JPH05299494A - Electrostatic attracting apparatus - Google Patents

Electrostatic attracting apparatus

Info

Publication number
JPH05299494A
JPH05299494A JP10316192A JP10316192A JPH05299494A JP H05299494 A JPH05299494 A JP H05299494A JP 10316192 A JP10316192 A JP 10316192A JP 10316192 A JP10316192 A JP 10316192A JP H05299494 A JPH05299494 A JP H05299494A
Authority
JP
Japan
Prior art keywords
insulating film
wafer
electrode
electrostatic
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10316192A
Other languages
Japanese (ja)
Inventor
Toshimasa Kisa
俊正 木佐
Naomichi Abe
直道 阿部
Moritaka Nakamura
守孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10316192A priority Critical patent/JPH05299494A/en
Publication of JPH05299494A publication Critical patent/JPH05299494A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrostatic attracting apparatus which can increase a self-bias voltage of plasma by enlarging an electrostatic capacitance between a wafer and a high frequency application electrodes and can improve processing efficiency of wafer by increasing incident efficiency of ion to wafer. CONSTITUTION:In an electrostatic attracting apparatus wherein a first insulating film 4 is formed on a high frequency application electrode 1, an electrostatic attracting electrode 5 is formed on the first insulating film 4, a second insulating film 7 is formed on the electrostatic attracting electrode 5 and a wafer 8 is electrostatically attracted on the second insulating film 7, thickness of the first insulating film 4 provided between the high frequency application electrode 1 and the electrostatic attracting electrode 5 is set to 0.1mm or thicker but 1mm or thinner. Otherwise, a specific dielectric constant of the first insulating film 4 is set to 3 or larger, or an area of the first insulating film 4 is set to 80% or larger than the area of the wafer 8, or a specific resistance of the first insulating film 4 is set to 10<12> ohms-cm or smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電吸着装置に係り、
プラズマCVD、プラズマエッチング等の処理部に用い
られる静電吸着装置に適用することができ、特に、ウェ
ーハと高周波印加電極間の静電容量を大きくしてイオン
のウェーハへの入射効率を高めることができる静電吸着
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic attraction device,
It can be applied to an electrostatic adsorption device used in a processing unit such as plasma CVD and plasma etching, and in particular, it can increase the electrostatic capacitance between the wafer and the high frequency applying electrode to increase the incidence efficiency of ions on the wafer. The present invention relates to an electrostatic adsorption device that can

【0002】近年、半導体製造工程等で、絶縁膜や導電
膜等の各膜の加工工程で用いられるプラズマCVD、プ
ラズマエッチング、スパッタエッチング、反応性スパッ
タエッチング、ECR、CVD、ECR エッチング等
の処理における処理部に静電吸着装置を用いることは、
プロセスの重要な制御要因である温度制御のために重要
な技術となってきつつある。
In recent years, in processes such as plasma CVD, plasma etching, sputter etching, reactive sputter etching, ECR, CVD and ECR etching used in the process of processing each film such as an insulating film and a conductive film in a semiconductor manufacturing process or the like. Using an electrostatic adsorption device in the processing section
It is becoming an important technology for temperature control, which is an important control factor of the process.

【0003】[0003]

【従来の技術】従来の半導体製造に用いられる静電吸着
装置においては、カプリングコンデンサーを介してRF
電源が接続されたRF電極上に絶縁膜が形成され、この
絶縁膜上にRFフィルターが接続された静電吸着電極が
形成され、この静電吸着電極上に絶縁膜が形成され、こ
の絶縁膜上にウェーハが静電吸着されてなるものが知ら
れている。この静電吸着装置はウェーハの平面度を矯正
するとともに、真空中での熱伝達を行う方法として用い
られていた。このため、静電吸着電極とウェーハ間の絶
縁膜について、絶縁耐圧がもつかぎり薄くする等して吸
着力を大きくする工夫がなされてきた。
2. Description of the Related Art In a conventional electrostatic chucking device used for semiconductor manufacturing, RF is passed through a coupling capacitor.
An insulating film is formed on the RF electrode to which the power source is connected, an electrostatic adsorption electrode to which an RF filter is connected is formed on the insulating film, and an insulating film is formed on the electrostatic adsorption electrode. It is known that a wafer is electrostatically adsorbed on the wafer. This electrostatic adsorption device has been used as a method of correcting the flatness of a wafer and performing heat transfer in a vacuum. For this reason, the insulating film between the electrostatic attraction electrode and the wafer has been devised so that the attraction force is increased by reducing the withstand voltage as much as possible.

