JPH01245725A - Optical reception circuit - Google Patents

Optical reception circuit

Info

Publication number
JPH01245725A
JPH01245725A JP63072048A JP7204888A JPH01245725A JP H01245725 A JPH01245725 A JP H01245725A JP 63072048 A JP63072048 A JP 63072048A JP 7204888 A JP7204888 A JP 7204888A JP H01245725 A JPH01245725 A JP H01245725A
Authority
JP
Japan
Prior art keywords
apd
voltage
output
circuit
transmission signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072048A
Other languages
Japanese (ja)
Inventor
Tamotsu Komuro
小室 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63072048A priority Critical patent/JPH01245725A/en
Publication of JPH01245725A publication Critical patent/JPH01245725A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To operate normally an alarm function even if an APD bias voltage is set higher in the presence of a signal by detecting a current flowing through an avalanche photodiode(APD) and the presence or absence of a transmission signal and controlling the APD bias voltage low in the absence of signal and high in the presence of signal. CONSTITUTION:A current detection circuit 20 generates an output when a current flowing to the APD 1 exceeds a prescribed value in a region where a dark current increases rapidly. A transmission signal detection circuit 30 generates when an optical transmission signal of a prescribed level or over is inputted to the APD 1. A control circuit 40 acts like raising an output voltage of a high voltage generating circuit 50 and increasing a bias voltage of the APD 1 through the combination of both outputs only when the optical transmission signal is sent at a prescribed level or over. In the case of no optical input to the APD 1, the APD 1 receives a low bias voltage. When an output is given from the APD 1 by the input of the optical transmission signal, the bias voltage of the APD 1 is increased, and in the absence of the optical transmission signal, the dark current is increased rapidly, and an output appears from the current detection circuit 20, an output voltage of the high voltage generating circuit 50 is dropped to lower the bias voltage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、受光素子としてアバランシェ・フォトダイオ
ード(APD)を用いた光受信回路、特に入射光量低下
を判別するアラーム回路の誤動作を防止した回路に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an optical receiving circuit using an avalanche photodiode (APD) as a light receiving element, particularly a circuit that prevents malfunction of an alarm circuit for determining a decrease in the amount of incident light. It is related to.

[従来の技術] 第5図に従来の光受信回路の構成例を示す。[Conventional technology] FIG. 5 shows an example of the configuration of a conventional optical receiving circuit.

アバランシェ・フォトダイオード(APD)1に、抵抗
値R1,R2の抵抗2,3が直列に接続され、アラーム
回路は、APDIに流れる電流量0により抵抗3両端に
生ずる電圧降下分(Io XR2)を、比較器5でしき
い値電圧V tht と比較する構成となっている。負
荷抵抗2は、交流的には抵抗3に並列に接続したコンデ
ンサ4を介して接地されている。APDIへの入射光量
Prが、光電変換後の信号を識別できない最小受信レベ
ルまで低下すると、抵抗2の両端電圧降下分がしき値電
圧V th1以下になるため、比較器5が動作してアラ
ーム出力v1が論理「0」からrlJに切換わる。この
動作によって、入射光量Prのレベル低下を判別するも
のである。
Resistors 2 and 3 with resistance values R1 and R2 are connected in series to an avalanche photodiode (APD) 1, and the alarm circuit calculates the voltage drop (Io , the comparator 5 compares it with the threshold voltage V tht . The load resistor 2 is grounded via a capacitor 4 connected in parallel to the resistor 3 in terms of AC. When the amount of light Pr entering the APDI drops to the minimum reception level at which the signal after photoelectric conversion cannot be identified, the voltage drop across the resistor 2 becomes less than the threshold voltage V th1, so the comparator 5 operates and outputs an alarm. v1 switches from logic "0" to rlJ. This operation determines whether the level of the amount of incident light Pr has decreased.

尚、APDIからの信号成分は、抵抗3の端子より、コ
ンデンサ6及び波形成形回路7を介して取り出されるが
、入射光量Prが上記最小受信レベルまで低下している
場合には、例えば異常状態下での信号であるとして正常
時と区別する等の対策が取られる。
Note that the signal component from the APDI is extracted from the terminal of the resistor 3 via the capacitor 6 and the waveform shaping circuit 7, but if the amount of incident light Pr has decreased to the above-mentioned minimum reception level, for example under abnormal conditions. Measures are taken to distinguish this signal from a normal signal.

[発明が解決しようとする課題] 第6図にAPDの両端にがかるAPDバイアス電圧VA
PD と、入射光量Prが無い場合にAPDを流れる暗
電流よりとの関係を示す。APDの場合、高電界領域を
通る暗電流I nはアバランシェ増倍を受けるために、
APDバイアス電圧VAPDが高くなって或る値V[+
Rに近づくほど、APDの暗電流Inが急激に増加する
傾向にある。
[Problems to be Solved by the Invention] Figure 6 shows the APD bias voltage VA applied across the APD.
The relationship between PD and dark current flowing through the APD when there is no incident light amount Pr is shown. In the case of APD, since the dark current I n passing through the high electric field region undergoes avalanche multiplication,
The APD bias voltage VAPD increases to a certain value V[+
The closer to R, the more rapidly the dark current In of the APD tends to increase.

