JPS6313146B2 - - Google Patents

Info

Publication number
JPS6313146B2
JPS6313146B2 JP57231824A JP23182482A JPS6313146B2 JP S6313146 B2 JPS6313146 B2 JP S6313146B2 JP 57231824 A JP57231824 A JP 57231824A JP 23182482 A JP23182482 A JP 23182482A JP S6313146 B2 JPS6313146 B2 JP S6313146B2
Authority
JP
Japan
Prior art keywords
humidity
ceramic body
range
porosity
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57231824A
Other languages
Japanese (ja)
Other versions
JPS59116536A (en
Inventor
Ryoichi Makimoto
Fumio Fukushima
Hiromitsu Tagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57231824A priority Critical patent/JPS59116536A/en
Publication of JPS59116536A publication Critical patent/JPS59116536A/en
Publication of JPS6313146B2 publication Critical patent/JPS6313146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電子レンジ等の食品調理機器やエアコ
ン等の空調機器,湿度制御システム等に使用され
る湿度センサに関するものである。 従来例の構成とその問題点 従来から用いられている電気式感湿素子には、
塩化リチウム(LiCl)等の電解質材料を使用した
もの、単結晶の表面に酸化膜を形成したもの、親
水性有機高分子に炭素を分散させたもの、金属を
表面酸化させたもの、コロイド膜を用いたもの、
あるいは金属酸化物系多孔質体を使用した素子が
ある。これらはいずれも湿度変化を電気量変化と
して検知するものであるが、それぞれに大きな問
題が残されている。たとえば、電解質材料は結露
状態において水に溶出し、不安定なものであり、
信頼性に問題のあるものである。また、単結晶を
使用したものはコスト高であり、汚れに弱い。有
機高分子を使用したものは応答性が悪いものであ
り、さらに蒸着膜を用いたものは互換性が悪く、
膜の安定化に長時間を要し、特性が不安定なもの
である。 金属酸化物多孔質体にAl2O3,Cr2O3、あるい
はNi2O3を用いたものには上述のような欠点は実
質的にないが、その反面、全般的に抵抗が高く、
実際に使用するには困難なものであるばかりでな
く、汚れに対して弱いという問題をもつものであ
り、それぞれ共通している問題として汚れによる
特性劣化がある。それらを解決するために金属酸
化物系多孔質セラミツクでは、外部或いは表面か
ら加熱し、汚れを除去する方法がとられている。
しかし、非常に過酷な条件下においては若干の経
時変化を示す。また、電極の平均気孔径、セラミ
ツク素子の気孔率,平均気孔径を小さくすれば、
寿命的には良好になつて行くが、応答性が遅くな
るという問題が発生して来る。 発明の目的 本発明は上述の問題を解決し、応答性がよく、
経時変化が少なく、長寿命の湿度センサを提供し
ようとするものである。 発明の構成 本発明は、多孔質セラミツク湿度センサの電極
材料とセラミツク素体の平均気孔径と気孔率をコ
ントロールすることにより、湿度特性に有害な無
機物や有機物等がセラミツク素体内に侵入するこ
とを防止して、上記の目的を達成したものであ
る。すなわち、本発明では、酸化ルテニウム電極
の表面に小さな径の気孔を設けることで汚染によ
る特性の劣化を軽減し、また電極をセラミツク素
体上に設けることで、さらに寿命特性が向上し、
さらにセラミツク素体のグレーンサイズを小さく
したことにより、粒界面積が増加し、センサ抵抗
値の低下を可能とし、回路的にも使いやすくして
いる。 実施例の説明 MgCr2 O4―TiO2系P型半導体セラミツク湿度
センサ用材料を使用し、通常の窯業的手法に従
い、配合,混合,仮燃,粉砕を順次行なつてか
ら、バインダーを添加して造粒した。この造粒粉
末を750Kg/cm2の圧力で4mm×4mm×0.25mmの寸
法の板状に成形し、空気中中にて1100℃から1300
℃までの範囲内の温度で2時間焼成し、セラミツ
ク素体とした。このセラミツク素体の両面に約
0.01μmから1μmまでの粒径の酸化ルテニウム粉
末とガラスフリツトとを含む電極ペーストをスク
リーン印刷で10〜30μmの厚みに塗布し、750℃
から900℃の範囲内の温度で焼き付けて、酸化ル
テニウム電極を形成した。 これらのセラミツク素体と酸化ルテニウム電極
の気孔率,平均気孔径と経時変化率をそれぞれ第
1表,第2表に示す。さらにセラミツク素体と酸
化ルテニウム電極の相乗効果を平均気孔径と経時
変化率について第3表に示す。なお、湿度応答性
は、温度20℃において、相対湿度を10%から50%
に変えた時と同じく90%から50%に変えた時の平
衡に達するまでの時間で示している。また、寿命
テストは素子温度を540℃に10秒間保持して、汚
染物質を焼却し、次の10秒間を常温に保持すると
いう温度サイクル(クリーニングサイクル)を加
えることによつて行ない、それによる素子抵抗の
変化率を寿命変化率とした。
INDUSTRIAL APPLICATION FIELD The present invention relates to a humidity sensor used in food cooking equipment such as microwave ovens, air conditioning equipment such as air conditioners, humidity control systems, and the like. Conventional structure and its problems The electric moisture sensing element that has been used in the past has
Those using electrolyte materials such as lithium chloride (LiCl), those with an oxide film formed on the surface of a single crystal, those with carbon dispersed in a hydrophilic organic polymer, those with surface oxidation of metal, and those with colloidal films. What I used,
Alternatively, there is an element using a metal oxide porous material. All of these detect changes in humidity as changes in the amount of electricity, but each has major problems. For example, electrolyte materials dissolve into water under condensation and are unstable;
There is a problem with reliability. Furthermore, those using single crystals are expensive and susceptible to dirt. Those using organic polymers have poor responsiveness, and those using vapor-deposited films have poor compatibility.
It takes a long time to stabilize the film, and its properties are unstable. Porous metal oxide materials using Al 2 O 3 , Cr 2 O 3 , or Ni 2 O 3 do not have the above-mentioned drawbacks, but on the other hand, they generally have high resistance;
Not only are they difficult to use in practice, but they also have the problem of being susceptible to dirt, and a common problem with each of them is deterioration of characteristics due to dirt. To solve these problems, metal oxide porous ceramics are heated from the outside or from the surface to remove dirt.
