JPH05299999A - Light receiving circuit - Google Patents

Light receiving circuit

Info

Publication number
JPH05299999A
JPH05299999A JP10631492A JP10631492A JPH05299999A JP H05299999 A JPH05299999 A JP H05299999A JP 10631492 A JP10631492 A JP 10631492A JP 10631492 A JP10631492 A JP 10631492A JP H05299999 A JPH05299999 A JP H05299999A
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving element
impedance
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10631492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oba
浩之 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opt KK
Original Assignee
Opt KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opt KK filed Critical Opt KK
Priority to JP10631492A priority Critical patent/JPH05299999A/en
Publication of JPH05299999A publication Critical patent/JPH05299999A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a light receiving circuit in which the influence of a strong disturbing light can be exactly removed, only an objective modulation signal light can be exactly detected and outputted even when a wiring shield line between a light receiving element and a signal processing part is lengthened, and an electrostatic capacity is increased, and the deterioration of a frequency responsiveness can be prevented. CONSTITUTION:This circuit is equipped with a light receiving element PD which receives the modulation signal light, and converts it into an electric signal, and an amplifier OP1 for the voltage and amplitude of the output currents of the light receiving element PD, and the virtual ground point A of the amplifier OP1 is connected with the light receiving element PD. Therefore, the load impedance of the light receiving element PD can be extremely reduced, and even when the wiring between the light receiving element PD and a signal processing part 11 is lengthened, and the electrostatic capacity of the wring is increased, only the objective modulation signal light can be exactly detected and outputted. The impedance of an impedance variable element Q3 is variably controlled so as to be decreased by the integrated value of an integration circuit 1 which integrates the output signal of the amplifier OP1, and the currents of a low frequency due to the disturbing light is by-pass processed, and removed by the impedance variable element Q3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動ドアの開閉
を制御する物体検知用光電スイッチに用いられる受光回
路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving circuit used in an object detecting photoelectric switch for controlling opening and closing of an automatic door, for example.

【0002】[0002]

【従来の技術】近年、人体等の物体を検知して防犯警報
装置の作動や自動開閉ドアの開閉を制御するための起動
用スイッチに利用されている物体検知装置として、背景
と移動物体との温度差に基づく放射赤外線光束の変動を
利用する受動型赤外線式のもの、マイクロ波のドップラ
ー効果を利用するもの、或いは赤外線を投射して物体か
らの反射光の光量変化を検知するもの等の非接触検知方
式のものが一般に採用されている。ところが、これらの
非接触検知型物体検知装置は、何れも物体が静止した場
合には赤外線光束の変動や光量の変化が無いこと等によ
り検知することができない欠点がある。そのため、例え
ば自動開閉ドアの開閉制御用の起動スイッチとして使用
した場合、人体が開いた自動ドアの付近で止まって立ち
話をしたような時には、閉動作を始める自動ドアにぶつ
かったり、或いは挟まれたりする危惧がある。そこで、
静止物体を検知できる安全センサとして光電スイッチが
前述の物体検知装置に併設されている。
2. Description of the Related Art In recent years, as an object detection device used as a starting switch for detecting an object such as a human body and controlling the operation of a crime prevention alarm device and the opening / closing of an automatic opening / closing door, a background and a moving object are detected. Non-passive infrared type that utilizes fluctuations in radiated infrared light flux due to temperature difference, one that uses the Doppler effect of microwaves, or one that detects changes in the amount of reflected light from an object by projecting infrared rays. The contact detection type is generally adopted. However, none of these non-contact detection type object detection devices has a drawback in that when an object is stationary, it cannot be detected because the infrared light flux does not change and the light amount does not change. Therefore, for example, when it is used as a start switch for opening / closing control of an automatic opening / closing door, when the human body stops near the opened automatic door and stands up, the human body may collide with the automatic door that starts the closing operation or may be caught. I have a fear of doing it. Therefore,
As a safety sensor capable of detecting a stationary object, a photoelectric switch is attached to the aforementioned object detection device.