APDバイアス電圧VAP11を上記値VOR付近に高
く設定すると、入射光量Prが識別レベル以上に減少し
ていてアラーム信号を出力すべき場合であっても、雑音
電流が増大しているために、抵抗3の両端電圧はしきい
値電圧Vth1を越えてしまい、比較器5が動作しない
。従って入射光量Prが低下していても、アラーム信号
を出力しないこととなる。
If the APD bias voltage VAP11 is set high near the above value VOR, even if the incident light amount Pr has decreased beyond the identification level and an alarm signal should be output, the noise current is increasing and the resistor 3 The voltage across the voltage exceeds the threshold voltage Vth1, and the comparator 5 does not operate. Therefore, even if the amount of incident light Pr decreases, no alarm signal will be output.

通常、アラーム回路を正常動作させるために、APDバ
イアス電圧VAP11を十分下げて使用しなければなら
ない。しかし伝送特性上からは、APDバイアス電圧V
Apnは高い方が増倍率が高まるので有利である。
Normally, in order to operate the alarm circuit normally, the APD bias voltage VAP11 must be lowered sufficiently. However, from the perspective of transmission characteristics, the APD bias voltage V
A higher Apn is advantageous because the multiplication factor increases.

本発明の目的は、前記した従来技術の欠点を解消し、A
PDのバイアス電圧VAPDを上記VIlR付近に設定
しても、正常にアラーム回路を動作させることのできる
新規な光受信回路を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, and to
It is an object of the present invention to provide a novel optical receiving circuit that can normally operate an alarm circuit even if the bias voltage VAPD of the PD is set near the above-mentioned VIIR.

[課題を解決するだめの手吹] 本発明の光受信回路は、アバランシェ・フォトダイオー
ドと、このアバランシェ・フォトダイオードを流れる電
流量が暗電流の急増する領域における或る一定値を越え
たことを検知する電流量検知回路と、一定レベル以上の
光伝送信号の有無を検知する伝送信号検知回路と、アバ
ランシェ・フォトダイオードを駆動するための出力電圧
が可変の高電圧発生回路と、前記電流量検知回路の出力
信号と伝送信号検知回路の出力信号との組合せによって
高電圧発生回路の出力電圧を加減し、一定レベル以上の
光伝送信号が有る場合のみ前記高電圧発生回路の出力電
圧を上昇させる制御回路とを設け、前記伝送信号検知回
路の出力を利用してアラーム信号を取出すように構成し
たものである。
[Solving the Problem] The optical receiving circuit of the present invention includes an avalanche photodiode and detects when the amount of current flowing through the avalanche photodiode exceeds a certain value in a region where dark current rapidly increases. a transmission signal detection circuit that detects the presence or absence of an optical transmission signal of a certain level or higher; a high voltage generation circuit with a variable output voltage for driving the avalanche photodiode; and the current amount detection circuit. Control that adjusts the output voltage of the high voltage generation circuit based on a combination of the output signal of the circuit and the output signal of the transmission signal detection circuit, and increases the output voltage of the high voltage generation circuit only when there is an optical transmission signal of a certain level or higher. A circuit is provided, and the alarm signal is extracted using the output of the transmission signal detection circuit.

[作用] 電流量検知回路はAPDに流れる電流量が暗電流の急増
する領域における、或る一定値を越えると出力を発生す
る。また、伝送信号検出回路は光伝送信号が一定レベル
以上でAPDに入力されたときに出力を発生する。制御
回路はこの両者の出力を受けて、光伝送信号が一定のレ
ベル以上で送られてきた場合にのみ、高電圧発生回路の
出力電圧を上昇させAPDの駆動電圧を高めるよう動作
する。
[Function] The current amount detection circuit generates an output when the amount of current flowing through the APD exceeds a certain constant value in a region where dark current rapidly increases. Further, the transmission signal detection circuit generates an output when the optical transmission signal is input to the APD at a certain level or higher. The control circuit receives both outputs and operates to increase the output voltage of the high voltage generation circuit and increase the drive voltage of the APD only when the optical transmission signal is sent at a certain level or higher.

従って、APDに光入力がない場合には、電流量検知回
路からの出力も伝送信号検知回路からの出力もなく、A
PDの駆動電圧は低バイアス電圧になる。光伝送信号か
ら出力が発生されると、制御回路により高電圧発生回路
の出力電圧が上昇し、APDのバイアス電圧が高くなる
。光伝送信号がなくなると、暗電流が急増して電流量検
知回路に出力が現われ、制御回路により光電圧発生回路
の出力電圧が下降して、APDのバイアス電圧が低くな
る。
Therefore, when there is no optical input to the APD, there is no output from the current amount detection circuit or transmission signal detection circuit, and the APD
The driving voltage of the PD becomes a low bias voltage. When an output is generated from the optical transmission signal, the output voltage of the high voltage generation circuit is increased by the control circuit, and the bias voltage of the APD is increased. When the optical transmission signal disappears, the dark current rapidly increases and an output appears in the current amount detection circuit, and the control circuit lowers the output voltage of the optical voltage generation circuit, lowering the bias voltage of the APD.

