JPH0244390B2 - KANSHITSUZAIRYO - Google Patents

KANSHITSUZAIRYO

Info

Publication number
JPH0244390B2
JPH0244390B2 JP58006882A JP688283A JPH0244390B2 JP H0244390 B2 JPH0244390 B2 JP H0244390B2 JP 58006882 A JP58006882 A JP 58006882A JP 688283 A JP688283 A JP 688283A JP H0244390 B2 JPH0244390 B2 JP H0244390B2
Authority
JP
Japan
Prior art keywords
moisture
alkali metal
humidity
sensitive material
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58006882A
Other languages
Japanese (ja)
Other versions
JPS59132352A (en
Inventor
Hidefusa Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58006882A priority Critical patent/JPH0244390B2/en
Publication of JPS59132352A publication Critical patent/JPS59132352A/en
Publication of JPH0244390B2 publication Critical patent/JPH0244390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 この発明は、電気抵抗値の変化により雰囲気の
相対湿度を検知する湿度センサ用の感湿材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moisture-sensitive material for a humidity sensor that detects the relative humidity of an atmosphere based on changes in electrical resistance.

昨今では、前記のような機能を有する感湿材料
としては雰囲気に対して物理的、化学的に安定で
あり強度も強い金属酸化物系セラミツクが最も多
く用いられてきた。
Recently, metal oxide ceramics, which are physically and chemically stable in the atmosphere and have strong strength, have been most often used as moisture-sensitive materials having the above-mentioned functions.

このような従来のセラミツクからなるものの感
湿メカニズムは、水蒸気が多孔質なセラミツク表
面で解離して生じた水素イオン(H+)の濃度が、
周囲の相対湿度によつて異なるため、感湿部の電
気抵抗値が変化することを利用したものである。
The moisture sensing mechanism of conventional ceramics is that the concentration of hydrogen ions (H + ) generated when water vapor dissociates on the porous ceramic surface increases.
This method takes advantage of the fact that the electrical resistance value of the humidity sensing section varies depending on the surrounding relative humidity.

そして、下記の刊行物にはこのH+は、相対湿
度が低い場合には表面に生成している水酸基上を
ホツピングにより伝導し、相対湿度が高い場合に
は、水和したH+が水溶液中と同様に水膜を伝導
すると発表されている(刊行物すなわち雑誌名:
J.Phys.Chem.、Vol72、第3662頁、1968年発行)。
According to the publication below, when the relative humidity is low, this H + is conducted by hopping on the hydroxyl groups generated on the surface, and when the relative humidity is high, the hydrated H + is transferred to the aqueous solution. It has been announced that the film conducts water in the same way as (Publication, i.e., magazine name:
J.Phys.Chem., Vol. 72, p. 3662, published in 1968).

一方、湿度センサを空調機による自動湿度コン
トロール等の用途に使用する場合、駆動および検
知回路上の使い易さの点で、より低い電気抵抗値
を有する湿度センサが要望されている。しかし、
上記のようなH+による電気伝導を利用するもの
であつて、しかもある程度良好な感度を有するセ
ンサである限り、その電気抵抗値には、下限値
(概ね相対湿度50%でKΩ程度、90%で20KΩ程
度)があり、電気抵抗値がより低く使い易いセン
サは得られ難いのが現状であつた。
On the other hand, when a humidity sensor is used for applications such as automatic humidity control by an air conditioner, a humidity sensor having a lower electrical resistance value is desired from the viewpoint of ease of use in driving and detection circuits. but,
As long as the sensor utilizes electrical conduction due to H + as described above and has a certain degree of sensitivity, its electrical resistance value must have a lower limit (approximately KΩ at 50% relative humidity, 90% (approximately 20KΩ), and it is currently difficult to obtain a sensor with a lower electrical resistance value that is easy to use.

さらに、H+による電気伝導を利用する従来の
大部分のセラミツク感湿材料では、空気中での使
用または放置によつて水(湿気)の吸脱着がくり
返されると、OH基が表面に安定化化学吸着され
てしまうために、センサの抵抗値が経時的に大き
く変化してしまうので、これを初期特性にまで復
帰させるには付属ヒーターで500〜600℃以上に加
熱することが避けられなかつた。
Furthermore, in most conventional ceramic moisture-sensitive materials that utilize electrical conduction through H Due to chemical adsorption, the resistance value of the sensor changes greatly over time, so in order to restore it to its initial characteristics, it is necessary to heat it to a temperature of 500 to 600 degrees Celsius or higher using the attached heater. Ta.