【0003】即ち、図5に示すように、例えば左右両開
き型の自動ドア(1)の中央真上位置に受動型赤外線式
移動物体検知装置(2)を配設するとともに、自動ドア
(1)の両側近傍箇所に、光電スイッチの投光部(3)
と受光部(4)とを対設し、この投光部(3)から受光
部(4)への光信号が遮断されることにより光電スイッ
チ用制御器(5)が人体等の物体を検知して自動ドア用
駆動部(6)に対し検知信号を出力する。自動ドア用駆
動部(6)は、移動物体検知装置(2)からの検知信号
の入力が無くなっても光電スイッチ用制御器(5)から
検知信号が入力されている限り自動ドア(1)の開放状
態を保持するよう制御する。
That is, as shown in FIG. 5, for example, a passive infrared type moving object detecting device (2) is arranged at a position right above the center of an automatic door (1) of left and right sides, and the automatic door (1) is provided. (3) near the both sides of the photoelectric switch
And the light receiving section (4) are provided in a pair, and the optical signal from the light projecting section (3) to the light receiving section (4) is cut off, whereby the photoelectric switch controller (5) detects an object such as a human body. Then, a detection signal is output to the automatic door drive unit (6). Even if the detection signal from the moving object detection device (2) is lost, the automatic door drive unit (6) does not detect the automatic door (1) as long as the detection signal is input from the photoelectric switch controller (5). Control to maintain the open state.

【0004】また、光電スイッチ用制御器(5)内に組
み込まれる受光回路は図6に示すような構成になってお
り、以下に説明する。この種の光電スイッチ用の受光回
路において最も問題となるのは、目的とする信号光より
も強い太陽光や一般照明光等の外乱光による妨害であ
り、そのため、一般に投光器(3)から高周波で断続し
た変調信号光を出射させて外乱光と信号光との分離を計
っている。そして、高周波の変調信号光が受光部(4)
のフォトダイオードからなる受光素子(PD)で電気信
号に変換され、電源端子(+Vcc)から受光素子(P
D)を通じて変調信号光に応じた断続的な電流がトラン
ジスタ(Q1)のベースに流れ、それにより断続的にオ
ン・オフするトランジスタ(Q1)に流れる電流が抵抗
(R1)により電圧に変換された後にAC結合用コンデ
ンサ(C1)を介して出力端子(Vo)から出力され
る。
A light receiving circuit incorporated in the photoelectric switch controller (5) has a structure as shown in FIG. 6, which will be described below. The most serious problem in the light receiving circuit for this type of photoelectric switch is disturbance due to ambient light such as sunlight or general illumination light which is stronger than the target signal light. Therefore, in general, a high frequency from the projector (3) is used. The intermittent modulated signal light is emitted to separate the ambient light from the signal light. Then, the high-frequency modulated signal light is received by the light receiving section (4).
Is converted into an electric signal by the light receiving element (PD) composed of the photodiode of the above, and is received from the power supply terminal (+ Vcc) to the light receiving element (P
Through D), an intermittent current according to the modulated signal light flows into the base of the transistor (Q1), and the current flowing through the transistor (Q1) that intermittently turns on and off is converted into a voltage by the resistor (R1). It is later output from the output terminal (Vo) via the AC coupling capacitor (C1).

【0005】一方、トランジスタ(Q1)のエミッタと
抵抗(R1)の接続点に、抵抗(R2)とコンデンサ
(C2)との時定数により低周波のみに対し積分動作を
行うよう設定された積分回路(I)が接続されており、
このように積分回路(I)は時定数が比較的長いことに
より高周波に対して積分動作を行わないので、変調信号
光のみを受光している場合には、出力端子(Vo)から
変調信号光に対応する略一定の電圧が出力されている。
そして、略直流光である太陽光または低周波の一般照明
光等の外乱光が強くなると、トランジスタ(Q1)のベ
ース電流が増大しようとするが、この低周波の電気信号
が積分回路(I)で積分されてコンデンサ(C2)の端
子電圧、つまりトランジスタ(Q2)のベース電圧が高
くなり、トランジスタ(Q2)の導通度が大きくなって
受光素子(PD)からの光電流の一部がトランジスタ
(Q2)および抵抗(R3)を介して流れる。ここで、
トランジスタ(Q2)の導通度つまりインピーダンスが
受光素子(PD)の出力電流に応じて変化するので、外
乱光による低周波の電流分がトランジスタ(Q2)を通
じバイパスされることになり、外乱光による影響を除去
して誤動作の発生を未然に防止できる。
On the other hand, at the connection point between the emitter of the transistor (Q1) and the resistor (R1), an integrating circuit set to perform an integrating operation only for low frequencies by the time constant of the resistor (R2) and the capacitor (C2). (I) is connected,
In this way, since the integrating circuit (I) does not perform the integrating operation on the high frequency due to the relatively long time constant, when only the modulated signal light is received, the modulated signal light is output from the output terminal (Vo). A substantially constant voltage corresponding to is output.
Then, when ambient light such as sunlight, which is substantially DC light, or low-frequency general illumination light becomes strong, the base current of the transistor (Q1) tends to increase, but this low-frequency electric signal is integrated by the integrating circuit (I). Are integrated to increase the terminal voltage of the capacitor (C2), that is, the base voltage of the transistor (Q2), the conductivity of the transistor (Q2) increases, and a part of the photocurrent from the light receiving element (PD) increases. Flows through Q2) and resistor (R3). here,
Since the conductivity of the transistor (Q2), that is, the impedance changes according to the output current of the light receiving element (PD), the low-frequency current component due to the ambient light is bypassed through the transistor (Q2), and the influence of the ambient light is generated. Can be removed to prevent malfunction from occurring.

