが、
Ta2O5を55モル%未満、すなわちBaTiO3を45モ
ル%よりも多くすると、得られる焼結体の気孔径
が大きくなり、その結果として低湿度における抵
抗が高くなる。また、逆にTa2O5が55モル%を越
える場合、すなわちBaTiO3が5モル%未満の場
合には開放気孔率が低下し、高湿度での抵抗が高
くなつてしまう。また、Li塩の含有量を、0.1モ
ル未満とすると、高湿度における抵抗が高くなる
とともに経時安定性も悪化し、また5モルを越え
る場合には低湿度と高湿度との間での抵抗変化量
が小さくなり、実用計測範囲が狭くなつてしま
う。 さらに、本発明によれば、焼結体の機械的強度
が高くなるので、支持基板を用いない自己支持型
とすることができ、部品点数を減らすことができ
るとともに厚さを、後述する実施例のように0.3
mmときわめて薄くすることができるのでシート状
に形成することができ、その結果として応答性が
良好となる。 (実施例) 実施例 1 60モル%のTa2O5と40モル%のBaTiO3とより
成る複合粉体を100モルとするとき、Li2CO3を2
モルの割合で含む複合粉体を得るために、Ta2O5
を0.6モル(約265.1グラム)、BaTiO3を0.4モル
(約93.3グラム)、Li2CO3を0.2モル(約1.5グラム)
それぞれ正確に秤量し、メノウ自動乳鉢により十
分に混合した。この混合粉体にバインダを加えた
後プレス加工して厚さ1mm、直径10mmの円板状に
成形した。通常の処理によつてバインダを消散さ
せた後、1360℃り温度で1時間焼成した。このよ
うにして得られた焼結体に研磨処理を施し、厚さ
0.3mm、直径8.5mmの円板状の焼結体を得た。この
焼結体の両面にRuO2焼付けおよびリード線付け
の処理を施し、一対の電極を設け湿度センサを形
成した。このようにして得られた湿度センサを95
%RH(相対湿度)以上の水蒸気雰囲気に1週間
浸してエージングを行なつて安定化処理を施した
後、湿度特性を電気抵抗の測定により求めた。20
%RH、55%RHおよび95%RH時における抵抗値
はそれぞれ5.1×107Ω、1.8×106Ωおよび1.4×104
Ωであり、低湿度および高湿度間の抵抗変化はほ
ぼ3桁に亘り、大きかつた。 また、この湿度センサを65%RH±10%RH、
25℃±2℃の雰囲気中に1000時間曝した後の抵抗
変化率は+52%と小さかつた。
(Field of Industrial Application) The present invention relates to a humidity sensor used in air conditioners, humidity control systems, hygrometers, etc., and particularly to a ceramic humidity sensor. (Prior Art) Looking at recent trends in humidity sensors as sensing devices, they can be roughly divided into two types: ceramic-based and organic polymer-based. The conditions that such a humidity sensor should meet are listed below. (1) Wide practical measurement humidity range. (2) Good response characteristics. (3) Less hysteresis. (4) Little change over time. (5) Heat and cold resistance, with little deterioration. (6) High mechanical strength. (7) Can be configured into a compact size. (8) Low cost. Organic polymer-based humidity sensors have problems in points (2) and (5) above, while ceramic-based humidity sensors have only problem (4), so currently ceramics are used as the material. Humidity sensors have mainly been developed. It has been revealed that the problem of aging in ceramic humidity sensors is due to the formation of chemically adsorbed OH groups on the oxide surface, and as the amount of these OH groups increases, the resistance value gradually increases. has been done. Therefore, the chemisorbed OH group
It has been proposed to avoid high resistance by removing it by heat treatment at 400°C or higher. For this purpose, a humidity sensor has been developed in which a heating cleaning heater for heat treatment is attached near the sintered body. (Problems to be Solved by the Invention) As described above, a humidity sensor in which a heater is disposed near a sintered body has the disadvantage that its size increases and its power consumption also increases. In recent years, the needs for sensing devices have increased with the diversification of applications, and the demands for improved performance of humidity sensors as well as miniaturization and power saving have increased, but conventional humidity sensors have not been able to adequately meet these demands. There was no answer. Furthermore, since conventional ceramic humidity sensors have low mechanical strength, it is difficult to make them self-supporting, and it is necessary to form them on a substrate. As a result, the number of parts increases, the number of control items increases, and there are drawbacks such as performance fluctuations due to mutual diffusion with substrate components and process complexity. The purpose of the present invention is to maintain the original characteristics of a ceramic humidity sensor, to avoid high resistance due to chemical adsorption of OH groups, to eliminate the need for a heater for heating and cleaning, and to achieve a compact design. It has low power consumption and low resistance change over time, has high mechanical strength, can be self-supporting, yet can be thin, and has a low response. The purpose of this invention is to provide a humidity sensor with excellent performance. (Means for Solving the Problems) The humidity sensor of the present invention contains 55 to 95 mol% Ta 2 O 5