このようにAPDを流れる電流量と、伝送信号の有無を
検知し、APDバイアス電圧を無信号時に低く、有信号
時に高く制御することによって、APDバイアス電圧を
有信号時に高く設定して使用しても、最小受信レベル以
下を判別するアラーム機能が正常に動作する。
In this way, by detecting the amount of current flowing through the APD and the presence or absence of a transmission signal, and controlling the APD bias voltage to be low when there is no signal and high when there is a signal, the APD bias voltage can be set high when there is a signal. Also, the alarm function that determines whether the reception level is below the minimum reception level operates normally.

[実施例] 第1図に本発明の光受信回路の実施例を示す。[Example] FIG. 1 shows an embodiment of the optical receiving circuit of the present invention.

第1図の光受信回路は、アバランシェ・フォトダイオー
ド(APD)1と、このAPDIを流れる電流量Ioが
一定値を越えたことを検知する電流量検知回路20と、
APDIで光−電気信号変換された伝送信号の有無を検
知する伝送信号検知回路30と、APDIを駆動するた
めの高電圧発生回路50と、この高電圧発生回路50の
出力電圧vDcを、電流量検知回路20の出力信号x1
と伝送信号検知回路30の出力信号x2どの組合せによ
って、制御する制御回路40とから構成されている。
The optical receiving circuit shown in FIG. 1 includes an avalanche photodiode (APD) 1, a current amount detection circuit 20 that detects when the amount of current Io flowing through the APDI exceeds a certain value.
A transmission signal detection circuit 30 that detects the presence or absence of a transmission signal converted into an optical-electrical signal by APDI, a high voltage generation circuit 50 for driving the APDI, and an output voltage vDc of this high voltage generation circuit 50 as a current amount. Output signal x1 of detection circuit 20
and a control circuit 40 that controls the output signal x2 of the transmission signal detection circuit 30 depending on the combination thereof.

APDIは、その方ソードがバイアス電源電圧Vncの
端子に接続され、アノードは抵抗2,3の直列回路を介
して接地され、抵抗2はコンデンサ4により交流的に接
地されている。
APDI has its sword connected to a terminal of bias power supply voltage Vnc, its anode grounded via a series circuit of resistors 2 and 3, and resistor 2 grounded via a capacitor 4 in an alternating current manner.

電流量検知回路20は、APDIに流れる電流により抵
抗3両端に生ずる電圧降下分を、比較器5でしきい値電
圧Vth1と比較する構成である。
The current amount detection circuit 20 has a configuration in which a comparator 5 compares the voltage drop generated across the resistor 3 due to the current flowing through the APDI with a threshold voltage Vth1.

第1図とは、抵抗3の両端電圧が、比較器5の反 ゛転
入万端子ではなく非反転入力端子に加えられている点で
、第1図と相違する。
The difference from FIG. 1 is that the voltage across the resistor 3 is applied to the non-inverting input terminal of the comparator 5 instead of the inverting input terminal.

APD lからの信号成分については、第1図の場合と
同様に、抵抗2の端子よりコンデンサ6及び波形成形回
路7を介して取り出され、ここでは更にコンデンサ14
及び波形成形回路8を経て信号出力端子16に出力され
る。この信号出力端子16には、信号識別レベル以下の
微弱な信号であっても出力される。
The signal component from APD 1 is taken out from the terminal of resistor 2 via capacitor 6 and waveform shaping circuit 7, as in the case of FIG.
and is outputted to the signal output terminal 16 via the waveform shaping circuit 8. Even a weak signal below the signal identification level is output to this signal output terminal 16.

伝送信号検知回路30は、コンデンサ15を介して波形
成形回路7に接続17たピーク検出回路9と、このピー
ク検出回路9に非反転入力端子を接続した比較器10と
から或る。波形成形回路7からの信号成分のピーク値が
ピーク検出回路9で検出され、比較器10で、信号識別
レベルたるしきい値電圧Vtt++と比較され、伝送信
号が有る場合即ち信号レベルが、信号識別レベルより大
きい場合には、比較器10から論理「1」が出力される
The transmission signal detection circuit 30 includes a peak detection circuit 9 connected 17 to the waveform shaping circuit 7 via a capacitor 15, and a comparator 10 having a non-inverting input terminal connected to the peak detection circuit 9. The peak value of the signal component from the waveform shaping circuit 7 is detected by the peak detection circuit 9, and compared with the threshold voltage Vtt++, which is the signal identification level, by the comparator 10. If it is greater than the level, the comparator 10 outputs a logic "1".