【0006】[0006]

【発明が解決しようとする課題】ところで、光電スイッ
チの投光部(3)や受光部(4)は、外観上の体裁と通
行人の邪魔にならないようにする目的とで埋め込み形態
に設置され、一方、光電スイッチ用制御器(5)等も受
光器(4)等に近接して設けるのが好ましいのである
が、これを埋め込むスペースを建造物の構造上から広く
取ることができず、また、その埋め込み工事も困難であ
る。そのため、図5に示すように、自動ドア駆動部
(6)等が内装されているドアエンジンケース(7)内
に配設され、このように機器類を同一箇所に集中させる
ことにより施工の効率アップとメンテナンス性の向上と
を図っている。
By the way, the light projecting portion (3) and the light receiving portion (4) of the photoelectric switch are installed in an embedded form for the sake of appearance and for the purpose of not disturbing a passerby. On the other hand, it is preferable that the photoelectric switch controller (5) and the like are also provided in the vicinity of the light receiver (4) and the like, but the space for embedding this cannot be made wide due to the structure of the building, and , Its embedding work is also difficult. Therefore, as shown in FIG. 5, the automatic door drive unit (6) and the like are arranged in the door engine case (7) in which the equipment is concentrated in the same place, thereby improving the construction efficiency. We are working to improve and maintainability.

【0007】従って、投光部(3)および受光部(4)
と光電スイッチ用制御器(5)との間の配線が長くなる
ので、ノイズ等の混入を防止するためにシールド線
(8)を使用している。然し乍ら、自動ドア(1)が、
図5のように両引き型であって、特に工場用等の大型の
ものである場合には、シールド線(8)が非常に長くな
る。ところが、図6の受光回路から明らかなように、受
光素子(PD)がトランジスタ(Q1)のベースに接続
されていることからこれの負荷インピーダンスが高いた
め、前述のようにシールド線(8)が長くなると、図6
に示すシールド線(8)の静電容量(C)が増大し、受
光素子(PD)の出力電流が静電容量(C)に迂回して
してしまうため、出力端子(Vo)からの出力電圧が鈍
って変調信号光による信号を判別できなくなったり、場
合によっては出力が出なくなる不都合が生じるととも
に、周波数応答性も悪くなる欠点がある。
Therefore, the light projecting section (3) and the light receiving section (4)
Since the wiring between the controller and the photoelectric switch controller (5) becomes long, the shield wire (8) is used to prevent noise and the like from entering. However, the automatic door (1)
As shown in FIG. 5, in the case of the double-pull type, especially in the case of a large size for a factory or the like, the shield wire (8) becomes very long. However, as is apparent from the light receiving circuit of FIG. 6, since the light receiving element (PD) is connected to the base of the transistor (Q1) and the load impedance of the light receiving element (PD) is high, the shield wire (8) is connected to the shield wire (8) as described above. Figure 6
Since the electrostatic capacitance (C) of the shielded wire (8) shown in (1) increases and the output current of the light receiving element (PD) bypasses to the electrostatic capacitance (C), the output from the output terminal (Vo) There is a drawback that the voltage becomes dull and it becomes impossible to distinguish the signal by the modulated signal light, in some cases the output is not output, and the frequency response is deteriorated.

