JPH05301721A - Production of optical waveguide film - Google Patents

Production of optical waveguide film

Info

Publication number
JPH05301721A
JPH05301721A JP10993192A JP10993192A JPH05301721A JP H05301721 A JPH05301721 A JP H05301721A JP 10993192 A JP10993192 A JP 10993192A JP 10993192 A JP10993192 A JP 10993192A JP H05301721 A JPH05301721 A JP H05301721A
Authority
JP
Japan
Prior art keywords
burner
substrate
optical waveguide
waveguide film
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10993192A
Other languages
Japanese (ja)
Inventor
Haruhiko Aikawa
晴彦 相川
Hiroo Kanamori
弘雄 金森
Akira Urano
章 浦野
Tomokane Hirose
智財 広瀬
Shinji Ishikawa
真二 石川
Masahide Saito
真秀 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10993192A priority Critical patent/JPH05301721A/en
Publication of JPH05301721A publication Critical patent/JPH05301721A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide a process for producing a uniform optical waveguide film having improved homogeneity. CONSTITUTION:Oxide glass soot is synthesized at the tip of a burner 54 supplied with a fuel gas, a raw material gas, etc., and the burner 54 is reciprocated relative to a supporting table 52 to deposit the formed soot on the surface of a substrate 56. The scanning motion of the burner 54 at the central area of the moving range is carried out at uniform scanning density and scanning speed to uniformize the staying time of the burner 54 in the area. In the peripheral area of the moving range, the scanning density, etc., are adjusted in such a manner as to increase the staying time of the burner 54 in the peripheral region compared with the time in the central area. An optical waveguide film having uniform thickness almost over the whole surface of a substrate 53 placed in the central area of the moving range can be produced by this process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低損失な光導波膜を火
炎堆積法を用いて屈折率や膜厚の制御性よく作製する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-loss optical waveguide film by a flame deposition method with good controllability of refractive index and film thickness.

【0002】[0002]

【従来の技術】近年、光分岐・結像素子や光分波・合波
素子等の光部品として、小型化、軽量化に優れた導波路
型のものが用いられつつある。この中で石英系光導波路
は、低損失であること、石英系光ファイバと屈折率が等
しく接続損失が小さいこと等の利点が多い。石英系光導
波路の典型的な製法として、特公昭63−66512号
公報等に示されている火炎堆積法が存在する。
2. Description of the Related Art In recent years, waveguide-type devices, which are excellent in downsizing and weight saving, are being used as optical parts such as optical branching / imaging elements and optical demultiplexing / multiplexing elements. Among them, the silica-based optical waveguide has many advantages such as low loss, the same refractive index as the silica-based optical fiber, and small connection loss. As a typical method for producing a quartz optical waveguide, there is a flame deposition method disclosed in Japanese Patent Publication No. 63-66512.