入射光量低下検知のアラーム信号は、この伝送信号検知
回路30の出力端子17に得られる信号X2.つまり比
較器10の出力を利用して取出すことができる。例えば
、出力信号x2が生じないにも拘らず、波形整形回路8
から信号出力が得られるときは、最小受信レベル以下の
信号であるので、比較器10の出力x1の否定をアラー
ム信号として取り扱ってよいことになる。
The alarm signal for detecting a decrease in the amount of incident light is the signal X2. In other words, it can be extracted using the output of the comparator 10. For example, even though the output signal x2 is not generated, the waveform shaping circuit 8
When a signal output is obtained from , the signal is below the minimum reception level, so the negation of the output x1 of the comparator 10 can be treated as an alarm signal.

制御回路40は、上記電流量検知回路20の出力信号x
1、即ち比較器5の出力と伝送信号検知回路30の出力
信号x2、即ち比較器10の出力を2人力とする論理回
路から成り、その論理結果は出力Yとして取り出される
。この実施例では、制御回路40は、比較器5の出力x
1の否定をとる否定回路11と、否定回路11の出力と
比較器10の出力x2とを2人力とするAND回路12
とで構成されている。
The control circuit 40 receives the output signal x of the current amount detection circuit 20.
1, that is, the output of the comparator 5, and the output signal x2 of the transmission signal detection circuit 30, that is, the output of the comparator 10. In this embodiment, the control circuit 40 controls the output x of the comparator 5
A NOT circuit 11 that takes the negation of 1, and an AND circuit 12 that takes the output of the NOT circuit 11 and the output x2 of the comparator 10 by two people.
It is made up of.

高電圧発生回路50は、制御入力端子が上記制御回路4
0に接続され且つ出力端子がAPDIの電源電圧(印加
電圧)Vncの端子に接続された出力電圧可変の直流電
圧発生器13から或る。直流電圧発生器13は、制御回
路40からの制御指令に応じてその出力電圧Vncが変
化し、APDIの印加電圧Vncを昇圧又は降圧させる
。具体的には、AND回路12の出力が論理「1」のと
きはAPDIの印加電圧V ncをVn+に上げ、論理
「0」のときは印加電圧vI]cを02に下げる。
The high voltage generation circuit 50 has a control input terminal connected to the control circuit 4.
0 and whose output terminal is connected to the terminal of the power supply voltage (applied voltage) Vnc of APDI. The DC voltage generator 13 changes its output voltage Vnc according to a control command from the control circuit 40, and raises or lowers the voltage Vnc applied to the APDI. Specifically, when the output of the AND circuit 12 is logic "1", the applied voltage V nc of APDI is increased to Vn+, and when the output is logic "0", the applied voltage vI]c is decreased to 02.

第2図に、電流量検知回路20及び伝送信号検知回路3
0から制御回路40に入力される信号X1とX2どの組
合せと、その組合せによって制御回路40から発生され
る出力信号Yと、この出力信号Yによって制御される高
電圧発生回路50の出力電圧vDcとの関係を示す。入
力欄の「xl」は、APD 1を流れる電流IAPDが
比較器5の設定値I3  (電圧設定はVtht)以下
のとき論理“′0′”、設定値I3を越えたとき論理“
1パとなる。また入力欄の「X2」は、伝送信号無しの
とき論理“0″、伝送信号有りのとき論理“1′”とな
る。出力欄の「vL」は高電圧発生回路50から低電位
の電圧Vo+が出力されることを、「■H」は高電位の
電圧V112が出力されることを表す。
FIG. 2 shows a current amount detection circuit 20 and a transmission signal detection circuit 3.
Which combination of signals X1 and X2 are input from 0 to the control circuit 40, the output signal Y generated from the control circuit 40 by that combination, and the output voltage vDc of the high voltage generation circuit 50 controlled by this output signal Y shows the relationship between "xl" in the input field is logic "'0'" when the current IAPD flowing through APD 1 is less than the set value I3 (voltage setting is Vtht) of comparator 5, and logic "'0'" when it exceeds the set value I3.
It becomes 1 pa. Further, "X2" in the input field becomes logic "0" when there is no transmission signal, and becomes logic "1'" when there is a transmission signal. "vL" in the output column indicates that a low potential voltage Vo+ is output from the high voltage generation circuit 50, and "■H" indicates that a high potential voltage V112 is output.

第3図は、APDバイアス回路への印加電圧V[]Cと
、APDの両端にかかるバイアス電圧VAPDとの関係
を示す。−点鎖線Aは光入力有りのときの曲線であり、
実線Bは光入力無しのときの曲線である。
FIG. 3 shows the relationship between the voltage V[]C applied to the APD bias circuit and the bias voltage VAPD applied across the APD. - Dot-dashed line A is a curve with optical input,
Solid line B is a curve when there is no optical input.