この発明は、従来の感湿材料の主流であるセラ
ミツクが有する上記のような欠点を除去するため
になされたもので、有機けい素化合物、およびア
ルカリ金属化合物を含有する組成物の焼成残留物
を用いることにより、電気抵抗が低く、経時劣化
防止用の加熱装置(ヒーター)を必要とせず、低
温焼成で作製できる感湿材料を得ようとするもの
である。
This invention was made in order to eliminate the above-mentioned drawbacks of ceramics, which are the mainstream of conventional moisture-sensitive materials. By using this method, we aim to obtain a moisture-sensitive material that has low electrical resistance, does not require a heating device (heater) to prevent deterioration over time, and can be produced by low-temperature firing.

この発明の有機けい素化合物重合体としては、
例えばメチルフエニルシリコーン、メチルシリコ
ーンおよびエポキシ樹脂変性メチルシリコーンな
どのオルガノポリシロキサンの初期重合物をトル
エンおよびキシレンなどの溶剤に溶解した市販の
シリコーンワニスを用いる。
The organosilicon compound polymer of this invention includes:
For example, a commercially available silicone varnish prepared by dissolving an initial polymer of organopolysiloxane such as methylphenyl silicone, methyl silicone, and epoxy resin-modified methyl silicone in a solvent such as toluene and xylene is used.

又、アルカリ金属化合物としては、アルカリ金
属の非常に広範囲の塩類が用いられるが、焼成物
をガラス質化する場合はアルカリ金属の酸化物、
過酸化物、酸素酸塩(例えば炭酸塩、硝酸塩およ
び硫酸塩など)、並びに水酸化物を用いる。
In addition, as the alkali metal compound, a very wide range of alkali metal salts can be used, but when making the fired product vitrified, alkali metal oxides,
Peroxides, oxysalts such as carbonates, nitrates and sulfates, and hydroxides are used.

このようにして成るこの発明組成物を焼成する
ことにより、有機けい素化合物重合体の焼成残留
物であるX線的に非晶質なSio2によつて、アルカ
リ金属化合物を被覆、結合し、アルカリ金属化合
物の水和性と有機けい素化合物重合体のもつ良好
な低表面エネルギー性、即ち溌水性を適合させる
のである。
By firing the composition of the present invention formed in this way, the alkali metal compound is coated and bonded with X-ray amorphous Sio 2 , which is the firing residue of the organosilicon compound polymer, The hydration property of the alkali metal compound and the good low surface energy property, ie, water repellency, of the organosilicon compound polymer are matched.

なお、この発明の組成物を感湿材料として用い
る場合、皮膜の造膜効果、乾燥および硬化促進、
亀裂防止、並びに下地基板への接着性向上のため
適当な添加剤を加えるのが望ましい。
In addition, when the composition of this invention is used as a moisture-sensitive material, the film-forming effect, drying and curing acceleration,
It is desirable to add suitable additives to prevent cracking and improve adhesion to the underlying substrate.

以下実施例を示すことによりこの発明を詳細に
説明するが、これによりこの発明を限定するもの
ではない。
EXAMPLES This invention will be explained in detail by showing examples below, but the invention is not limited thereto.

実施例 1 アルミナ絶縁基板上に、Pt−Pd合金系ペース
トにて0.2mm間隔で10対のくし形状電極をスクリ
ーン印刷し、Ptリード線を取り付け後焼付けを
行なつた。この上に、下記組成例1の組成物にシ
ンナーを加えて混練後、混練物を浸漬処理によ
り、約50μmの厚さに塗布し、80℃10分間の予備
焼成後、500℃で30分間焼成し、この発明の感湿
材料を用いた湿度センサを作製した。
Example 1 Ten pairs of comb-shaped electrodes were screen printed on an alumina insulating substrate using a Pt-Pd alloy paste at intervals of 0.2 mm, and baked after attaching Pt lead wires. On top of this, after adding thinner to the composition of Composition Example 1 below and kneading, the kneaded product was applied to a thickness of about 50 μm by dipping treatment, and after pre-baking at 80°C for 10 minutes, it was baked at 500°C for 30 minutes. Then, a humidity sensor using the moisture-sensitive material of the present invention was fabricated.

第1図はこの発明の一実施例の感湿材料を用い
た湿度センサの湿視図であり、図において1は基
板、2は電極、3は感湿皮膜、4はリード線であ
る。
FIG. 1 is a humidity view of a humidity sensor using a moisture-sensitive material according to an embodiment of the present invention. In the figure, 1 is a substrate, 2 is an electrode, 3 is a moisture-sensitive film, and 4 is a lead wire.