【0003】図1は、この火炎堆積法を示した図であ
る。図示のように、石英ガラスやシリコンのような耐熱
性基板10の上にガラス微粒子合成用バーナ(以下、単
にバーナと記す。)12からのガラス微粒子を堆積さ
せ、この耐熱性基板10上に多孔質ガラス層を形成す
る。この際、バーナ12には、H2 ガス等の燃料用ガス
と、O2 ガス等の支燃ガスとが供給される。さらに、ガ
ラス原料としてのSiCl4、屈折率調整材料としての
GeCl4 、TiCl4 、及びガラスの透明化温度を低
下させ、後の加熱透明化に必要な温度を低減させる作用
のあるBやPの気相想原料であるBCl3 、BBr3
PCl3 、POCl3 等も供給される。バーナ12の出
口近傍においては、燃料ガス及び支燃ガスの反応によっ
て形成される火炎14中での過水分解反応によりガラス
微粒子流16が形成される。このとき、耐熱性基板10
上に均一に多孔質ガラスを形成させるため、バーナ12
と耐熱性基板10とを相対的に移動させる。この目的の
ため、例えば耐熱性基板10をターンテーブル16上に
載置して公転運動させるとともに、バーナ12をターン
テーブル16の半径方向に往復運動させる方法が用いら
れる。また、基板10上に堆積されなかった余剰ガラス
微粒子を速かに排出するため、バーナ12は基板10の
法線方向に対して傾いた角度で入射するように配置さ
れ、かつ、そのガラス微粒子流18の下流には排気管2
0が設けられる。
FIG. 1 is a diagram showing this flame deposition method. As shown in the figure, glass particles from a burner for synthesizing glass particles (hereinafter simply referred to as burner) 12 are deposited on a heat resistant substrate 10 such as quartz glass or silicon, and porous glass is formed on this heat resistant substrate 10. Forming a quality glass layer. At this time, the burner 12 is supplied with a fuel gas such as H 2 gas and a combustion supporting gas such as O 2 gas. Furthermore, SiCl 4 as a glass raw material, GeCl 4 , TiCl 4 as a refractive index adjusting material, and B and P which have the effect of lowering the temperature required for transparentizing the glass by heating later are reduced. BCl 3, BBr 3 is a Kishoso raw materials,
PCl 3 , POCl 3, etc. are also supplied. In the vicinity of the outlet of the burner 12, a fine glass particle stream 16 is formed by the perhydrolysis reaction in the flame 14 formed by the reaction of the fuel gas and the combustion supporting gas. At this time, the heat resistant substrate 10
In order to form a porous glass uniformly on the burner 12,
And the heat resistant substrate 10 are relatively moved. For this purpose, for example, a method is used in which the heat resistant substrate 10 is placed on the turntable 16 and revolved, and the burner 12 is reciprocated in the radial direction of the turntable 16. Further, in order to quickly discharge the surplus glass fine particles not deposited on the substrate 10, the burner 12 is arranged so as to be incident at an angle inclined with respect to the normal direction of the substrate 10, and the glass fine particle flow thereof. Exhaust pipe 2 downstream of 18
0 is provided.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
このような装置では、基板10面内における膜厚の均一
性が乏しく、その結果得られる光導波路の伝送特性の再
現性が乏しいという問題があった。また、従来の方法で
は、基板のサイズが大きくなるほど前述の問題が顕著と
なっていた。
However, in such a conventional device, there is a problem that the uniformity of the film thickness within the surface of the substrate 10 is poor and the reproducibility of the transmission characteristics of the resulting optical waveguide is poor. It was Further, in the conventional method, the above problem becomes more remarkable as the size of the substrate increases.

【0005】そこで、本発明は、ガラス微粒子の供給を
制御することによって均質な光導波膜を製造し得る方法
を提供することを目的とする。
Therefore, an object of the present invention is to provide a method capable of producing a uniform optical waveguide film by controlling the supply of glass particles.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係る光導波膜の製造方法では、バーナによ
って合成されたガラス微粒子を基板表面に堆積して多孔
質のガラス層を形成した後、この基板を高温で加熱して
多孔質ガラス層を透明化する。さらに、かかる製造方法
においては、バーナを基板に対して相対的に移動させる
に際し、この相対的な移動範囲の周辺部分における滞在
時間を中央部分に比較して相対的に長くする。このよう
に周辺部分で滞在時間を相対的に長くする方法として、
例えば移動範囲の周辺部分を除く部分でバーナを基板に
対して相反する方向に交互に繰り返し平行移動させる方
法等がある。
In order to solve the above problems, in the method for producing an optical waveguide film according to the present invention, glass fine particles synthesized by a burner are deposited on the surface of a substrate to form a porous glass layer. Then, the substrate is heated at a high temperature to make the porous glass layer transparent. Furthermore, in this manufacturing method, when the burner is moved relative to the substrate, the staying time in the peripheral portion of this relative movement range is made relatively longer than in the central portion. In this way, as a method to lengthen the stay time relatively in the peripheral part,
For example, there is a method in which the burner is repeatedly repeatedly moved in parallel in directions opposite to the substrate in a portion other than the peripheral portion of the moving range.