【0008】そこで本発明は、強い外乱光の影響を確実
に除去しながらも受光素子と信号処理部との配線を長く
して静電容量が増大しても目的とする変調信号光のみを
確実に検知して出力することができ、また、周波数応答
性の悪化を防止できる主として光電スイッチに用いられ
る受光回路を提供することを技術的課題とするものであ
る。
Therefore, according to the present invention, even if the influence of strong ambient light is surely removed, even if the capacitance is increased by lengthening the wiring between the light receiving element and the signal processing unit, only the target modulated signal light is ensured. It is a technical object to provide a light receiving circuit which is mainly used for a photoelectric switch and which can detect and output the light and can prevent the deterioration of the frequency response.

【0009】[0009]

【課題を解決するための手段】本発明は上記した課題を
達成するための技術的手段として、受光回路を次のよう
に構成した。即ち、変調信号光を受光して電気信号に変
換する受光素子と、前記受光素子の出力電流の電圧への
変換用且つ増幅用であって自体の仮想接地点に前記受光
素子が接続された増幅器と、この増幅器の出力端子に接
続された積分回路と、前記仮想接地点に接続され前記積
分回路の積分値によりインピーダンスが小さくなるよう
可変制御されるインピーダンス可変素子とを備えたこと
を特徴として構成されている。
The present invention has a light receiving circuit configured as follows as a technical means for achieving the above-mentioned object. That is, a light receiving element for receiving the modulated signal light and converting it into an electric signal, and an amplifier for converting the output current of the light receiving element into a voltage and for amplifying the light receiving element connected to its own virtual ground point. And an impedance variable element that is connected to the output terminal of the amplifier and an impedance variable element that is connected to the virtual ground point and is variably controlled so that the impedance is reduced by the integrated value of the integration circuit. Has been done.

【0010】[0010]

【作用】外乱光が弱いことにより主に高周波の変調信号
光を受光素子で受光している場合には、受光素子の出力
電流が増幅器で増幅され且つ電圧に変換されて出力され
る。この出力電圧は、高周波の変調信号光に対応して変
化するので、その変化する時間は積分回路の時定数に比
較して十分に短く、積分回路で積分されることなく略一
定に保持される。そして、外乱光が強くなると増幅器へ
の入力電流が増大しようとするが、その外乱光による低
周波の電気信号が積分回路で積分され、その積分値に応
じてインピーダンス可変素子のインピーダンスが低下さ
れ、このインピーダンス可変素子を通じて外乱光による
低周波分に相当する電流が流れる。その結果、外乱光に
よる電流がインピーダンス可変素子を通じて除外されて
増幅器には変調信号光による電流のみが入力する。
When the high-frequency modulated signal light is mainly received by the light receiving element due to the weak ambient light, the output current of the light receiving element is amplified by the amplifier and converted into a voltage for output. Since this output voltage changes in accordance with the high-frequency modulated signal light, the changing time is sufficiently short compared to the time constant of the integrating circuit, and is maintained substantially constant without being integrated by the integrating circuit. .. Then, when the ambient light becomes strong, the input current to the amplifier tries to increase, but the low-frequency electric signal due to the ambient light is integrated by the integrating circuit, and the impedance of the impedance variable element is reduced according to the integrated value, A current corresponding to a low frequency component due to ambient light flows through the impedance variable element. As a result, the current due to the ambient light is excluded through the variable impedance element, and only the current due to the modulated signal light is input to the amplifier.

【0011】この受光回路は、受光素子が増幅器の仮想
接地点に接続されていることにより受光素子の負荷イン
ピーダンスが極めて低いため、受光素子と信号処理部間
を接続するシールド線を長くしてシールド線の静電容量
が増大しても、目的とする変調信号光のみを確実に検知
して出力することができる。
In this light receiving circuit, the light receiving element is connected to the virtual ground point of the amplifier, so that the load impedance of the light receiving element is extremely low. Therefore, the shield line connecting the light receiving element and the signal processing section is lengthened and shielded. Even if the capacitance of the line increases, it is possible to reliably detect and output only the target modulated signal light.