組成例 1 有機けい素化合物重合体:メチルフエニルシリコ
ーン初期重合物 55.0重量% アルカリ金属化合物:LiCl 16.2 〃 添加剤:SIO2 14.4 〃 Mg3(Si4O10)(OH)2 11.3 〃 硬化剤(金属石けん) 3.1 〃 上記のようにして作成したこの発明による感湿
材料を用いた湿度センサと、感湿部に1250℃で4
時間焼結したAl2O3−MgO−ZnO系セラミツクを
用い、他の構成材は第1図の場合と同一のものを
使用した従来タイプのセラミツク湿度センサを作
製し、交流1V、50Hzの印加電圧における上記両
湿度センサの相対湿度〔%〕変化による電気抵抗
値〔Ω〕変化、即ち感湿特性の経時変化を比較測
定し、第2図に示す結果を得た。
Composition example 1 Organosilicon compound polymer: methylphenyl silicone initial polymer 55.0% by weight Alkali metal compound: LiCl 16.2 〃 Additive: SIO 2 14.4 〃 Mg 3 (Si 4 O 10 ) (OH) 2 11.3 〃 Hardening agent (Metal soap) 3.1 〃 A humidity sensor using the moisture-sensitive material according to the present invention prepared as described above, and
A conventional ceramic humidity sensor was fabricated using time-sintered Al 2 O 3 -MgO-ZnO ceramic and the other constituent materials were the same as those shown in Figure 1. The change in electrical resistance value [Ω] due to the change in relative humidity [%] of both humidity sensors in terms of voltage, that is, the change in humidity sensitivity characteristics over time, was compared and measured, and the results shown in FIG. 2 were obtained.

図において、曲線A1,A2はそれぞれ従来タ
イプのものの初期および6ケ月間室内放置後の感
室特性を示し、曲線B1,B2はそれぞれこの発
明一実施例の感湿材料を用いたものの初期および
6か月室内放置後の感湿特性である。
In the figure, curves A1 and A2 indicate the initial and six-month sensitive room characteristics of a conventional type, respectively, and curves B1 and B2 indicate the initial and six-month sensitivity characteristics of a conventional type, respectively, using a moisture-sensitive material according to an embodiment of the present invention. Moisture sensitivity characteristics after being left indoors for a month.

この図から明らかなように、従来のH+伝導タ
イプのセラミツクを感湿材料に用いた湿度センサ
は、6か月間放置後には、抵抗値が初期と比べて
2桁ほど大となり、感湿機能もかなり低下してし
まつたのに対して、この発明の一実施例の感湿材
料を用いた湿度センサは、6か月間放置後にはわ
ずかに抵抗値が小となつたのみであり、感湿機能
の低下も見られなかつた。また、初期の感湿特性
曲線A1およびB1を比較するとわかるように、
この発明のものの方が従来のものよりも抵抗値が
1桁以上小さく、たとえば相対湿度50%では90K
Ω、90%では8KΩであるため、回路上使い易い
ものである。
As is clear from this figure, after being left unused for 6 months, the resistance value of a humidity sensor that uses conventional H + conduction type ceramic as the moisture-sensitive material increases by two orders of magnitude compared to the initial value, and the humidity sensor is unable to function properly. On the other hand, the humidity sensor using the moisture-sensitive material of one embodiment of the present invention showed only a slight decrease in resistance value after being left for 6 months, indicating that the humidity sensor had no moisture-sensing function. No decrease was observed. Furthermore, as can be seen by comparing the initial moisture sensitivity characteristic curves A1 and B1,
The resistance value of the product of this invention is more than one order of magnitude lower than that of the conventional product, for example, 90K at a relative humidity of 50%.
Ω, 8KΩ at 90%, making it easy to use in terms of circuitry.

この発明の一実施例の感湿材料の抵抗値が低い
理由は、伝導形成がH+伝導ではなく、吸着水の
水和によるアルカリ金属イオン(この場合はL+ i
による伝導であるために、各相対湿度において感
湿材料表面に吸着した水の中をこのイオンが動く
ことができるためと考えられる。
The reason why the resistance value of the moisture-sensitive material of one embodiment of this invention is low is that the conductive formation is not H + conduction, but alkali metal ions due to hydration of adsorbed water (L + i in this case).
This is thought to be due to the fact that these ions can move through the water adsorbed on the surface of the moisture-sensitive material at each relative humidity.