【0007】[0007]

【作用】従来の方法では、移動範囲の中心部はバーナと
の距離の時間的平均が最も短いので、どうしても中心の
膜厚が一番厚くなってしまうが、上記光導波膜の製造方
法によれば、バーナを基板に対して相対的に移動させる
に際し、この相対的な移動範囲の周辺部分における滞在
時間を長くしているので、この移動範囲内にある基板上
の領域のほぼ全体に亘ってより均質な厚さの光導波膜を
形成することができる。しかも、前述の移動範囲外には
ガラス微粒子がほとんど供給されないので、ガラス微粒
子の原料の無駄な消費を減少させることができる。
In the conventional method, since the center of the moving range has the shortest time average of the distance from the burner, the film thickness at the center inevitably becomes the thickest. For example, when the burner is moved relative to the substrate, the stay time in the peripheral portion of this relative movement range is lengthened, so that almost all of the area on the substrate within this movement range is covered. An optical waveguide film having a more uniform thickness can be formed. Moreover, since the glass particles are hardly supplied to the outside of the above-mentioned movement range, it is possible to reduce the wasteful consumption of the raw material of the glass particles.

【0008】[0008]

【実施例】以下、本発明の実施例について具体的に説明
する。
EXAMPLES Examples of the present invention will be specifically described below.

【0009】図2は、実施例に係る光導波膜の製造方法
を実施するための装置の構成を示す。
FIG. 2 shows the structure of an apparatus for carrying out the method for manufacturing an optical waveguide film according to the embodiment.

【0010】反応容器50内には支持台52及びバーナ
54が収容されている。支持台52上には、光導波膜を
形成すべき基板56が固定されている。この基板56上
には、バーナ54からの火炎とこの火炎によって原料か
ら合成されたガラス微粒子とが吹き付けられる。基板5
6上に堆積されなかった余剰のガラス微粒子からなる排
気物は、排気口58から速やかに反応容器50外に排気
される。基板56上にガラス微粒子を均一に供給し堆積
させるため、この支持台52は、X軸方向(図面の左右
方向)に往復移動し、バーナ54は、Y軸方向(図面の
上下方向)に往復移動する。この結果、バーナ54は基
板56に対して2次元的に自在に走査されることとな
る。
A support 52 and a burner 54 are housed in the reaction vessel 50. A substrate 56 on which an optical waveguide film is to be formed is fixed on the support base 52. On the substrate 56, the flame from the burner 54 and the glass particles synthesized from the raw material by this flame are sprayed. Board 5
Exhaust substances composed of excess glass particles not deposited on the reaction chamber 6 are quickly exhausted to the outside of the reaction container 50 through the exhaust port 58. In order to uniformly supply and deposit the glass particles on the substrate 56, the support base 52 reciprocates in the X-axis direction (left-right direction in the drawing), and the burner 54 reciprocates in the Y-axis direction (up-down direction in the drawing). Moving. As a result, the burner 54 can freely scan the substrate 56 two-dimensionally.

【0011】図2の製造装置を用いた製造方法について
簡単に説明する。バーナ54に燃料ガス、原料ガス等を
供給することにより、バーナ54の先端で合成された酸
化物ガラスの微粒子を基板56表面に付着・堆積させ
る。これと同時に、支持台52とバーナ54を相対的に
往復移動させる。この場合、往復移動の範囲の中央領域
におけるバーナ54の走査については、バーナ54の滞
在時間が均質なものとなるように、走査密度及び走査速
度が一様に保たれる。また、上記の往復移動の範囲の周
辺領域におけるバーナ54の走査については、バーナ5
4の滞在時間が中央領域よりも長くなるように、走査密
度及び走査速度が設定される。この結果、この往復移動
の範囲内の中央領域にある基板53上のほぼ全体に亘っ
て均質な厚さの光導波膜を形成することができる。この
場合、往復移動の範囲外にガラス微粒子がほとんど供給
されないので、ガラス微粒子の原料の無駄な消費を減少
させることができる。
A manufacturing method using the manufacturing apparatus shown in FIG. 2 will be briefly described. By supplying fuel gas, raw material gas, etc. to the burner 54, the fine particles of the oxide glass synthesized at the tip of the burner 54 are attached and deposited on the surface of the substrate 56. At the same time, the support base 52 and the burner 54 are relatively moved back and forth. In this case, regarding the scanning of the burner 54 in the central region of the reciprocating range, the scanning density and the scanning speed are kept uniform so that the staying time of the burner 54 becomes uniform. Also, regarding the scanning of the burner 54 in the peripheral area of the above-mentioned reciprocating range, the burner 5
The scanning density and the scanning speed are set so that the residence time of 4 is longer than that of the central region. As a result, it is possible to form an optical waveguide film having a uniform thickness over substantially the entire area of the substrate 53 in the central region within the range of this reciprocal movement. In this case, almost no glass fine particles are supplied outside the range of reciprocal movement, so that wasteful consumption of the raw material of glass fine particles can be reduced.