and 5 to 45 mol% BaTiO 3 as the main component, and when this main component is 100 mol, Li 2 O and Li 2
It is characterized by comprising a self-supporting porous sintered body having a composition in which Li salt such as CO 3 is distributed at a ratio of 0.1 to 5 moles, and electrodes formed on the front and back surfaces of the self-supporting porous sintered body. be. (Function) In such a humidity sensor according to the present invention, the content of the main components Ta 2 O 5 and BaTiO 3 is 55 to 95 mol% and 5 to 45 mol%,
When Ta 2 O 5 is less than 55 mol %, that is, BaTiO 3 is more than 45 mol %, the pore size of the obtained sintered body becomes large, and as a result, the resistance at low humidity increases. On the other hand, when Ta 2 O 5 exceeds 55 mol %, that is, when BaTiO 3 is less than 5 mol %, the open porosity decreases and the resistance at high humidity increases. Furthermore, if the Li salt content is less than 0.1 mol, the resistance at high humidity will increase and the stability over time will deteriorate, and if it exceeds 5 mol, the resistance will change between low humidity and high humidity. The amount becomes small, and the practical measurement range becomes narrow. Further, according to the present invention, since the mechanical strength of the sintered body is increased, it can be made into a self-supporting type without using a support substrate, and the number of parts can be reduced. like 0.3
Since it can be made extremely thin (mm), it can be formed into a sheet shape, resulting in good responsiveness. (Example) Example 1 When the composite powder consisting of 60 mol% Ta 2 O 5 and 40 mol % BaTiO 3 is 100 mol, Li 2 CO 3 is 2
To obtain a composite powder containing in molar proportions Ta 2 O 5
0.6 mol (about 265.1 grams), 0.4 mol (about 93.3 grams) of BaTiO 3 , 0.2 mol (about 1.5 grams) of Li 2 CO 3
Each was weighed accurately and thoroughly mixed in an automatic agate mortar. A binder was added to this mixed powder, which was then pressed to form a disk shape with a thickness of 1 mm and a diameter of 10 mm. After dissipating the binder by conventional processing, it was fired at a temperature of 1360° C. for 1 hour. The sintered body thus obtained is polished and its thickness
A disk-shaped sintered body with a diameter of 0.3 mm and a diameter of 8.5 mm was obtained. Both surfaces of this sintered body were subjected to RuO 2 baking and lead wire attachment, and a pair of electrodes were provided to form a humidity sensor. The humidity sensor obtained in this way is 95
After aging and stabilization treatment by immersing the sample in a water vapor atmosphere of %RH (relative humidity) or higher for one week, the humidity characteristics were determined by measuring electrical resistance. 20
The resistance values at %RH, 55%RH and 95%RH are 5.1×10 7 Ω, 1.8×10 6 Ω and 1.4×10 4 respectively.
Ω, and the resistance change between low humidity and high humidity was large by almost three orders of magnitude. You can also use this humidity sensor at 65%RH±10%RH,
After being exposed to an atmosphere at 25°C ± 2°C for 1000 hours, the rate of change in resistance was as small as +52%.