第3図において、r V n+ Jは、APD 1に高
い方のバイアス電圧をかける場合の印加電圧(VH)で
あり、光入力があるときと無いときでAPD端子電圧、
即ちAPDバイアス電圧■APDに差が生じる範囲で、
比較的高く設定される。印加電圧Vocがこの高い方の
電圧VDI(VH)になっている場合、入射光量Prが
存在するときは曲線AよりAPDバイアス電圧VAPD
がvlとなり、入射光量Prが無いときは曲線BよりA
PDバイアス電圧VAPDがv2となる。rVnzJは
、APDlに低い方のバイアス電圧をかける場合の印加
電圧(VL )であり、入射光量低下が判別できる範囲
で従来と同程度の値に設定される。印加電圧■ocがこ
の低い方の電圧D2(VL)になっている場合で、入射
光量PrがゼロのときはAPDバイアス電圧VAPDは
、曲線BよりvOとなる。
In FIG. 3, r V n + J is the applied voltage (VH) when applying a higher bias voltage to APD 1, and the APD terminal voltage when there is optical input and when there is no optical input,
In other words, within the range where a difference occurs in the APD bias voltage ■ APD,
It is set relatively high. When the applied voltage Voc is this higher voltage VDI (VH), when the amount of incident light Pr exists, the APD bias voltage VAPD is lower than the curve A.
becomes vl, and when there is no incident light amount Pr, curve A becomes smaller than curve B.
PD bias voltage VAPD becomes v2. rVnzJ is an applied voltage (VL) when a lower bias voltage is applied to APDl, and is set to a value comparable to that of the conventional art within a range in which a decrease in the amount of incident light can be determined. When the applied voltage oc is the lower voltage D2 (VL) and the amount of incident light Pr is zero, the APD bias voltage VAPD becomes vO according to the curve B.

第4図はAPD端子間電圧即ちバイアス電圧VAPD 
とAPDIを流れる電流IAP[+との関係を示す。第
3図上で設定された高バイアス電圧V2゜vlと低バイ
アス電圧Voは、この第4図の曲線上では、APD電流
IAP[+が11.I2とIoc7)点に対応する。「
v3」は、入射光量が雑音電流レベルに埋れてしまうか
否かの境界となる電流量検知回路20の動作点、つまり
、APDIを流れる電流IAPDのレベル切換え点を決
定する比較器5のしきい値電圧Vth1である。この設
定値■3(Vthl)は、第4図17)VAPD −I
APD曲線cにおいて、IAPllが急激に増大する領
域の中点Q、即ちAPD電流IAPDがI3となり点に
設定し、その両側に第3図で説明した高バイアス電圧■
2 、■1が来るようにする。換言すれば、第3図で説
明した高い方の印加電圧Vn+(VH)は、この比較器
5の設定値V3  (Vtht)の両側に、入射光量有
りのときの高バイアス電圧■1と、入射光量無しのとき
の高バイアス電圧V2とが来るように設定する。
Figure 4 shows the voltage between the APD terminals, that is, the bias voltage VAPD.
The relationship between IAP[+] and current IAP[+ flowing through APDI is shown. The high bias voltage V2°vl and low bias voltage Vo set in FIG. 3 mean that the APD current IAP[+ is 11. This corresponds to points I2 and Ioc7). "
v3'' is the threshold of the comparator 5 that determines the operating point of the current amount detection circuit 20, which is the boundary of whether or not the amount of incident light is buried in the noise current level, that is, the level switching point of the current IAPD flowing through APDI. The value voltage is Vth1. This setting value ■3 (Vthl) is
In the APD curve c, the midpoint Q of the region where IAPll rapidly increases, that is, the point where the APD current IAPD becomes I3, is set, and the high bias voltage ■ described in FIG.
2. ■Make sure that 1 comes. In other words, the higher applied voltage Vn+ (VH) explained in FIG. The setting is made so that the high bias voltage V2 when there is no light intensity is applied.

次に動作について説明する。説明の便宜上、最初は第2
図■行のX1= ”0” 、X2 =“1′°の状態に
あり、APDIの印加電圧Vncは高い方の電圧V[1
I(VH)になっているものとする。
Next, the operation will be explained. For convenience of explanation, the second
In the figure, the voltage Vnc applied to APDI is the higher voltage V[1'.
Assume that it is I (VH).

上記状態から入射光量Prが無くなると(X2=0)、
第3図の曲線Aから曲線Bに移り、APDバイアス電圧
VAPDが高バイアス電圧v1から更に高い電圧■2に
上昇する。このためAPDを流れる電流量API]は、
第4図の曲線Cに沿って工1から工2へ急激に増加し、
設定値工3を越える。つまり、抵抗R3の電圧降下が多
くなって、設定値V3  (Vtht)を越える。従っ
て比較器5が動作し、比較器5の出力信号x1として論
理11111が出力される(X1=1 、X2 =O;
第2図■行)。
When the amount of incident light Pr disappears from the above state (X2=0),
Moving from the curve A to the curve B in FIG. 3, the APD bias voltage VAPD rises from the high bias voltage v1 to an even higher voltage 2. Therefore, the amount of current API flowing through the APD is
Along the curve C in Figure 4, there is a sudden increase from work 1 to work 2,
The set value exceeds 3. In other words, the voltage drop across the resistor R3 increases and exceeds the set value V3 (Vtht). Therefore, the comparator 5 operates, and the logic 11111 is output as the output signal x1 of the comparator 5 (X1=1, X2=O;
Figure 2 (row ■).