【0012】図3は、バーナ54の支持台52に対する
相対的走査の軌跡の例を示した図である。図3(a)は
第1の軌跡の概略を示し、図3(b)は第2の軌跡の概
略を示し、図3(c)は第3の軌跡の概略を示す。
FIG. 3 is a view showing an example of a relative scanning locus of the burner 54 with respect to the support base 52. 3A shows the outline of the first trajectory, FIG. 3B shows the outline of the second trajectory, and FIG. 3C shows the outline of the third trajectory.

【0013】第1の軌跡は、X軸方向及びY軸方向の相
対移動速度がそれぞれ一定になっていて往復移動の範囲
内で一様な走査がなされる。さらに、1周期の終わり
に、図示の往復移動の範囲の周囲に沿って1回転以上の
矩形走査を行う。なお、軌跡の網目の大きさ形状等は、
各軸方向の相対的移動速度に応じて異なったものとな
る。第2の軌跡は、往復移動の範囲の中央領域で相反す
る方向に交互に繰り返しの平行走査がなされる。つま
り、X軸方向の相対移動は、この往復移動の範囲の端で
周期的に停止し、その間にのみY軸方向の相対移動が行
われる。この結果、X軸方向及びY軸方向の相対移動が
周期的に繰り返され、図示のような軌跡を得ることがで
きる。この場合、X軸方向の相対移動は、往復移動の範
囲のY軸方向の端で数回繰り返される。第3の軌跡は、
X軸方向の平行走査の単純な繰り返しとなっている。こ
の結果、図示のような平行走査の軌跡を得ることができ
る。
In the first locus, the relative movement speeds in the X-axis direction and the Y-axis direction are constant, and uniform scanning is performed within the range of reciprocal movement. Further, at the end of one cycle, rectangular scanning of one rotation or more is performed along the circumference of the illustrated reciprocating range. In addition, the size of the mesh of the trajectory, etc.,
It is different depending on the relative moving speed in each axial direction. In the second locus, parallel scanning is alternately repeated in opposite directions in the central region of the reciprocating range. That is, the relative movement in the X-axis direction periodically stops at the end of the range of the reciprocating movement, and the relative movement in the Y-axis direction is performed only during that period. As a result, the relative movements in the X-axis direction and the Y-axis direction are periodically repeated, and the locus shown in the drawing can be obtained. In this case, the relative movement in the X-axis direction is repeated several times at the end in the Y-axis direction in the range of the reciprocating movement. The third locus is
It is a simple repetition of parallel scanning in the X-axis direction. As a result, it is possible to obtain a locus of parallel scanning as illustrated.

【0014】本発明は、上記実施例に限定されるもので
はない。例えば、バーナ54又は支持台52のいずれか
一方のみを移動させることができる。ただし、バーナ5
4及び支持台52のそれぞれが1軸移動する方式が、装
置の小型化という観点からは好ましい。この場合、X、
Y軸両軸の取り方は任意である。また、X軸方向の相対
速度とY軸方向の相対速度の比VX /VY は1〜200
程度が適当である。さらに、バーナ54及び支持台52
を回転座標で移動させることもできる。さらに、支持台
52上に複数の基板を配置することができるさらに、バ
ーナ54の基板56に対する角度も任意である。ただ
し、この角度を30゜〜80゜程度とすることが、堆積
効率の観点から望ましい。
The present invention is not limited to the above embodiment. For example, only one of the burner 54 and the support base 52 can be moved. However, burner 5
A method in which each of the 4 and the support base 52 moves uniaxially is preferable from the viewpoint of downsizing of the apparatus. In this case, X,
The method of taking both the Y-axis is arbitrary. The ratio V X / V Y of the relative speed in the X-axis direction and the relative speed in the Y-axis direction is 1 to 200.
The degree is appropriate. Further, the burner 54 and the support base 52
Can also be moved in rotational coordinates. Further, a plurality of substrates can be arranged on the support base 52, and the angle of the burner 54 with respect to the substrate 56 is arbitrary. However, it is desirable to set this angle to about 30 ° to 80 ° from the viewpoint of deposition efficiency.