実施例 2 下記組成例2の組成物にシンナーを加えて撹拌
機にて混練後、混練物を実施例1で用いたのと同
様に電極を形成したアルミナ基板上にハケ塗りに
て約40μmの厚さに塗布した。ついで、80℃、20
分間の予備焼成後、820℃で2時間焼成したとこ
ろ、感湿部は透明なガラス質の皮膜となつた。こ
れにリード線を取り付けて、番1図と同様の湿度
センサとした。
Example 2 After adding thinner to the composition of Composition Example 2 below and kneading it with a stirrer, the kneaded product was brushed onto an alumina substrate on which electrodes were formed in the same manner as used in Example 1 to a thickness of about 40 μm. It was applied thickly. Then, 80℃, 20
After preliminarily baking for 1 minute, baking was carried out at 820°C for 2 hours, and the moisture sensitive area became a transparent glassy film. A lead wire was attached to this to create a humidity sensor similar to that shown in Figure 1.

組成例 2 有機けい素化合物重合体:メチルフエニルシリコ
ーン初期重合物をキシレンに溶解したワニス
55.9重量% アルカリ金属化合物:Na2CO3 22.0 〃 添加物:SiO2 8.9 〃 TiO2 7.7 〃 Mg3(Si4O10)(OH)2 5.5 〃 このようにして作成したこの発明の他の実施例
による感湿材料を用いた湿度センサと、感湿材料
として1250℃で5時間焼結したCr2O3−CaO系セ
ラミツクを用い、他の構成材料は第1図の場合と
同一のものを使用した従来タイプのセラミツク湿
度センサを作製し、感湿特性の経時変化を実施例
1の場合と同様に測定した。この場合、経時劣化
を促進するために、両センサを60℃、相対湿度95
%の恒温恒湿槽中に300時間放置した後の感湿特
性を測定して初期特性と比較した。その結果を第
3図に示す。第3図において、曲線C1,C2
は、それぞれ従来タイプのものの初期および劣化
促進テスト後の特性を示し、曲線D1,D2は、
それぞれこの発明の他の実施例による感湿材料を
用いたものの初期および劣化促進テスト後の特性
である。
Composition Example 2 Organosilicon compound polymer: varnish prepared by dissolving methylphenyl silicone initial polymer in xylene
55.9% by weight Alkali metal compound: Na2CO 3 22.0 〃 Additives: SiO 2 8.9 〃 TiO 2 7.7 〃 Mg 3 (Si 4 O 10 ) (OH) 2 5.5 〃 According to other embodiments of this invention prepared in this way A humidity sensor using a moisture-sensitive material, and a Cr 2 O 3 -CaO ceramic sintered at 1250℃ for 5 hours as the moisture-sensitive material, and the other constituent materials were the same as those shown in Figure 1. A conventional type ceramic humidity sensor was manufactured, and the change in humidity sensitivity characteristics over time was measured in the same manner as in Example 1. In this case, both sensors were heated at 60°C and 95% relative humidity to accelerate aging.
The moisture sensitivity characteristics after being left in a constant temperature and humidity chamber for 300 hours were measured and compared with the initial characteristics. The results are shown in FIG. In Figure 3, curves C1 and C2
shows the characteristics of the conventional type after the initial and accelerated deterioration tests, respectively, and the curves D1 and D2 are
These are the characteristics after the initial and accelerated deterioration tests of moisture-sensitive materials according to other embodiments of the present invention, respectively.

第3図から、この発明の他の実施例による感湿
材料を用いたものは、従来タイプのものに比べて
初期特性において約1桁抵抗値が低く、また従来
タイプのものは、劣化促進テスト後には抵抗値が
2桁ほど大となつてしまつたのに対して、この発
明の他の実施例による感湿材料を用いたものは、
テスト後も抵抗値がやや小となつたのみであるこ
とが明らかである。なお、劣化促進テストにおい
て、従来タイプのものの感湿特性が大きく変化し
た理由は、やはりOH基の強い化学吸着と吸着水
の毛細管凝縮にともなうセラミツクの微細構造中
における粒子の体積膨張による細孔の閉塞が主で
あると推察される。
From FIG. 3, it can be seen that the resistance value of the moisture-sensitive material according to another embodiment of the present invention is about one order of magnitude lower in initial characteristics than that of the conventional type, and that the conventional type has a resistance value of Later on, the resistance value increased by about two orders of magnitude, but in the case of using a moisture-sensitive material according to another embodiment of the present invention,
It is clear that the resistance value only became slightly smaller after the test. In addition, the reason why the moisture sensitivity characteristics of the conventional type changed significantly in the accelerated deterioration test was due to strong chemical adsorption of OH groups and the expansion of pores due to the volume expansion of particles in the ceramic microstructure due to capillary condensation of adsorbed water. It is assumed that occlusion is the main cause.