【0012】[0012]

【実施例】以下、本発明の好適な実施例について図面を
参照しながら詳細に説明する。図1は本発明の基本的構
成となる第1の実施例を示し、同図において図6と同一
若しくは同等のものには同一の符号を付してある。そし
て、信号処理部(11)は、演算増幅器(OP1)の両
電源端子が正電源端子(+Vcc)および負電源端子
(−Vcc)にそれぞれ接続された両電源方式に構成さ
れており、演算増幅器(OP1)は非反転入力端子
(+)が接地されていることにより反転入力端子(−)
も非反転入力端子(+)と同様に接地したのと等価にな
っている。つまり仮想接地されており、この仮想接地点
(A)に受光素子(PD)が接続されている。また、演
算増幅器(OP1)の出力端子がAC結合用コンデンサ
(C1)を介して信号出力端子(Vo)に導出されてい
るとともに、演算増幅器(OP1)の出力端子に、低周
波成分に対し積分動作を行う時定数に設定された積分回
路(I)が接続されており、この積分回路(I)の抵抗
(R2)とコンデンサ(C2)の接続点が、インピーダ
ンス可変素子(Q3)として用いられているPNP形ト
ランジスタのベースに接続されており、エミッタが抵抗
(R5)を介して仮想接地点(A)に接続されている。
Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a first embodiment which is the basic configuration of the present invention. In the figure, the same or equivalent parts as in FIG. 6 are designated by the same reference numerals. The signal processing unit (11) is configured as a dual power supply system in which both power supply terminals of the operational amplifier (OP1) are connected to the positive power supply terminal (+ Vcc) and the negative power supply terminal (-Vcc), respectively. (OP1) is an inverting input terminal (-) because the non-inverting input terminal (+) is grounded.
Is also equivalent to grounding like the non-inverting input terminal (+). That is, it is virtually grounded, and the light receiving element (PD) is connected to this virtual grounding point (A). Further, the output terminal of the operational amplifier (OP1) is led to the signal output terminal (Vo) via the AC coupling capacitor (C1), and the output terminal of the operational amplifier (OP1) is integrated with the low frequency component. An integrator circuit (I) set to a time constant for operation is connected, and the connection point of the resistor (R2) and the capacitor (C2) of this integrator circuit (I) is used as a variable impedance element (Q3). Is connected to the base of the PNP transistor, and the emitter is connected to the virtual ground point (A) through the resistor (R5).

【0013】次に前記実施例の作用について説明する。
外乱光が極めて弱いことにより受光素子(PD)が高周
波の変調信号光のみを受光している場合、受光素子(P
D)により光電変換された変調信号電流が抵抗(R4)
により電圧に変換されて出力される。この出力電圧は高
周波の変調信号光に対応した波形であってその変化する
時間は積分回路(I)の時定数に比較して極めて短いの
で、積分動作は行われずにコンデンサ(C2)の端子電
圧が一定に保持され、出力電圧は変調信号光を光電変換
した波形に維持され、後段回路において変調信号光の受
光を正確に判別する。
Next, the operation of the above embodiment will be described.
When the light receiving element (PD) receives only high-frequency modulated signal light due to extremely weak ambient light, the light receiving element (P
The modulated signal current photoelectrically converted by D) is a resistor (R4).
Is converted into a voltage by and output. This output voltage has a waveform corresponding to the high-frequency modulated signal light, and its changing time is extremely short compared to the time constant of the integrating circuit (I). Therefore, the integrating operation is not performed and the terminal voltage of the capacitor (C2) is not performed. Is held constant, the output voltage is maintained in a waveform obtained by photoelectrically converting the modulated signal light, and the light receiving of the modulated signal light is accurately discriminated in the subsequent circuit.