【0015】以下、図2の製造装置を用いて行った第1
の具体的製造例について説明する。ガラス微粒子の多孔
質層を形成すべき基板として、5インチSiウェハを用
いた。この基板は、その表面と支持台表面とが一致する
ようにこの支持台上にセットされた。バーナは、この支
持台表面の法線に対して58゜になるように配置した。
バーナには、燃料ガス及び支燃ガスとともに原料を供給
する。原料の供給は、SiCl4 が100cc/mi
n、BCl3 が30cc/min、POCl3 が10c
c/min、キャリアとしてのArが200cc/mi
n(トータル)であった。バーナは、支持台上の各座標
軸X、Yに関して30〜270mmの範囲で相対的に走
査された。この相対的走査の軌跡は図3(c)のような
ものであった。バーナの相対速度は、X軸方向で40m
m/sとし、Y軸方向で60mm/sとした。
Hereinafter, the first test performed using the manufacturing apparatus of FIG.
A specific manufacturing example of will be described. A 5-inch Si wafer was used as a substrate on which a porous layer of glass particles was formed. The substrate was set on the support so that its surface coincided with the surface of the support. The burner was arranged at 58 ° with respect to the normal to the surface of the support.
Raw materials are supplied to the burner together with the fuel gas and the combustion supporting gas. The supply of raw material is 100 cc / mi of SiCl 4.
n, BCl 3 is 30 cc / min, POCl 3 is 10 c
c / min, Ar as a carrier is 200 cc / mi
It was n (total). The burner was scanned relative to each coordinate axis X, Y on the support in the range of 30-270 mm. The locus of this relative scanning was as shown in FIG. The relative speed of the burner is 40m in the X-axis direction.
m / s and 60 mm / s in the Y-axis direction.

【0016】上記の条件で多孔質ガラス層を堆積させた
後、これを別の炉内で加熱し、透明・ガラス化させて石
英の薄膜を得た。この薄膜は、X軸方向にかなり平坦な
ものとなった。具体的には、薄膜の厚みの均一な範囲を
±1%以内とすると、これに対応する範囲が140mm
×35mm程度となっていた。
After depositing the porous glass layer under the above conditions, this was heated in another furnace to be transparent and vitrified to obtain a quartz thin film. This thin film became fairly flat in the X-axis direction. Specifically, if the uniform range of the thin film thickness is within ± 1%, the corresponding range is 140 mm.
It was about 35 mm.

【0017】参考のため、第1の具体的製造例のバーナ
の相対速度、移動範囲その他の条件を一致させたモデル
計算も実施した。図4はその結果を示した図である。一
対の横軸は支持台上の両座標軸X、Yに対応し、縦軸は
形成される多孔質薄膜の膜厚の計算値に対応する。この
場合、計算範囲を300mm×300mmとした。多孔
質薄膜の厚みの均一な範囲は、具体的製造例とほぼ同様
の150mm×40mmであった。具体的製造例との差
は、モデルの精密度に起因しているものと考えられる。
For reference, a model calculation was also performed in which the relative speed, the moving range and other conditions of the burner of the first specific manufacturing example were matched. FIG. 4 is a diagram showing the result. The pair of horizontal axes corresponds to both coordinate axes X and Y on the support, and the vertical axis corresponds to the calculated value of the thickness of the porous thin film to be formed. In this case, the calculation range was 300 mm × 300 mm. The uniform range of the thickness of the porous thin film was 150 mm × 40 mm, which was almost the same as in the specific production example. The difference from the specific manufacturing example is considered to be due to the precision of the model.

【0018】以下、第2の具体的製造例について説明す
る。バーナへの原料の供給等の条件は第1の具体的製造
例と同一とした。バーナ走査範囲も第1の具体的製造例
と同一とした。バーナの相対的走査の軌跡については、
図3(b)のようなものとした。この場合、バーナの相
対速度は、X軸方向で20mm/sとし、Y軸方向で8
0mm/sとした。さらに、バーナが再び原点に戻るま
での時間を1周期として、3周期おきにY軸方向の両端
でバーナを4回往復させた。
The second specific manufacturing example will be described below. The conditions such as supply of the raw material to the burner were the same as those in the first specific manufacturing example. The burner scanning range was also the same as in the first specific manufacturing example. For the relative scanning trajectory of the burner,
It is configured as shown in FIG. In this case, the relative speed of the burner is 20 mm / s in the X-axis direction and 8 mm in the Y-axis direction.
It was set to 0 mm / s. Further, the time until the burner returns to the origin again is set as one cycle, and the burner is reciprocated four times at both ends in the Y-axis direction every three cycles.