【0004】[0004]

【発明が解決しようとする課題】上記したように、従来
の静電吸着装置では、静電吸着電極上に形成された絶縁
膜表面にウェーハを静電吸着するのを、ウェーハと静電
吸着電極間の絶縁膜を薄くする等規定して行っていたた
め、十分な静電吸着力でウェーハを絶縁膜表面に静電吸
着することができるという利点を有する。このため、静
電吸着電極と高周波印加電極との間の絶縁膜については
考慮されていず、この絶縁膜の静電容量は考慮されてい
なかった。このため、静電吸着電極と高周波印加電極と
の間の絶縁膜の厚さを機械的強度が十分となるように厚
く(3mm以上)すると、プラズマのセルフバイアス電
圧の低下を招き、反応性スパッタエッチング処理等では
処理の異方性の低下、処理速度の低下という問題が発生
した。
As described above, in the conventional electrostatic attraction device, the wafer and the electrostatic attraction electrode are used to electrostatically attract the wafer to the surface of the insulating film formed on the electrostatic attraction electrode. Since the insulating film between them is specified to be thin, it has an advantage that the wafer can be electrostatically attracted to the surface of the insulating film with a sufficient electrostatic attraction force. Therefore, the insulating film between the electrostatic attraction electrode and the high frequency applying electrode is not considered, and the capacitance of this insulating film is not considered. Therefore, if the thickness of the insulating film between the electrostatic attraction electrode and the high-frequency applying electrode is made thick enough (3 mm or more) so that the mechanical strength is sufficient, the self-bias voltage of the plasma is lowered and the reactive sputtering is caused. In the etching process and the like, problems such as a decrease in process anisotropy and a decrease in process speed have occurred.

【0005】そこで、本発明は、ウェーハと高周波印加
電極間の静電容量を大きくしてプラズマのセルフバイア
ス電位を高めることができ、イオンのウェーハへの入射
効率を高めてウェーハの処理効率を向上させることがで
きる静電吸着装置を提供することを目的としている。
Therefore, according to the present invention, the electrostatic capacity between the wafer and the high frequency applying electrode can be increased to increase the self-bias potential of plasma, and the efficiency of incidence of ions on the wafer can be increased to improve the processing efficiency of the wafer. It is an object of the present invention to provide an electrostatic attraction device that can be used.

【0006】[0006]

【課題を解決するための手段】本発明による静電吸着装
置は上記目的達成のため、高周波印加電極上に第1の絶
縁膜が形成され、該第1の絶縁膜上に静電吸着電極が形
成され、該静電吸着電極上に第2の絶縁膜が形成され、
該第2の絶縁膜上にウェーハが静電吸着されてなる静電
吸着装置において、該高周波印加電極と該静電吸着電極
間の該第1の絶縁膜の膜厚を0.1 mm以上1mm以下に
するか、あるいは該第1の絶縁膜の比誘電率を3以上に
するか、あるいは該第1の絶縁膜の面積を該ウェーハ面
積の80%以上にするか、若しくは該第1の絶縁膜の比抵
抗を1012Ωcm以下にするものである。
In order to achieve the above object, an electrostatic chucking device according to the present invention has a first insulating film formed on a high frequency applying electrode, and an electrostatic chucking electrode is formed on the first insulating film. And a second insulating film is formed on the electrostatic attraction electrode,
In an electrostatic chucking device in which a wafer is electrostatically chucked on the second insulating film, the film thickness of the first insulating film between the high frequency applying electrode and the electrostatic chucking electrode is 0.1 mm or more and 1 mm or less. Or the relative dielectric constant of the first insulating film is 3 or more, or the area of the first insulating film is 80% or more of the wafer area, or The specific resistance is set to 10 12 Ωcm or less.