【0014】一方、強い外乱光が受光素子(PD)に入
射して受光素子(PD)から変調信号電流に外乱光によ
る直流分を含む低周波の電流が重畳された電流が出力さ
れると、この電流を演算増幅器(OP1)および抵抗
(R4)により変換された出力電圧が低下しようとする
が、低周波の電流分に相当する電圧のみが積分回路
(I)で積分される。即ち、積分回路(I)のコンデン
サ(C2)が放電を開始して該コンデンサ(C2)の端
子電圧つまりインピーダンス変換素子(Q3)としての
トランジスタのベース電圧が低下する。ここで、、イン
ピーダンス変換素子(Q3)は低下しようとする出力電
圧に応じて導通度が大きくなり、即ちインピーダンスが
低下して受光素子(PD)の出力電流の一部である低周
波の電流分が抵抗(R5)およびインピーダンス可変素
子(Q3)を介して流れる。このように低周波の電流分
がインピーダンス可変素子(Q3)を通じバイパスされ
て確実に除去されるので、強い外乱光の入射の有無に拘
わらず高周波の変調信号電流のみが電圧に変換されて出
力されるとともに、良好な周波数応答性を得られる。
On the other hand, when strong ambient light is incident on the light receiving element (PD) and the light receiving element (PD) outputs a current in which a low frequency current including a direct current component due to the ambient light is superimposed on the modulation signal current, The output voltage converted from this current by the operational amplifier (OP1) and the resistor (R4) tends to decrease, but only the voltage corresponding to the low-frequency current component is integrated by the integrating circuit (I). That is, the capacitor (C2) of the integrating circuit (I) starts discharging, and the terminal voltage of the capacitor (C2), that is, the base voltage of the transistor as the impedance conversion element (Q3) decreases. Here, the impedance conversion element (Q3) has a high conductivity in accordance with the output voltage which is going to be lowered, that is, the impedance is lowered and a low-frequency current component which is a part of the output current of the light receiving element (PD). Flows through the resistor (R5) and the variable impedance element (Q3). In this way, since the low frequency current component is bypassed through the variable impedance element (Q3) and reliably removed, only the high frequency modulation signal current is converted to a voltage and output regardless of the presence of strong disturbance light. And good frequency response can be obtained.

【0015】そして、この受光回路は、受光素子(P
D)が演算増幅器(OP1)の仮想接地点(A)に接続
されていることにより受光素子(PD)の負荷インピー
ダンスが極めて低いため、受光素子(PD)と信号処理
部(11)間を接続するシールド線(8)を長くしてシ
ールド線(8)の静電容量が増大しても、目的とする高
周波の変調信号光のみを確実に検知して出力することが
できる。
Further, this light receiving circuit includes a light receiving element (P
Since the load impedance of the light receiving element (PD) is extremely low because D) is connected to the virtual ground point (A) of the operational amplifier (OP1), the light receiving element (PD) and the signal processing unit (11) are connected. Even if the shielded wire (8) is lengthened to increase the capacitance of the shielded wire (8), only the target high-frequency modulated signal light can be reliably detected and output.

【0016】図2は、図1を変形した本発明の第2の実
施例で、図1と相違する点は、信号処理回路(12)
を、演算増幅器(OP1)の両電源端子を正電源端子
(+Vcc)と接地とにそれぞれ接続するとともに、演
算増幅器(OP1)の非反転入力端子(+)に、正電源
端子(+Vcc)の電源電圧を2個の抵抗(R6),
(R7)で分圧した設定電圧を印加し、片電源方式とし
た構成のみであり、図1の場合と同様に演算増幅器(O
P1)の反転入力端子(−)が仮想接地点(A)とな
り、また、図1と同一若しくは同等のものには同一の符
号を付してあり、作用および効果は図1の場合と同様で
あるのでその説明を省略する。
FIG. 2 shows a second embodiment of the present invention which is a modification of FIG. 1, and is different from FIG. 1 in that it has a signal processing circuit (12).
Is connected to the positive power supply terminal (+ Vcc) and the ground, and the non-inverting input terminal (+) of the operational amplifier (OP1) is connected to the positive power supply terminal (+ Vcc). Voltage is two resistors (R6),
The configuration is such that only the single power source system is applied by applying the set voltage divided by (R7). As in the case of FIG.
The inverting input terminal (-) of P1) serves as a virtual ground point (A), and the same or equivalent parts as those in FIG. 1 are designated by the same reference numerals, and the operation and effect are the same as those in the case of FIG. Therefore, the description thereof will be omitted.