上記出力信号X1=1は制御回路40において否定回路
11で反転されてAND回路12に加わるため、AND
回路12の出力信号Yは、伝送信号検知回路30からの
信号x2の内容に関係なく論理“O゛となる。これを受
けて、第2図@行に示す組合せのように、高電圧発生回
路50の出力電圧つまりAPD印加電圧Vocが、第3
図に示す高い方の電圧■旧(VH)から低い方の電圧V
D2(VL )に低下する。APDバイアス電圧■^p
The output signal X1=1 is inverted by the NOT circuit 11 in the control circuit 40 and applied to the AND circuit 12, so that
The output signal Y of the circuit 12 becomes logic "O" regardless of the content of the signal x2 from the transmission signal detection circuit 30. In response, the high voltage generation circuit 50 output voltage, that is, the APD applied voltage Voc is the third
The higher voltage shown in the figure ■ The lower voltage V from the old (VH)
D2 (VL). APD bias voltage■^p
.

が第3図のv2から低バイアス電圧vOとなり、APD
電流IAPDもこれに対応して第4図の工2から設定値
I3よりも小さな電流値工0に減少する。1このため比
較器5の出力信号x1は論理“0パに戻る。
becomes the low bias voltage vO from v2 in Fig. 3, and the APD
Correspondingly, the current IAPD also decreases from 2 in FIG. 4 to a current value 0 which is smaller than the set value I3. 1. Therefore, the output signal x1 of the comparator 5 returns to logic "0".

結局、X 1=” 0 ” + X 2 =” O” 
(’)状態全出力する(第2図■行)。
In the end, X 1 = “0” + X 2 = “O”
(') Output the entire state (line ■ in Figure 2).

このように、光入力がない間、APDIには低バイアス
電圧VOがかけられAPD電流IAPDが小さな値Io
に抑えられるため、信号が伝送されで来ない場合、それ
が光量低下に基づくものであれば、雑音電流に埋もれる
ことなく、検出をすることができる。
In this way, while there is no optical input, a low bias voltage VO is applied to APDI, and the APD current IAPD is set to a small value Io.
Therefore, if a signal is not transmitted and it is due to a decrease in the amount of light, it can be detected without being buried in noise current.

次に、上記X1= ”0” 、X2 = ”O” c7
)状態において、入射光量Prが増加した場合を考える
。この時、APDIには低い方の印加電圧VD2がかけ
られており、そのバイアス電圧VAPDは光入力がない
場合の低バイアス電圧vOより更に低くなるから、電流
量検出回路20の出力信号x1は“O゛のままである。
Next, the above X1 = “0”, X2 = “O” c7
), consider the case where the amount of incident light Pr increases. At this time, the lower applied voltage VD2 is applied to APDI, and the bias voltage VAPD is even lower than the low bias voltage vO when there is no optical input, so the output signal x1 of the current amount detection circuit 20 is " It remains O゛.

今、信号が正常な入射光量で伝送されて来たときは、伝
送信号検知回路30のピーク検知回路9で検知される伝
送信号のピーク値が、比較器10のしきい値Vth2を
越える。このため、比較器10の出力信号x2として論
理゛1″が出力される(X1=O、X2 =1 ;第2
図■行)。制[il路40がこれを受けて、AND回路
12の出力信号Yが論理” 1 ”となり、第2図■行
に示すように、光電圧発生回路50の出力電圧、即ち印
加電圧Vncが再び高い方の電圧Vn+に上昇し、これ
によって高バイアス電圧■1がAPDIにかかり、AP
DIの増倍率が高まる。高バイアス電圧V1になった場
合でも、APDを流れる電流IAPDは第4図の曲線C
に沿って、■1となるにすぎず、設定値I3 (Vth
t)を越えることはないので、Xlは” o ”のまま
である。
Now, when a signal is transmitted with a normal amount of incident light, the peak value of the transmission signal detected by the peak detection circuit 9 of the transmission signal detection circuit 30 exceeds the threshold value Vth2 of the comparator 10. Therefore, the logic "1" is output as the output signal x2 of the comparator 10 (X1=O, X2=1; second
Figure ■ row). When the control circuit 40 receives this, the output signal Y of the AND circuit 12 becomes logic "1", and the output voltage of the photovoltage generating circuit 50, that is, the applied voltage Vnc, becomes the logic "1" again, as shown in row (2) of FIG. The voltage increases to the higher voltage Vn+, which causes a high bias voltage ■1 to be applied to APDI.
The multiplication rate of DI increases. Even when the bias voltage V1 is high, the current IAPD flowing through the APD is curve C in Figure 4.
, the set value I3 (Vth
t), so Xl remains "o".