However, under extremely harsh conditions, it shows some changes over time. In addition, if the average pore diameter of the electrode, the porosity of the ceramic element, and the average pore diameter are reduced,
Although the life expectancy is improving, a problem arises in that the response becomes slow. OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems, is responsive,
The present invention aims to provide a humidity sensor with a long life and little change over time. Structure of the Invention The present invention prevents inorganic and organic substances harmful to humidity characteristics from entering the ceramic body by controlling the average pore diameter and porosity of the electrode material and ceramic body of a porous ceramic humidity sensor. The above objective was achieved by preventing That is, in the present invention, by providing small diameter pores on the surface of the ruthenium oxide electrode, deterioration of characteristics due to contamination is reduced, and by providing the electrode on a ceramic body, the life characteristics are further improved.
Furthermore, by reducing the grain size of the ceramic body, the grain boundary area increases, making it possible to lower the sensor resistance value and making the circuit easier to use. Description of Examples Using a MgCr 2 O 4 -TiO 2 -based P-type semiconductor ceramic humidity sensor material, compounding, mixing, pre-combustion, and pulverization were performed sequentially according to ordinary ceramic methods, and then a binder was added. and granulated. This granulated powder was molded into a plate shape with dimensions of 4 mm x 4 mm x 0.25 mm under a pressure of 750 kg/ cm2 , and heated from 1100°C to 1300°C in air.
The ceramic body was fired for 2 hours at a temperature within a range of up to °C. Approx.
An electrode paste containing ruthenium oxide powder with a particle size of 0.01 μm to 1 μm and glass frit is applied to a thickness of 10 to 30 μm by screen printing, and heated at 750°C.
The ruthenium oxide electrode was formed by baking at a temperature in the range from 900°C to 900°C. The porosity, average pore diameter, and rate of change over time of these ceramic bodies and ruthenium oxide electrodes are shown in Tables 1 and 2, respectively. Furthermore, Table 3 shows the synergistic effect of the ceramic body and the ruthenium oxide electrode in terms of average pore diameter and rate of change over time. In addition, humidity responsiveness is measured at a temperature of 20°C and a relative humidity of 10% to 50%.
It shows the time taken to reach equilibrium when changing from 90% to 50%, as well as when changing from 90% to 50%. In addition, the life test was performed by adding a temperature cycle (cleaning cycle) in which the element temperature was held at 540°C for 10 seconds to incinerate contaminants, and then held at room temperature for the next 10 seconds. The rate of change in resistance was defined as the rate of change in life.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上表の結果から明らかなように、セラミツク素
体と酸化ルテニウム電極の平均気孔径が0.01〜1μ
mの範囲内にあり、かつセラミツク素体の気孔率
が20〜40%の範囲内にある湿度センサが湿度応答
性,経時変化ともに良好である。 発明の効果 以上の説明から明らかなように、本発明の湿度
センサは、湿度抵抗特性が過酷な雰囲気におい
て、経時変化,湿度応答性が安定しているので、
湿度特性の信頼性が高く、湿度測定装置が湿度メ
ータ等の装置に容易に使用できるものである。
[Table] As is clear from the results in the above table, the average pore diameter of the ceramic body and the ruthenium oxide electrode is 0.01 to 1μ.
A humidity sensor in which the porosity of the ceramic body is within the range of 20 to 40% has good humidity responsiveness and change over time. Effects of the Invention As is clear from the above explanation, the humidity sensor of the present invention has stable changes over time and humidity response in an atmosphere with severe humidity resistance characteristics.
The humidity characteristics are highly reliable, and the humidity measuring device can be easily used in devices such as a humidity meter.