また、この発明の他の実施例による感湿材料で
は、この場合も水和したN+ aがガラス質皮膜中を
移動するという伝導形成をとるものと考えられ
る。
In addition, in the moisture-sensitive material according to another embodiment of the present invention, conduction formation is considered to occur in which hydrated N + a moves in the glassy film.

実施例 3 下記組成例3〜5の組成物を用いて、実施例
1、2と同様にして第1図のような構成によるこ
の発明のさらに他の実施例による感湿材料を用い
た湿度センサをそれぞれ作製して、感湿特性の経
時変化を調べた。その結果、実施例1および2の
場合と同様に、この発明のさらに他の実施例によ
る感湿材料を用いた湿度センサは、OH基の固着
による感湿特性の経時変化がほとんどないもので
あることが判明した。
Example 3 Using the compositions of Composition Examples 3 to 5 below, a humidity sensor using a moisture-sensitive material according to still another example of the present invention having the configuration as shown in FIG. 1 in the same manner as Examples 1 and 2. were prepared and the changes in moisture sensitivity characteristics over time were investigated. As a result, as in Examples 1 and 2, humidity sensors using moisture-sensitive materials according to still other embodiments of the present invention show almost no change in moisture-sensing characteristics over time due to the fixation of OH groups. It has been found.

組成例 3 有機けい素化合物重合体:メチルシリコーン初期
重合物 38.0重量% アルカリ金属化合物:Na2NO3 22.5 〃 添加剤SiO2 17.0 〃 Al2O3 9.6 〃 マイカ 9.4 〃 硬化剤(金属石けん、アミン) 3.5 〃 組成例 4 有機けい素化合物重合体:エポキシ樹脂変性メチ
ルシリコーン初期重合物 46.1重量% アルカリ金属化合物:K2O 20.6 〃 添加剤:Al2O3 16.1 〃 TiO2 9.4 〃 ベントナイト 5.3 〃 硬化剤 2.5 〃 組成例 5 有機けい素化合物重合体:メチルフエニルシリコ
ーン初期重合物をトルエンとキシレンの混合液
に溶解したワニス 74.3重量% アルカリ金属化合物:Li2CO3 10.2 〃 添加剤:SiO2 7.1 〃 MgO 6.0 〃 CaO 2.5 〃 上記実施例により示さた湿度センサはそれぞれ
優れた感湿特性を有するが、実施例1と同様の湿
度センサを作製し、この発明の感湿特性の主組成
物である有機けい素化合物重合体とアルカリ金属
化合物の最適な組成を調べたところ、有機けい素
化合物重合体は全出発原料中の10〜85重量%の範
囲であるのが望ましい。10重量%未満の場合に
は、アルカリ金属加合物および添加剤の粒子を十
分に被覆結合できないため、耐水性が悪くなり、
85重量%を越える場合には、焼成の際に下地基板
との接着性が不良になり、感湿材料として実用に
供しないのである。
Composition Example 3 Organosilicon compound polymer: methyl silicone initial polymer 38.0% by weight Alkali metal compound: Na 2 NO 3 22.5 〃 Additive SiO 2 17.0 〃 Al 2 O 3 9.6 〃 Mica 9.4 〃 Hardening agent (metallic soap, amine) ) 3.5 〃 Composition example 4 Organosilicon compound polymer: Epoxy resin modified methyl silicone initial polymer 46.1% by weight Alkali metal compound: K 2 O 20.6 〃 Additive: Al 2 O 3 16.1 〃 TiO 2 9.4 〃 Bentonite 5.3 〃 Curing Agent 2.5 〃 Composition example 5 Organosilicon compound polymer: Varnish made by dissolving methylphenyl silicone initial polymer in a mixture of toluene and xylene 74.3% by weight Alkali metal compound: Li 2 CO 3 10.2 〃 Additive: SiO 2 7.1 〃 MgO 6.0 〃 CaO 2.5 〃 The humidity sensors shown in the above examples each have excellent moisture-sensitive characteristics, but a humidity sensor similar to that of Example 1 was prepared and the main composition of the present invention has moisture-sensitive characteristics. An investigation into the optimal composition of the organosilicon compound polymer and the alkali metal compound revealed that the organosilicon compound polymer desirably ranges from 10 to 85% by weight based on the total starting materials. If it is less than 10% by weight, the particles of the alkali metal additive and additive cannot be sufficiently coated and bonded, resulting in poor water resistance.
If the content exceeds 85% by weight, the adhesion to the base substrate during firing will be poor, making it unusable as a moisture-sensitive material.