上記の動作により、入射光量Prが無い場合及び伝送さ
れて来る信号レベルが弱い場合、APDlに印加される
電圧Vocが低下し、信号が識別可能なレベルで伝送さ
れてきた場合のみ印加電圧■DCが上昇するため、正常
にアラーム動作を行わせることができ、またAPDIを
高い増倍率で動作させることができる。
Due to the above operation, when there is no incident light amount Pr or when the transmitted signal level is weak, the voltage Voc applied to APDl decreases, and only when the signal is transmitted at a discernible level, the applied voltage DC increases, the alarm can be activated normally and the APDI can be operated at a high multiplication factor.

第1図の実施例では、比較器5の出力信号を反転増幅器
から或る否定回路11で増幅したが、これに代えて、比
較器5への非反転入力端子への入力信号を反転増幅器で
増幅した後、比較器5へ入力することもできる。高電圧
発生回路50を制御するY信号を、NOT回路とAND
回路の組合せで作り出しているが、他の論理回路の組合
せで作ることもできる。
In the embodiment shown in FIG. 1, the output signal of the comparator 5 is amplified by an inverting amplifier and a certain inverting circuit 11, but instead, the input signal to the non-inverting input terminal of the comparator 5 is amplified by an inverting amplifier. It is also possible to input the signal to the comparator 5 after amplification. The Y signal that controls the high voltage generation circuit 50 is ANDed with the NOT circuit.
Although it is created by combining circuits, it can also be created by combining other logic circuits.

[発明の効果] 以上述べたように、本発明によれば、APDIのバイア
ス電圧VAP[1つまり印加電圧■Dcを高く設定して
も、この印加電圧Vocは入射光量に応じて切換わり、
入射光量がない場合には低バイアス電圧となるので、雑
音電流によるアラームの誤動作を生じない。
[Effects of the Invention] As described above, according to the present invention, even if the APDI bias voltage VAP [1, that is, the applied voltage Dc is set high, the applied voltage Voc changes according to the amount of incident light.
Since the bias voltage is low when there is no amount of incident light, alarm malfunctions due to noise current do not occur.

また、伝送信号が正常に存在する場合にAPDバイアス
電圧を従来より高く設定できるので、APDの高増倍率
動作が可能となり、光受信回路の特性改善が望める。
Furthermore, since the APD bias voltage can be set higher than before when a transmission signal exists normally, the APD can operate at a high multiplication factor, and the characteristics of the optical receiving circuit can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光受信回路の一実施例を示す図、第2
図はその高電圧発生回路の制御の入出力関係を示す図、
第3図はAPDバイアス回路への印加電圧とAPD端子
電圧との関係を示す図、第4図はAPD端子電圧とAP
Dを流れる電流との関係を示す図、第5図は従来の光受
信回路例を示す図、第6図は入射光量がない場合のAP
D端子電圧とAPDを流れる電流との関係を示す図であ
る。 図中、1はアバランシェ・フォトダイオード(APD)
、2.3は抵抗、4はコンデンサ、5は比較器、6はコ
ンデンサ、7,8は波形整形回路、9はピーク検出回路
、10は比較器、11はNOT回路、12はAND回路
、13は直流電圧発生器、14.15はコンデンサ、2
0は電流量検知回路、30は伝送信号検知回路、40は
制御回路、50は高電圧発生回路を示す。
FIG. 1 is a diagram showing an embodiment of the optical receiving circuit of the present invention, and FIG.
The figure shows the input/output relationship of the control of the high voltage generation circuit.
Figure 3 is a diagram showing the relationship between the voltage applied to the APD bias circuit and the APD terminal voltage, and Figure 4 is a diagram showing the relationship between the voltage applied to the APD bias circuit and the APD terminal voltage.
A diagram showing the relationship with the current flowing through D, Figure 5 is a diagram showing an example of a conventional optical receiver circuit, and Figure 6 is an example of an AP when there is no amount of incident light.
FIG. 3 is a diagram showing the relationship between the D terminal voltage and the current flowing through the APD. In the figure, 1 is an avalanche photodiode (APD)
, 2.3 is a resistor, 4 is a capacitor, 5 is a comparator, 6 is a capacitor, 7 and 8 are waveform shaping circuits, 9 is a peak detection circuit, 10 is a comparator, 11 is a NOT circuit, 12 is an AND circuit, 13 is a DC voltage generator, 14.15 is a capacitor, 2
0 is a current amount detection circuit, 30 is a transmission signal detection circuit, 40 is a control circuit, and 50 is a high voltage generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、アバランシェ・フォトダイオードと、このアバラン
シェ・フォトダイオードを流れる電流量が暗電流の急増
する領域における或る一定値を越えたことを検知する電
流量検知回路と、一定レベル以上の光伝送信号の有無を
検知する伝送信号検知回路と、アバランシェ・フォトダ
イオードを駆動するための出力電圧が可変の高電圧発生
回路と、前記電流量検知回路の出力信号と伝送信号検知
回路の出力信号との組合せによって高電圧発生回路の出
力電圧を加減し、一定レベル以上の光伝送信号が有る場
合のみ前記高電圧発生回路の出力電圧を上昇させる制御
回路とを設け、前記伝送信号検知回路の出力を利用して
アラーム信号を取出すことを特徴とする光受信回路。
1. An avalanche photodiode, a current detection circuit that detects when the amount of current flowing through the avalanche photodiode exceeds a certain value in a region where dark current rapidly increases, and an optical transmission signal that exceeds a certain level. A transmission signal detection circuit that detects the presence or absence of a transmission signal, a high voltage generation circuit whose output voltage is variable for driving an avalanche photodiode, and a combination of the output signal of the current amount detection circuit and the output signal of the transmission signal detection circuit. A control circuit is provided that adjusts the output voltage of the high voltage generation circuit and increases the output voltage of the high voltage generation circuit only when there is an optical transmission signal of a certain level or higher, and the output of the transmission signal detection circuit is used. An optical receiving circuit characterized by extracting an alarm signal.
JP63072048A 1988-03-28 1988-03-28 Optical reception circuit Pending JPH01245725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072048A JPH01245725A (en) 1988-03-28 1988-03-28 Optical reception circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072048A JPH01245725A (en) 1988-03-28 1988-03-28 Optical reception circuit