【表】 * 比較例
上に示した第1表は上述したようにして製造し
た湿度センサの特性を示すものであり、試料No.2
が上述した実施例に相当し、*印をつけた試料No.
1,5,6および9は比較例である。No.9を除く
比較例では経時による抵抗変化率が大きく、実用
上問題があるが本発明の湿度センサは経時による
抵抗変化率は小さく、特にTa2O5を75モル%、
BaTiO3を25モル%を含む複合粉体にLi2Oを外割
で4.5モル含む試料8では経時による抵抗変化は
特に小さくなつている。また、比較例No.9のLi2
O含有量は5モルを超えているため、経時による
抵抗変化は小さいが、相対湿度に対する抵抗変化
が約1桁と小さくなつている。この抵抗変化は、
通常101〜107Ωの実用計測範囲内で2桁以上、好
ましくは3桁以上あれば良い。 実施例 2 80モル%のTa2O5および20モル%のBaTiO3
り成る組成の焼結体を造るために、0.8モルの
Ta2O5(約353.6グラム)と、0.2モルのBaTiO3
(約46.6グラム)とを正確に秤量し、メノウ自動
乳鉢によつて十分に混合した。この混合粉体にバ
インダを加え、厚さ1mm、直径10mmの円板状にプ
レス成形し、空気中にて1360℃の温度で1時間一
次焼成した。このようにして得られた多孔化焼結
体より成る中間体に研磨処理を施し、厚さ0.3mm、
直径8.5mmの円板状焼結体を得た。次にこの中間
焼結体を、4.5規定のLi2CO3水溶液を満たした超
音波洗浄槽内に浸漬し、超音波によつて多孔化焼
結体の内部までLi2CO3の水溶液を強制的に含浸
させ、粒子表面に付着させた。次に中間焼結体を
槽から取り出し、空気中で乾燥させた後、空気中
で上記一次焼成湿度よりも低い1250℃の温度で1
時間に亘つて二次焼成した。このような処理を施
した後、焼結体の両面にRuO2を焼き付け、リー
ド線付けなどの処理を施し、一対の電極を設け
た。このようにして形成した湿度センサを95%
RHの水蒸気雰囲気中に1週間曝してエージング
を行なつて安定化処理を施した後、湿度特性を電
気抵抗の測定により求めた。この湿度センサは20
%RH、55%RHおよび95%RHにおいてそれぞれ
1.5×107Ω、2.6×105Ωおよび4.6×103Ωの抵抗値
を示すとともに65%RH±10%RH、25℃±2℃
の雰囲気中に1000時間曝した後の抵抗値の変化率
は僅か+1.4%であつた。 Ta2O5,BaTiO3の組成比、Li水溶液の種類お
よびそのLiイオン濃度を変えながら上述した方法
により製造した湿度センサの組成および特性を第
2表に示す。
[Table] *Comparative example Table 1 shown above shows the characteristics of the humidity sensor manufactured as described above.
corresponds to the example described above, and the sample No. marked with an asterisk.
1, 5, 6 and 9 are comparative examples. Comparative examples other than No. 9 have a large rate of change in resistance over time, which poses a practical problem, but the humidity sensor of the present invention has a small rate of change in resistance over time, especially when using 75 mol% Ta 2 O 5 ,
In sample 8, which contains 4.5 mol of Li 2 O in a composite powder containing 25 mol % of BaTiO 3 , the change in resistance over time is particularly small. In addition, Li 2 of Comparative Example No. 9
Since the O content exceeds 5 moles, the change in resistance over time is small, but the change in resistance with respect to relative humidity is about one digit small. This resistance change is
Generally, it is sufficient if it is two digits or more, preferably three digits or more within the practical measurement range of 10 1 to 10 7 Ω. Example 2 To produce a sintered body with a composition of 80 mol% Ta2O5 and 20 mol% BaTiO3 , 0.8 mol %
Ta 2 O 5 (approximately 353.6 grams) and 0.2 mole BaTiO 3
(approximately 46.6 grams) and thoroughly mixed in an automatic agate mortar. A binder was added to this mixed powder, which was press-molded into a disk shape with a thickness of 1 mm and a diameter of 10 mm, and was primarily fired in air at a temperature of 1360° C. for 1 hour. The intermediate body made of the porous sintered body thus obtained was polished to a thickness of 0.3 mm.
A disc-shaped sintered body with a diameter of 8.5 mm was obtained. Next, this intermediate sintered body is immersed in an ultrasonic cleaning tank filled with a 4.5-normal Li 2 CO 3 aqueous solution, and the Li 2 CO 3 aqueous solution is forced into the inside of the porous sintered body by ultrasonic waves. It was impregnated and attached to the particle surface. Next, the intermediate sintered body was taken out of the tank, dried in the air, and then heated in the air at a temperature of 1250°C, which is lower than the above-mentioned primary firing humidity.
Secondary firing was performed over a period of time. After performing such processing, RuO 2 was baked on both sides of the sintered body, lead wires were attached, and a pair of electrodes were provided. The humidity sensor formed in this way is 95%
After aging and stabilization treatment by exposing it to a RH steam atmosphere for one week, the humidity characteristics were determined by measuring electrical resistance. This humidity sensor has 20
%RH, 55%RH and 95%RH respectively
Showing resistance values of 1.5×10 7 Ω, 2.6×10 5 Ω and 4.6×10 3 Ω, and at 65%RH±10%RH, 25℃±2℃
After being exposed to the atmosphere for 1000 hours, the rate of change in resistance value was only +1.4%. Table 2 shows the composition and characteristics of humidity sensors manufactured by the above method while changing the composition ratio of Ta 2 O 5 and BaTiO 3 , the type of Li aqueous solution, and the Li ion concentration.