Claims (1)

【特許請求の範囲】[Claims] 1 気孔率が20%から40%までの範囲にあつて平
均気孔径が0.01μmから1μmまでの範囲にあるP
型半導体金属酸化物セラミツク素体の表面に平均
気孔率が0.01μmから1μmまでの範囲内にある酸
化ルテニウム多孔質電極を被着形成してなること
を特徴とする湿度センサ。
1 P with a porosity in the range of 20% to 40% and an average pore diameter in the range of 0.01 μm to 1 μm
1. A humidity sensor comprising a ruthenium oxide porous electrode having an average porosity in the range of 0.01 μm to 1 μm adhered to the surface of a semiconductor metal oxide ceramic body.
JP57231824A 1982-12-24 1982-12-24 Humidity sensor Granted JPS59116536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231824A JPS59116536A (en) 1982-12-24 1982-12-24 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231824A JPS59116536A (en) 1982-12-24 1982-12-24 Humidity sensor

Publications (2)

Publication Number Publication Date
JPS59116536A JPS59116536A (en) 1984-07-05
JPS6313146B2 true JPS6313146B2 (en) 1988-03-24

Family

ID=16929589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231824A Granted JPS59116536A (en) 1982-12-24 1982-12-24 Humidity sensor

Country Status (1)

Country Link
JP (1) JPS59116536A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327444B2 (en) * 1995-06-29 2002-09-24 株式会社村田製作所 Positive thermistor element
JPH09162004A (en) * 1995-12-13 1997-06-20 Murata Mfg Co Ltd Positive temperature coefficient thermistor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112494U (en) * 1977-02-15 1978-09-07

Also Published As

Publication number Publication date
JPS59116536A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US4041437A (en) Humidity sensor
WO1983001339A1 (en) Humidity sensor
US4677415A (en) Ceramic humidity sensor
JPS6313146B2 (en)
US4509035A (en) Humidity-sensitive element and process for producing the same
JPS6327841B2 (en)
JPS6214921B2 (en)
JP2677991B2 (en) Moisture sensitive element
JPS6344703A (en) Moisture-sensitive device compound
KR920009164B1 (en) Making method for resistor materials
JPS5849001B2 (en) moisture sensing element
JPS6235058B2 (en)
JPS6390101A (en) Humidity sensor and manufacture of the same
JPS6355766B2 (en)
JPS6023481B2 (en) moisture sensing element
JPH043081B2 (en)
JPS58212101A (en) Moisture sensor
JPS58105046A (en) Sensing element for temperature and humidity
JPS58135602A (en) Moisture sensitive element
JPH0218310B2 (en)
JPS6055962B2 (en) moisture sensing element
JPS63283002A (en) Sic moisture sensitive material,sic moisture sensitive sensor and manufacture thereof
JPS63158802A (en) Humidity-sensitive compound
JPS6331081B2 (en)
JPS587041B2 (en) Moisture sensitive resistance element for relative humidity