【0019】上記の条件で多孔質ガラス層を堆積させた
後、これを透明・ガラス化させて石英の薄膜を得た。こ
の薄膜は、X軸方向及びY軸方向ともに平坦なものとな
った。具体的には、薄膜の厚みの均一な範囲が140m
m×140mm程度となっていた。
After depositing the porous glass layer under the above conditions, it was made transparent and vitrified to obtain a quartz thin film. This thin film was flat in both the X-axis direction and the Y-axis direction. Specifically, the uniform range of thin film thickness is 140 m
It was about m × 140 mm.

【0020】参考のため、第2の具体的製造例のバーナ
の相対速度その他の条件を一致させたモデル計算も実施
した。図5はその結果を示した図である。図示のよう
に、薄膜の厚みの均一な範囲は、具体的製造例とほぼ同
様の150mm×150mmであった。
For reference, a model calculation was also performed in which the relative speed of the burner of the second specific manufacturing example and other conditions were matched. FIG. 5 is a diagram showing the result. As shown in the drawing, the uniform range of the thickness of the thin film was 150 mm × 150 mm, which was almost the same as in the specific production example.

【0021】以下、第3の具体的製造例について説明す
る。バーナへの原料の供給等の条件は第1の具体的製造
例と同一とした。バーナ走査範囲も第1の具体的製造例
と同一とした。バーナの相対的走査の軌跡については、
図3(a)と同様とし、矩形駆動となっている。この場
合、バーナの相対速度は、X軸方向で43mm/sと
し、Y軸方向で14mm/sとした。さらに、1周期に
つき1回の矩形走査を行った。矩形走査時のバーナの相
対速度は、X軸方向で40mm/sとし、Y軸方向でも
40mm/sとした。
The third specific manufacturing example will be described below. The conditions such as supply of the raw material to the burner were the same as those in the first specific manufacturing example. The burner scanning range was also the same as in the first specific manufacturing example. For the relative scanning trajectory of the burner,
Similar to FIG. 3A, rectangular drive is performed. In this case, the relative speed of the burner was 43 mm / s in the X-axis direction and 14 mm / s in the Y-axis direction. Further, rectangular scanning was performed once per cycle. The relative speed of the burner during rectangular scanning was 40 mm / s in the X-axis direction and 40 mm / s in the Y-axis direction.

【0022】上記の条件で多孔質ガラス層を堆積させた
後、これを透明・ガラス化させて石英の薄膜を得た。こ
の薄膜は、X軸方向及びY軸方向ともに平坦なものとな
った。具体的には、薄膜の厚みの均一な範囲が120m
m×110mm程度となっていた。
After depositing the porous glass layer under the above conditions, it was made transparent and vitrified to obtain a quartz thin film. This thin film was flat in both the X-axis direction and the Y-axis direction. Specifically, the uniform thickness range of the thin film is 120 m.
It was about m × 110 mm.

【0023】参考のため、第3の具体的製造例のバーナ
の相対速度その他の条件を一致させたモデル計算も実施
した。図6はその結果を示した図である。図示のよう
に、薄膜の厚みの均一な範囲は、具体的製造例とほぼ同
様の130mm×120mmであった。
For reference, a model calculation was also performed in which the relative speed of the burner of the third specific manufacturing example and other conditions were matched. FIG. 6 is a diagram showing the result. As shown in the figure, the uniform range of the thickness of the thin film was 130 mm × 120 mm, which was almost the same as in the specific production example.