また、有機けい素化合物重合体、アルカリ金属
および添加剤の種類を各種変更した場合も同様の
理由により有機けい素化合物重合体は、ほぼ上記
の組成範囲内であるのが望ましい。
Furthermore, even when the types of the organosilicon compound polymer, alkali metal, and additives are variously changed, it is desirable that the organosilicon compound polymer be approximately within the above composition range for the same reason.

次に、アルカリ金属化合物重合体の場合、相対
湿度60%の雰囲気中でアルカリ金属化合物の組成
を変化させた感湿材料の電気抵抗値〔Ω〕とアル
カリ金属化合物の組成比の関係を調べたところ、
第4図のような特性になつたことからわかるよう
に、アルカリ金属化合物は、全出発原料中の3〜
50重量%の範囲であるのが望ましい。3重量%未
満の場合には、アルカリイオン伝導の効果が小さ
いため、抵抗値の低減化はほとんど成されず、50
重量%を越える場合には、耐水性が悪くなり、感
湿特性の経時変化が大となつて実用に供しないの
である。
Next, in the case of alkali metal compound polymers, we investigated the relationship between the electrical resistance value [Ω] and the composition ratio of alkali metal compounds of moisture-sensitive materials with varying alkali metal compound compositions in an atmosphere with a relative humidity of 60%. However,
As can be seen from the characteristics shown in Figure 4, alkali metal compounds account for 3 to 30% of all starting materials.
A range of 50% by weight is desirable. If it is less than 3% by weight, the effect of alkali ion conduction is small, so the resistance value is hardly reduced, and 50
If it exceeds % by weight, the water resistance deteriorates and the moisture sensitivity changes over time so much that it cannot be put to practical use.

また、アルカリ金属化合物、有機けい素化合物
重合体および添加剤のいずれの種類を変更しても
上記と同様の理由によりアルカリ金属化合物は上
記の組成範囲内であるのが望ましい。
Furthermore, regardless of the type of alkali metal compound, organosilicon compound polymer, or additive, it is desirable that the alkali metal compound be within the above composition range for the same reason as above.

次に、この発明の感湿材料を用いて湿度センサ
を作製する時の焼成温度と、得られた湿度センサ
の感湿特性を調べるため、実施例2により得られ
た湿度センサ、および焼成温度を400℃、500℃、
600℃とし、他は実施例2と全く同様にして得ら
れた湿度センサを作製し、各湿度センサを1年間
室内放置後の感湿特性の変化を測定した。
Next, in order to investigate the firing temperature when producing a humidity sensor using the humidity sensitive material of this invention and the humidity sensitivity characteristics of the obtained humidity sensor, the humidity sensor obtained in Example 2 and the baking temperature were 400℃, 500℃,
Humidity sensors were produced in the same manner as in Example 2 except that the temperature was 600° C., and changes in humidity sensitivity characteristics were measured after each humidity sensor was left indoors for one year.

なお、400℃〜600℃で焼成した湿度センサの感
質部はガラス質にならず白色の多孔質皮膜とな
り、820℃で焼成したものはガラス質化していた。
Note that the sensitive part of the humidity sensor fired at 400°C to 600°C did not become glassy, but formed a white porous film, and that of the humidity sensor fired at 820°C became vitrified.

第5図は400℃〜600℃で焼成した湿度センサの
感湿特性の変化であり、図において、曲線E1は
初期の感湿特性、E2は1年後の感湿特性であ
る。これに対して、実施例2で作製したガラス質
化したものは、第6図のような感湿特性を示し
た。
FIG. 5 shows the changes in the humidity sensitivity characteristics of the humidity sensor fired at 400° C. to 600° C. In the figure, the curve E1 is the initial humidity sensitivity characteristic, and the curve E2 is the humidity sensitivity characteristic one year later. On the other hand, the vitrified material produced in Example 2 exhibited moisture sensitivity characteristics as shown in FIG.

第6図において、曲線F1は初期の感湿特性、
F2は1年後の感湿特性である。第5図と第6図
を比較すると、ガラス質化したものの方が感湿特
性の経時変化がより小さいことがわかる。
In FIG. 6, the curve F1 represents the initial moisture sensitivity characteristic;
F2 is the moisture sensitivity characteristic after one year. Comparing FIG. 5 and FIG. 6, it can be seen that the vitrified material shows smaller changes in moisture sensitivity characteristics over time.