Publications (1)

Publication Number Publication Date
JPH01245725A true JPH01245725A (en) 1989-09-29

Family

ID=13478114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072048A Pending JPH01245725A (en) 1988-03-28 1988-03-28 Optical reception circuit

Country Status (1)

Country Link
JP (1) JPH01245725A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198658A (en) * 1990-07-19 1993-03-30 Telefonaktiebolaget L M Ericsson Transimpedance amplifier-input stage for an optical receiver
JP2005354138A (en) * 2004-06-08 2005-12-22 Fuji Xerox Co Ltd Optical communication apparatus and communication method of optical communication apparatus
JP2006074738A (en) * 2004-08-02 2006-03-16 Fuji Electric Systems Co Ltd Deterioration diagnostic device for optical signal transmission system
JP2007189294A (en) * 2006-01-11 2007-07-26 Nec Corp System, circuit and method for signal detection, and program
EP2146446A1 (en) 2008-07-17 2010-01-20 Mitsubishi Electric Corporation Optical receiver
WO2011099598A1 (en) * 2010-02-15 2011-08-18 日本電信電話株式会社 Optical signal turn-off detection circuit and optical receiver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198658A (en) * 1990-07-19 1993-03-30 Telefonaktiebolaget L M Ericsson Transimpedance amplifier-input stage for an optical receiver
JP2005354138A (en) * 2004-06-08 2005-12-22 Fuji Xerox Co Ltd Optical communication apparatus and communication method of optical communication apparatus
JP4622323B2 (en) * 2004-06-08 2011-02-02 富士ゼロックス株式会社 Optical communication device, optical communication system, and communication method of optical communication device
JP2006074738A (en) * 2004-08-02 2006-03-16 Fuji Electric Systems Co Ltd Deterioration diagnostic device for optical signal transmission system
JP2007189294A (en) * 2006-01-11 2007-07-26 Nec Corp System, circuit and method for signal detection, and program
EP2146446A1 (en) 2008-07-17 2010-01-20 Mitsubishi Electric Corporation Optical receiver
WO2011099598A1 (en) * 2010-02-15 2011-08-18 日本電信電話株式会社 Optical signal turn-off detection circuit and optical receiver
JP2011166659A (en) * 2010-02-15 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Optical signal cutoff detection circuit and optical receiver
US9025970B2 (en) 2010-02-15 2015-05-05 Nippon Telegraph And Telephone Corporation Optical signal cutoff detection circuit and optical receiver

Similar Documents

Publication Publication Date Title
US6714063B2 (en) Current pulse receiving circuit
EP0852435A2 (en) Bias voltage supply circuit for photoelectric converting element, and photodetection circuit
AU746734B2 (en) Offset control for burst-mode optical receiver
US5790295A (en) Gated integrator preamplifier for infrared data networks
US6480311B1 (en) Peak-hold circuit and an infrared communication device provided with such a circuit
JPH01245725A (en) Optical reception circuit
JP3999168B2 (en) Carrier detection circuit and infrared communication device using the same
US7547902B2 (en) Current transfer ratio temperature coefficient compensation method and apparatus for an optocoupler
JP2005101798A (en) Reception circuit for optical space communication
US5296697A (en) Detection circuit for maintaining constant signal transfer characteristics of a light-sensitive detector
US20080118252A1 (en) Optical coupler with reduced pulse width distortion
JPH08279784A (en) Infrared receiver
KR100322520B1 (en) Infrared receiver
US8536673B2 (en) Light receiving circuit
JP2003152509A (en) Comparator circuit and infrared signal receiving apparatus
JPS623625B2 (en)
JP2003152460A (en) Light receiver
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPH03296309A (en) Optical reception circuit
JPH0235831A (en) Light receiving/amplifying circuit
JPH10294622A (en) Reception circuit
KR101380785B1 (en) Infrared Signal Receiver of having Gain Hold Function
JPS5480095A (en) Agc system for optical receiver
KR101775937B1 (en) Improved ir receiver structure
JPH02105643A (en) Optical reception circuit