【0024】以下、比較の製造例について説明する。バ
ーナへの原料の供給等の条件は第1の具体的製造例と同
一とした。バーナ走査範囲も第1の具体的製造例と同一
とした。バーナの相対的走査の軌跡は、図7のようなも
のとした。この場合、バーナの相対速度は、X軸方向で
43mm/sとし、Y軸方向で7mm/sとした。両軸
方向に同時に相対移動させた。
A comparative production example will be described below. The conditions such as supply of the raw material to the burner were the same as those in the first specific manufacturing example. The burner scanning range was also the same as in the first specific manufacturing example. The trajectory of the relative scanning of the burner is as shown in FIG. In this case, the relative speed of the burner was 43 mm / s in the X-axis direction and 7 mm / s in the Y-axis direction. Relative movement was performed simultaneously in both axial directions.

【0025】上記の条件で多孔質ガラス層を堆積させた
後、これを透明・ガラス化させて石英の薄膜を得た。こ
の薄膜は、中心部分で盛り上がったつり鐘形状となっ
た。具体的には、薄膜の厚みの均一な範囲が18mm×
15mm程度となっていた。
After depositing the porous glass layer under the above conditions, it was made transparent and vitrified to obtain a quartz thin film. This thin film became a bell shape that was raised in the center. Specifically, the uniform range of thin film thickness is 18 mm ×
It was about 15 mm.

【0026】参考のため、比較の製造例のバーナの相対
速度その他の条件を一致させたモデル計算も実施した。
図8はその結果を示した図である。図示のように、薄膜
の厚みの均一な範囲は、具体的製造例とほぼ同様の20
mm×20mmであった。
For reference, a model calculation was also performed in which the relative speed of the burner of the comparative production example and other conditions were matched.
FIG. 8 is a diagram showing the result. As shown in the figure, the uniform range of the thickness of the thin film is almost the same as in the specific manufacturing example.
It was mm × 20 mm.

【0027】[0027]

【発明の効果】以上説明したように本発明の光導波膜の
製造方法によれば、バーナを基板に対して相対的に移動
させるに際し、バーナを基板に対して相対的に移動させ
るに際し、この相対的な移動範囲の周辺部分における滞
在時間を中央部分に比較して相対的に長くしているの
で、この移動範囲内にある基板上の領域のほぼ全体に亘
ってより均質な厚さの光導波膜を形成することができ
る。しかも、前述の移動範囲外にはガラス微粒子がほと
んど供給されないので、ガラス微粒子の原料の無駄な消
費を減少させることができる。
As described above, according to the method of manufacturing an optical waveguide film of the present invention, when the burner is moved relative to the substrate, the burner is moved relative to the substrate. Since the residence time in the peripheral portion of the relative movement range is made relatively longer than that in the central portion, the light guide having a more uniform thickness over almost the entire area on the substrate within this movement range. A corrugated film can be formed. Moreover, since the glass particles are hardly supplied to the outside of the above-mentioned movement range, it is possible to reduce the wasteful consumption of the raw material of the glass particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の製造方法を示した図。FIG. 1 is a diagram showing a conventional manufacturing method.

【図2】実施例の製造方法を実施するための装置を示す
図。
FIG. 2 is a diagram showing an apparatus for carrying out the manufacturing method of the embodiment.

【図3】バーナの支持台に対する相対的移動の軌跡を示
す図。
FIG. 3 is a diagram showing a trajectory of relative movement of a burner with respect to a support base.

【図4】図3の軌跡で得られる膜厚分布のモデル計算例
を示す図。
FIG. 4 is a diagram showing a model calculation example of a film thickness distribution obtained from the locus of FIG.

【図5】図3の軌跡で得られる膜厚分布の別のモデル計
算例を示す図。
5 is a diagram showing another model calculation example of the film thickness distribution obtained from the locus of FIG.

【図6】図3の軌跡で得られる膜厚分布の別のモデル計
算例を示す図。
6 is a diagram showing another model calculation example of the film thickness distribution obtained from the locus of FIG.

【図7】比較例の相対的移動の軌跡を示す図。FIG. 7 is a diagram showing a locus of relative movement in a comparative example.

【図8】図7の軌跡で得られる膜厚分布のモデル計算例
を示す図。
8 is a diagram showing a model calculation example of a film thickness distribution obtained from the locus of FIG.