さらに、ガラス質化することにより、応答速度
が速くなり、感湿材料表面に結露した場合にも抵
抗値が変動しにくい等の特長がある。
Furthermore, the vitrification increases the response speed and makes it difficult for the resistance value to fluctuate even when dew condenses on the surface of the moisture-sensitive material.

ただし、第5図のガラス化しないものについて
も、1年後の変化は、相対湿度指示値で10%以内
の誤差であり、しかもこの変化はほほぼ飽和して
いると見られるため、実用に十分供しうるもので
ある。
However, even for those that do not vitrify in Figure 5, the change after one year is within a 10% error in the relative humidity indicated value, and this change appears to be almost saturated, so it is not practical. It is enough to provide.

上記の結果をもとに、この発明の感湿材料がガ
ラス質化する条件について調べたところ、アルカ
リ金属化合物の組成比や焼成後の冷却条件等、他
の因子が複雑に関与するため把握しきれないとこ
ろがあるが、少なくとも、使用するアルカリ金属
化合物は、アルカリ金属の酸化物(過酸化物も含
む)、または酸素酸塩(炭素塩、硝酸塩、硫酸塩
など)もしくは水酸化物であり、焼成温度は700
℃以上であることがわかつた。そして、この条件
によつて、各種のガラス質皮膜を形成し、その感
湿特性と経時変化について調べたところ、いずれ
も第6図の場合と同様に経時変化が小さいもので
あることが判明した。
Based on the above results, we investigated the conditions under which the moisture-sensitive material of this invention becomes vitrified, and found that other factors such as the composition ratio of the alkali metal compound and the cooling conditions after firing are involved in a complex manner. Although there are some limitations, at least the alkali metal compound used is an oxide (including peroxide), oxyacid (carbonate, nitrate, sulfate, etc.) or hydroxide of the alkali metal. temperature is 700
It was found that the temperature was above ℃. Various types of glassy films were formed under these conditions, and their moisture sensitivity and changes over time were investigated, and it was found that all changes over time were small, as in the case shown in Figure 6. .

ガラス質化した場合に、抵抗値が低く、かつ良
好な感湿機能を有する理由については、現在のと
ころ明らかになつていないが、微細なクラシツク
および可動なアルカリ金属イオンの存在とアルカ
リイオンの偏析とが関係していると推察してい
る。そして、この場合、ガラス質焼成物中の重要
な成分の1つであるSiO2が、出発原料である有
機けい素化合物重合体の焼成分解残留物によつて
充当されていることも感湿機能の発現に何らかの
影響を及ぼしているものと考えられる。
The reason why the resistance value is low and the moisture sensing function is good when vitrified is not clear at present, but it is due to the existence of fine classical and mobile alkali metal ions and the segregation of alkali ions. I suspect that it is related. In this case, the fact that SiO 2 , which is one of the important components in the glassy fired product, is occupied by the firing decomposition residue of the organosilicon compound polymer, which is the starting material, also contributes to the moisture-sensing function. This is thought to have some influence on the expression of