【表】 * 比較例
上記第2表中、試料No.17が上述した実施例の湿
度センサであり、*印を付けた試料No.10,14,15
および18は比較例である。 本発明の湿度センサでは、20%RH〜95%RH
の湿度変化に対する抵抗値変化は3〜4桁と大き
いとともに経時による抵抗変化率も41%以下と小
さくなつている。これに対し比較例10および15で
は経時による抵抗変化率がそれぞれ+86%および
+1100%と非常に大きく、また比較例14および18
では経時による抵抗変化率はそれぞれ+59%およ
び−3.0%と小さいが、相対湿度に対する抵抗変
化が1桁と小さく、実用計測範囲が狭くなつてい
る。 (発明の効果) 上述した本発明の湿度センサによれば、Li2
およびLi2CO3等のLi塩をTa2O5およびBaTiO3
加えることによつて、焼結体粒子表面にOH基が
化学吸着されにくくなり、経時により高抵抗化す
ることがなくなる。その結果、加熱クリーニング
用のヒータが不要となり、湿度センサ全体を小
形、軽量とすることができるとともに電力消費量
を低減することができる。さらに、低湿度から高
湿度に亘つて十分広い実用計測範囲が得られるこ
とになる。また、機械的強度が大きいので、基板
を必要としない自己支持型とすることができ、し
たがつて部品点数を減らすことができる。しかも
自己支持型でありながら厚さを薄くすることがで
きるので応答性も良好となる。
[Table] * Comparative example In Table 2 above, sample No. 17 is the humidity sensor of the above-mentioned example, and sample Nos. 10, 14, and 15 marked with an asterisk
and 18 are comparative examples. With the humidity sensor of the present invention, 20%RH to 95%RH
The change in resistance value with respect to changes in humidity is as large as 3 to 4 orders of magnitude, and the rate of change in resistance over time is as small as 41% or less. On the other hand, in Comparative Examples 10 and 15, the resistance change rate over time was extremely large, +86% and +1100%, respectively, and Comparative Examples 14 and 18
In this case, the rate of change in resistance over time is small at +59% and -3.0%, respectively, but the change in resistance with respect to relative humidity is as small as one digit, making the practical measurement range narrow. (Effect of the invention) According to the humidity sensor of the invention described above, Li 2 O
By adding a Li salt such as Li 2 CO 3 to Ta 2 O 5 and BaTiO 3 , OH groups are less likely to be chemically adsorbed on the surface of the sintered particles, and resistance does not increase over time. As a result, a heater for heating and cleaning becomes unnecessary, and the entire humidity sensor can be made smaller and lighter, and power consumption can be reduced. Furthermore, a sufficiently wide practical measurement range from low humidity to high humidity can be obtained. Furthermore, since the device has high mechanical strength, it can be made into a self-supporting type that does not require a board, and the number of parts can therefore be reduced. Moreover, since the thickness can be made thin while being a self-supporting type, responsiveness is also improved.