【符号の説明】[Explanation of symbols]

54…バーナ、56…基板。 54 ... Burner, 56 ... Substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 広瀬 智財 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 石川 真二 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 斉藤 真秀 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Hirose 1 Taya-cho, Sakae-ku, Yokohama, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Shinji Ishikawa 1 Taya-cho, Sakae-ku, Yokohama, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Masahide Saito 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries Co., Ltd. Yokohama Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バーナによって合成されたガラス微粒子
を基板表面に堆積して多孔質ガラス層を形成した後、前
記基板を高温で加熱して前記多孔質ガラス層を透明化す
る光導波膜の作製方法において、 前記バーナを前記基板に対して相対的に移動させるに際
し、この相対的な移動範囲の周辺部分における滞在時間
を中央部分に比較して相対的に長くすることを特徴とす
る光導波膜の作製方法。
1. An optical waveguide film for depositing glass fine particles synthesized by a burner on a surface of a substrate to form a porous glass layer, and heating the substrate at a high temperature to make the porous glass layer transparent. In the method, when the burner is moved relative to the substrate, the optical waveguide film is characterized in that the residence time in the peripheral portion of this relative movement range is made relatively longer than in the central portion. Of manufacturing.
【請求項2】 前記バーナは、前記移動範囲の周辺部分
を除く部分で前記基板に対して相反する方向に交互に平
行移動を繰り返すことを特徴とする請求項1記載の光導
波膜の作製方法。
2. The method for producing an optical waveguide film according to claim 1, wherein the burner repeats parallel movement alternately in opposite directions with respect to the substrate in a portion other than a peripheral portion of the movement range. ..
【請求項3】 前記バーナは、前記移動範囲の全体で滞
在時間がほぼ均一になる移動を繰り返すとともに、前記
移動範囲の周辺部分で当該周辺部分に沿って周回移動す
ることを特徴とする請求項1記載の光導波膜の作製方
法。
3. The burner repeats the movement in which the stay time is substantially uniform in the entire movement range, and also makes a circular movement along the peripheral portion in the peripheral portion of the movement range. 1. The method for producing an optical waveguide film described in 1.
JP10993192A 1992-04-28 1992-04-28 Production of optical waveguide film Pending JPH05301721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10993192A JPH05301721A (en) 1992-04-28 1992-04-28 Production of optical waveguide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10993192A JPH05301721A (en) 1992-04-28 1992-04-28 Production of optical waveguide film

Publications (1)

Publication Number Publication Date
JPH05301721A true JPH05301721A (en) 1993-11-16

Family

ID=14522744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10993192A Pending JPH05301721A (en) 1992-04-28 1992-04-28 Production of optical waveguide film

Country Status (1)

Country Link
JP (1) JPH05301721A (en)

Similar Documents

Publication Publication Date Title
JP3131162B2 (en) Manufacturing method of optical fiber preform
JPH05273426A (en) Production of optical waveguide film and production of optical waveguide by using the same
US6837077B2 (en) Method for producing soot body
JPH05301721A (en) Production of optical waveguide film
JP3396430B2 (en) Method for manufacturing optical fiber preform and apparatus for manufacturing optical fiber preform
JPH0412032A (en) Production of sooty silica body, apparatus therefor and synthetic quartz glass using the same silica body
JP7393985B2 (en) Optical fiber preform manufacturing device and optical fiber preform manufacturing method
JP2004269285A (en) Production method for fine glass particle deposit
JPH05297235A (en) Method of fabricating film for light waveguide
JP3968801B2 (en) Quartz glass manufacturing equipment
JP3290559B2 (en) Method for producing porous glass preform for optical fiber
JPH0474728A (en) Production of quartz light-waveguide and apparatus therefor
JP2001031431A (en) Method and apparatus for producing porous glass preform
JPH05186232A (en) Apparatus for producing glass thin film
JP2866436B2 (en) Method for producing porous preform preform for optical fiber
JPH09188522A (en) Torch for synthesizing glass fine particle
JPH03141133A (en) Production of porous glass matrix for optical fiber
JPH05249333A (en) Apparatus for production of optical waveguide film
JP2004026610A (en) Method for manufacturing porous preform for optical fiber
JPS59152234A (en) Preparation of parent material for optical fiber
JP2001019441A (en) Method and device for producing porous glass base material
JP2001021746A (en) Manufacture of optical waveguide
JPH0710323Y2 (en) Optical glass waveguide film manufacturing equipment
JPH05188232A (en) Manufacture of thin oxide glass film and device therefor
JPH11189428A (en) Production of optical fiber preform