【0017】図3は、図1を変形した本発明の第3の実
施例で、図1においてインピーダンス可変素子(Q3)
としてPNP形トランジスタを用いたのに対し、インピ
ーダンス可変素子(Q4)をNPN形トランジスタに置
換した場合を例示してある。このトランジスタの置換に
伴い、信号処理部(13)が図1の信号処理部(11)
に対しインバートに機能する構成になっており、演算増
幅器(OP1)の反転入力端子(−)を接地して非反転
入力端子(+)を仮想接地点(A)として受光素子(P
D)に接続してある。その他、図1と同一若しくは同等
のものには同一の符号を付してあり、基本的動作および
効果は図1の場合と同様であるのでその説明を省略す
る。
FIG. 3 shows a third embodiment of the present invention which is a modification of FIG. 1, and in FIG. 1, the variable impedance element (Q3) is used.
As an example, the PNP transistor is used as the element, while the variable impedance element (Q4) is replaced with the NPN transistor. With the replacement of the transistor, the signal processing unit (13) is replaced by the signal processing unit (11) shown in FIG.
In contrast, the operational amplifier (OP1) is grounded at the inverting input terminal (-) and the non-inverting input terminal (+) is used as a virtual ground point (A) for the light receiving element (P).
D). The other parts that are the same as or equivalent to those in FIG. 1 are designated by the same reference numerals, and the basic operations and effects are the same as in the case of FIG.

【0018】図4は図1を変形した本発明の第4の実施
例で、演算増幅器をインピーダンス可変素子(OP2)
として用いて信号処理部(14)を構成した点において
のみ図1と相違し、図1と同一若しくは同等のものには
同一の符号を付してあり、基本的動作および効果は図1
の場合と同様であるのでその説明を省略する。
FIG. 4 shows a fourth embodiment of the present invention which is a modification of FIG. 1, in which the operational amplifier is a variable impedance element (OP2).
1 only in the point that the signal processing unit (14) is configured as the above, and the same or equivalent parts to those in FIG. 1 are designated by the same reference numerals, and the basic operations and effects are the same as those in FIG.
The description is omitted because it is the same as the case.

【0019】[0019]

【発明の効果】以上のように本発明の受光回路による
と、受光素子を増幅器の仮想接地点に接続した構成とし
たので、受光素子の負荷インピーダンスが極めて低くな
る。また、低周波の電気信号に対し積分動作を行う時定
数を有する積分回路の積分値によりインピーダンス可変
素子のインピーダンスを小さくするよう可変制御するよ
うにしたので、強い外乱光による影響を、この外乱光に
よる低周波の電気信号を低インピーダンスとなったイン
ピーダンス可変素子によりバイパスすることにより確実
に除外できる。従って、受光素子と信号処理部との間の
配線を長くしても、目的とする高周波の変調信号光のみ
を確実に検知して出力することができるとともに、良好
な周波数応答性を得ることができる。しかも、増幅器を
反転増幅型且つ電流注入型に構成できるので、電界ノイ
ズの影響を受け難い利点がある。
As described above, according to the light receiving circuit of the present invention, since the light receiving element is connected to the virtual ground point of the amplifier, the load impedance of the light receiving element becomes extremely low. In addition, since the impedance of the variable impedance element is variably controlled by the integrated value of the integrating circuit having a time constant for integrating the low-frequency electric signal, the influence of strong ambient light is reduced. By bypassing the low-frequency electric signal by the variable impedance element having a low impedance, it can be reliably excluded. Therefore, even if the wiring between the light receiving element and the signal processing unit is lengthened, it is possible to reliably detect and output only the target high-frequency modulated signal light, and obtain good frequency response. it can. Moreover, since the amplifier can be configured as an inverting amplification type and a current injection type, there is an advantage that it is unlikely to be affected by electric field noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の電気回路図である。FIG. 1 is an electric circuit diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例の電気回路である。FIG. 2 is an electric circuit of a second embodiment of the present invention.

【図3】本発明の第3の実施例の電気回路図である。FIG. 3 is an electric circuit diagram of a third embodiment of the present invention.

【図4】本発明の第4の実施例の電気回路図である。FIG. 4 is an electric circuit diagram of a fourth embodiment of the present invention.

【図5】本発明が適用される光電スイッチの設置状態を
示す概略図である。
FIG. 5 is a schematic view showing an installed state of a photoelectric switch to which the present invention is applied.

【図6】従来の光電スイッチ用受光回路の電気回路図で
ある。
FIG. 6 is an electric circuit diagram of a conventional light receiving circuit for a photoelectric switch.