Claims (1)

【特許請求の範囲】[Claims] 1 55〜95モル%のTa2O5と、5〜45モル%の
RaTiO3を主成分とし、この主成分を100モルと
したときにLi2OおよびLi2CO3等のLi塩を0.1〜5
モルの割合で外配した組成を有する自己支持型の
多孔化焼結体と、その表面および裏面に形成した
電極とを具えることを特徴とする湿度センサ。
1 55-95 mol% Ta2O5 and 5-45 mol%
The main component is RaTiO 3 , and when this main component is 100 mol, Li salts such as Li 2 O and Li 2 CO 3 are added in an amount of 0.1 to 5 mol.
1. A humidity sensor comprising: a self-supporting porous sintered body having a composition arranged in a molar ratio; and electrodes formed on the front and back surfaces of the self-supporting porous sintered body.
JP61234508A 1986-10-03 1986-10-03 Humidity sensor and manufacture of the same Granted JPS6390101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234508A JPS6390101A (en) 1986-10-03 1986-10-03 Humidity sensor and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234508A JPS6390101A (en) 1986-10-03 1986-10-03 Humidity sensor and manufacture of the same

Publications (2)

Publication Number Publication Date
JPS6390101A JPS6390101A (en) 1988-04-21
JPH0530281B2 true JPH0530281B2 (en) 1993-05-07

Family

ID=16972124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234508A Granted JPS6390101A (en) 1986-10-03 1986-10-03 Humidity sensor and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS6390101A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988362B2 (en) * 2012-07-30 2016-09-07 フィガロ技研株式会社 Gas sensor aging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867795A (en) * 1971-12-18 1973-09-17
JPS57210602A (en) * 1981-06-19 1982-12-24 Omron Tateisi Electronics Co Moisture sensitive element
JPS5967601A (en) * 1982-10-09 1984-04-17 富山県 Moisture sensitive element
JPS60116101A (en) * 1983-11-29 1985-06-22 株式会社東芝 Moisture sensitive element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867795A (en) * 1971-12-18 1973-09-17
JPS57210602A (en) * 1981-06-19 1982-12-24 Omron Tateisi Electronics Co Moisture sensitive element
JPS5967601A (en) * 1982-10-09 1984-04-17 富山県 Moisture sensitive element
JPS60116101A (en) * 1983-11-29 1985-06-22 株式会社東芝 Moisture sensitive element

Also Published As

Publication number Publication date
JPS6390101A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
JPH0530281B2 (en)
JPH0244390B2 (en) KANSHITSUZAIRYO
EP0110387B1 (en) Humidity-sensitive element and process for producing the same
JPH0444691B2 (en)
JPH02252202A (en) Humidity sensor element
JPS61147138A (en) Moisture sensitive material
JPH02209702A (en) Water-resistant moisture-sensitive device
JPS6350841B2 (en)
JPS6139614B2 (en)
JPS58212101A (en) Moisture sensor
JPH04238260A (en) Humidity-sensitive element
JPH052098B2 (en)
JPH0552793A (en) Humidity sensitive element
JPS6331081B2 (en)
JPS61147143A (en) Production of moisture sensitive material
JPH0231842B2 (en) KANSHITSUZAIRYO
JPH052100B2 (en)
JPS6313146B2 (en)
JPS5999702A (en) Moisture sensitive element
JPH04359141A (en) Humidity-sensitive element
JPH05142183A (en) Moisture sensitive element
JPS6235058B2 (en)
JPS6128936B2 (en)
JPS59231802A (en) Moisture sensor
JPS61147142A (en) Moisture sensitive material