【0007】本発明においては、前記ウェーハと前記静
電吸着電極間の前記第2の絶縁膜の膜厚を0.1 mm以上
1mm以下にするか、あるいは該第2の絶縁膜の比誘電
率を3以上にするか、あるいは該第2の絶縁膜の面積を
該ウェーハ面積の80%以上にするか、若しくは該第2の
絶縁膜の比抵抗を1012Ωcm以下にする場合であっても
よく、この場合、本発明の効果を効率良く得ることがで
きる他、静電チェックの吸着力も十分得ることができ
る。
In the present invention, the film thickness of the second insulating film between the wafer and the electrostatic attraction electrode is set to 0.1 mm or more and 1 mm or less, or the relative dielectric constant of the second insulating film is set to 3 mm. Or more, or the area of the second insulating film may be 80% or more of the wafer area, or the specific resistance of the second insulating film may be 10 12 Ωcm or less, In this case, the effect of the present invention can be efficiently obtained, and also the electrostatic check suction force can be sufficiently obtained.

【0008】本発明においては、2極式静電吸着装置に
好ましく適用させることができる。本発明による静電吸
着装置は上記目的達成のため、静電吸着電極を兼ねた高
周波印加電極上に絶縁膜が形成され、該絶縁膜上にウェ
ーハが静電吸着されてなる静電吸着装置において、該静
電吸着電極を兼ねた高周波印加電極と該ウェーハ間の該
絶縁膜の膜厚を0.1 mm以上1mm以下にするか、ある
いは該絶縁膜の比誘電率を3以上にするか、あるいは該
絶縁膜の面積を該ウェーハ面積の80%以上にするか、若
しくは該絶縁膜の比抵抗を1012Ωcm以下にするもので
ある。
The present invention can be preferably applied to a two-pole type electrostatic adsorption device. In order to achieve the above object, the electrostatic chucking device according to the present invention is an electrostatic chucking device in which an insulating film is formed on a high-frequency applying electrode that also serves as an electrostatic chucking electrode, and a wafer is electrostatically chucked on the insulating film. , The thickness of the insulating film between the high frequency applying electrode also serving as the electrostatic attraction electrode and the wafer is 0.1 mm or more and 1 mm or less, or the relative dielectric constant of the insulating film is 3 or more, or The area of the insulating film is 80% or more of the wafer area, or the specific resistance of the insulating film is 10 12 Ωcm or less.

【0009】本発明において、膜厚の下限を0.1 mmと
したのは、0.1 mmより小さくすると、絶縁性能が著し
く劣ってしまい実用上好ましくないからであり、膜厚の
上限を1mmとしたのは、1mmより大きくすると、ウ
ェーハとRF電極間の静電容量が小さくなって実用上好
ましくないからである。また、比誘電率の上限を3とし
たのは、3より小さくすると、ウェーハとRF電極間の
静電容量が小さくなって実用上好ましくないからであ
り、また面積をウェーハ面積の80%以上にしたのは、80
%より小さくすると、ウェーハとRF電極間の静電容量
が小さくなって実用上好ましくないからである。なお、
面積はウェーハ面積の100 %以下が好ましく、この場
合、絶縁膜が(スパッタ等)処理されることなくウェー
ハのみを処理することができる。比抵抗の上限を1012Ω
cmとしたのは、1012Ωcmより大きくすると、ウェー
ハとRF電極間の結合容量が小さくなって実用上好まし
くないからである。
In the present invention, the lower limit of the film thickness is set to 0.1 mm, because if it is smaller than 0.1 mm, the insulation performance is remarkably deteriorated and it is not preferable in practical use. Therefore, the upper limit of the film thickness is set to 1 mm. If it is larger than 1 mm, the electrostatic capacitance between the wafer and the RF electrode becomes small, which is not preferable for practical use. The upper limit of the relative permittivity is set to 3 because if it is smaller than 3, the electrostatic capacity between the wafer and the RF electrode becomes small, which is not preferable in practical use, and the area is set to 80% or more of the wafer area. I did 80
If it is smaller than%, the electrostatic capacity between the wafer and the RF electrode becomes small, which is not preferable in practical use. In addition,
The area is preferably 100% or less of the wafer area. In this case, only the wafer can be processed without processing the insulating film (such as sputtering). The upper limit of resistivity is 10 12 Ω
The reason why it is set to cm is that if it is larger than 10 12 Ωcm, the coupling capacitance between the wafer and the RF electrode becomes small, which is not preferable in practical use.