以上説明したとうり、この発明は、有機けい素
化合物およびアルカリ金属化合物を含有する組成
物の焼成残留物を用いることにより、電気抵抗が
低く、経時劣化防止用の加熱装置(ヒーター)を
必要とせず、低温焼成で作製できる感湿材料を得
ることができる。
As explained above, the present invention uses the firing residue of a composition containing an organosilicon compound and an alkali metal compound, which has low electrical resistance and does not require a heating device (heater) to prevent deterioration over time. First, it is possible to obtain a moisture-sensitive material that can be produced by low-temperature firing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による一実施例の感湿材料を
用いた湿度センサの斜視図、第2図および第3図
はこの発明の実施例の感湿材料を用いた湿度セン
サと従来の湿度センサを比較する感湿特性図、第
4図はこの発明の実施例の感湿材料を用いた湿度
センサのアルカリ金属化合物組成比による電気抵
抗値変化図、第5図および第6図はこの発明の実
施例の感湿材料を用いた湿度センサの感湿特性図
である。 図において、1は基板、2は電極、3は感湿
部、4はリード線、A1,A2,C1,C2は比
較従来の湿度センサの特性、B1,B2,D1,
D2,E1,E2,F1,F2はこの発明の実施
例の感湿材料を用いた湿度センサの特性を示す。
FIG. 1 is a perspective view of a humidity sensor using a moisture-sensitive material according to an embodiment of the present invention, and FIGS. 2 and 3 show a humidity sensor using a moisture-sensitive material according to an embodiment of the present invention and a conventional humidity sensor. FIG. 4 is a diagram showing the change in electrical resistance value depending on the alkali metal compound composition ratio of a humidity sensor using the humidity-sensitive material of the embodiment of the present invention, and FIGS. FIG. 3 is a diagram of humidity sensitivity characteristics of a humidity sensor using a humidity sensitive material of an example. In the figure, 1 is a substrate, 2 is an electrode, 3 is a humidity sensing part, 4 is a lead wire, A1, A2, C1, C2 are characteristics of a comparison conventional humidity sensor, B1, B2, D1,
D2, E1, E2, F1, and F2 indicate the characteristics of the humidity sensor using the moisture-sensitive material of the embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 有機けい素化合物重合体、およびアルカリ金
属化合物を含有する組成物の焼成残留物から成る
感湿材料。 2 有機けい素化合物重合体を10〜85重量%、お
よびアルカリ金属化合物を3〜50重量%含有する
組成物の焼成残留物から成る特許請求の範囲第1
項記載の感湿材料。 3 アルカリ金属化合物がアルカリ金属の酸化
物、酸素酸塩、および水酸化物の内の少なくとも
一種であつて、ガラス質である特許請求の範囲第
1項又は第2項記載の感湿材料。
[Claims] 1. A moisture-sensitive material comprising a firing residue of a composition containing an organosilicon compound polymer and an alkali metal compound. 2 Claim 1 consisting of a firing residue of a composition containing 10 to 85% by weight of an organosilicon compound polymer and 3 to 50% by weight of an alkali metal compound
Moisture-sensitive materials as described in section. 3. The moisture-sensitive material according to claim 1 or 2, wherein the alkali metal compound is at least one of alkali metal oxides, oxyacid salts, and hydroxides, and is glassy.
JP58006882A 1983-01-19 1983-01-19 KANSHITSUZAIRYO Expired - Lifetime JPH0244390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006882A JPH0244390B2 (en) 1983-01-19 1983-01-19 KANSHITSUZAIRYO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006882A JPH0244390B2 (en) 1983-01-19 1983-01-19 KANSHITSUZAIRYO

Publications (2)

Publication Number Publication Date
JPS59132352A JPS59132352A (en) 1984-07-30
JPH0244390B2 true JPH0244390B2 (en) 1990-10-03

Family

ID=11650600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006882A Expired - Lifetime JPH0244390B2 (en) 1983-01-19 1983-01-19 KANSHITSUZAIRYO

Country Status (1)

Country Link
JP (1) JPH0244390B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147135A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Production of moisture sensitive material
JPS61147141A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Moisture sensitive material and its production
JPS61147137A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Moisture sensitive material
US4731257A (en) * 1984-12-20 1988-03-15 Mitsubishi Denki Kabushiki Kaisha Process for producing a temperature and moisture sensitive element
US4666628A (en) * 1984-12-20 1987-05-19 Mitsubishi Denki Kabushiki Kaisha Moisture sensitive material and process for its production
JPS61147143A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Production of moisture sensitive material
JPH02209702A (en) * 1989-02-09 1990-08-21 Shin Etsu Chem Co Ltd Water-resistant moisture-sensitive device
JP4236021B2 (en) * 2000-03-24 2009-03-11 Tdk株式会社 Electronic component having humidity detection function and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59132352A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
EP0090048B1 (en) Humidity sensor
JPH0244390B2 (en) KANSHITSUZAIRYO
US4666628A (en) Moisture sensitive material and process for its production
JPS61147135A (en) Production of moisture sensitive material
JPS58166701A (en) Method of producing humidity sensitive element
JPH0231842B2 (en) KANSHITSUZAIRYO
JPS59102149A (en) Moisture sensitive material
JPS60186747A (en) Moisture-sensitive material
JPS61147136A (en) Production of moisture sensitive material
JPH02209702A (en) Water-resistant moisture-sensitive device
JPS6131418B2 (en)
JPS61147143A (en) Production of moisture sensitive material
JPH052100B2 (en)
JPS617455A (en) Humidity sensitive material
JPH02230701A (en) Moisture sensitive element
JPS60186748A (en) Moisture-sensitive element
JPS61147142A (en) Moisture sensitive material
JPS59186303A (en) Moisture sensitive element
JPS59102150A (en) Moisture sensitive material
JPS61147138A (en) Moisture sensitive material
JPH052099B2 (en)
JPH0530281B2 (en)
JPS6235058B2 (en)
JPS594102A (en) Moisture sensitive element
JPH04359141A (en) Humidity-sensitive element