【符号の説明】[Explanation of symbols]

8 シールド線 11〜14 信号処理部 PD 受光素子 OP1 演算増幅器 Q3,Q4,OP2 インピーダンス可変素子 I 積分回路 R2 抵抗 C2 コンデンサ Vo 出力端子 A 仮想接地点 8 shielded wires 11 to 14 signal processing unit PD light receiving element OP1 operational amplifier Q3, Q4, OP2 impedance variable element I integrating circuit R2 resistor C2 capacitor Vo output terminal A virtual ground point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 変調信号光を受光して電気信号に変換す
る受光素子と、前記信号処理部に、前記受光素子の出力
電流の電圧への変換用且つ増幅用であって自体の仮想接
地点に前記受光素子が接続された増幅器と、この増幅器
の出力端子に接続された積分回路と、前記仮想接地点に
接続され前記積分回路の積分値によりインピーダンスが
小さくなるよう可変制御されるインピーダンス可変素子
とを備えたことを特徴とする受光回路。
1. A light-receiving element for receiving modulated signal light and converting it into an electric signal, and a virtual ground point of the signal processing unit for converting the output current of the light-receiving element into a voltage and for amplifying the voltage. An amplifier to which the light receiving element is connected, an integrator circuit connected to the output terminal of the amplifier, and an impedance variable element connected to the virtual ground point and variably controlled to reduce the impedance by the integrated value of the integrator circuit. A light receiving circuit comprising:
JP10631492A 1992-04-24 1992-04-24 Light receiving circuit Pending JPH05299999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10631492A JPH05299999A (en) 1992-04-24 1992-04-24 Light receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10631492A JPH05299999A (en) 1992-04-24 1992-04-24 Light receiving circuit

Publications (1)

Publication Number Publication Date
JPH05299999A true JPH05299999A (en) 1993-11-12

Family

ID=14430523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10631492A Pending JPH05299999A (en) 1992-04-24 1992-04-24 Light receiving circuit

Country Status (1)

Country Link
JP (1) JPH05299999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507760A (en) * 2004-07-23 2008-03-13 シンボル テクノロジーズ, インコーポレイテッド Electro-optic reader with improved performance in high intensity ambient light
JP2012120145A (en) * 2010-05-06 2012-06-21 Seiko Instruments Inc Light-receiving circuit and system using light-receiving circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209923A (en) * 1986-03-10 1987-09-16 Optics Kk Light receiving circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209923A (en) * 1986-03-10 1987-09-16 Optics Kk Light receiving circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507760A (en) * 2004-07-23 2008-03-13 シンボル テクノロジーズ, インコーポレイテッド Electro-optic reader with improved performance in high intensity ambient light
JP2012120145A (en) * 2010-05-06 2012-06-21 Seiko Instruments Inc Light-receiving circuit and system using light-receiving circuit

Similar Documents

Publication Publication Date Title
US4241456A (en) Remote-controlled receiver
US4551654A (en) Lighting control system and method
US5900960A (en) Circuit arrangement for receiving light signals
CN112291902A (en) Microwave induction drive circuit, alarm and lamp
JPH05299999A (en) Light receiving circuit
KR100383849B1 (en) Data transmission equipment
JP2682302B2 (en) Infrared detector
KR101775487B1 (en) Circuit for preventing mal-function of sensor light
CA1222791A (en) Lighting control system and method
JPS6244680B2 (en)
JPS5854744A (en) Ray receiving circuit
US6013914A (en) Circuit for detecting electromagnetic radiation
CN210574287U (en) Infrared receiving module with proximity sensor function
JPH01245725A (en) Optical reception circuit
KR100213080B1 (en) Temperature compensation type infrared sensor apparatus
JPH0438312Y2 (en)
JPH1092279A (en) Photoelectric switch
JPH05340807A (en) Infrared detector
JP2597482Y2 (en) Photoelectric switch
JPH0634713Y2 (en) Infrared detector light receiving circuit
JP3829484B2 (en) Infrared detector
JPH04598Y2 (en)
KR940004104Y1 (en) Compensation circuit for photosenser
KR950004161Y1 (en) Regeneration appartus for remote control signal
JP3925852B2 (en) Security sensor