【0010】[0010]

【作用】図1は本発明の原理説明図のための静電吸着装
置の構成を示す断面図である。図1において、1はカプ
リングコンデンサー2を介してRF電源3と接続された
RF電極であり、4はこのRF電極1上に形成された絶
縁膜であり、5はこの絶縁膜4上に形成されたRFフィ
ルター6と接続された一極式の静電吸着電極であり、7
はこの静電吸着電極5上に形成された絶縁膜であり、8
はこの絶縁膜7上に静電吸着されるウェーハである。
FIG. 1 is a sectional view showing the structure of an electrostatic attraction device for explaining the principle of the present invention. In FIG. 1, 1 is an RF electrode connected to an RF power source 3 via a coupling capacitor 2, 4 is an insulating film formed on the RF electrode 1, and 5 is an insulating film formed on the insulating film 4. Is a one-pole type electrostatic adsorption electrode connected to the RF filter 6 and
Is an insulating film formed on the electrostatic attraction electrode 5, and 8
Is a wafer electrostatically adsorbed on the insulating film 7.

【0011】図1に示す式から判るように、静電チェ
ックの吸着力Fは静電吸着電極5とウェーハ8間の絶縁
膜7の厚さ(距離da)を適宜小さくすることにより大
きくすることができる。また、式から判るように、
ウェーハ8のRF結合容量Cはウェーハ8とRF電極1
間の静電容量Cwを大きくすることにより大きくするこ
とができ、この静電容量CwはRF電極1と静電吸着電
極5間の絶縁膜4の厚さ(距離db)を薄くするか、あ
るいは比誘電率εを高くするか、若しくは面積Sを広く
とることにより大きくすることができる。
As can be seen from the equation shown in FIG. 1, the attraction force F of the electrostatic check is increased by appropriately reducing the thickness (distance da) of the insulating film 7 between the electrostatic attraction electrode 5 and the wafer 8. You can Also, as you can see from the formula,
The RF coupling capacitance C of the wafer 8 is the wafer 8 and the RF electrode 1
The capacitance Cw can be increased by increasing the capacitance Cw between them. This capacitance Cw reduces the thickness (distance db) of the insulating film 4 between the RF electrode 1 and the electrostatic adsorption electrode 5, or It can be increased by increasing the relative permittivity ε or increasing the area S.

【0012】そこで、本発明では、静電吸着装置の静電
吸着電極5とRF電極1の間の絶縁膜4の膜厚(0.1 m
m以上1mm以下)を薄くするか、あるいは絶縁膜4の
比誘電率(3以上)を高くするか、あるいは絶縁膜4の
面積(ウェーハ8面積の80%以上)を広くとるか、若し
くは絶縁膜4の比抵抗(1012Ωcm以下)を低くするよ
うに構成したため、ウェーハ8とRF電極1間の静電容
量Cwを大きくすることができる。このため、プラズマ
のセルフバイアス電位を高めることができ、イオンのウ
ェーハ8への入射効率を高めてウェーハ8の処理効率を
向上させることができる。これについては図面を用いて
具体的に説明する。なお、ここでは絶縁膜4と絶縁膜7
のトータル膜厚(RF電極1とウェーハ8間の距離da
+db)を振っている場合を示しているが、式から判
るように少なくとも絶縁膜4の膜厚(距離da)を小さ
くすれば本発明の効果を得ることができる。
Therefore, in the present invention, the film thickness (0.1 m) of the insulating film 4 between the electrostatic attraction electrode 5 and the RF electrode 1 of the electrostatic attraction device.
m or more and 1 mm or less), or increase the relative dielectric constant of the insulating film 4 (3 or more), or increase the area of the insulating film 4 (80% or more of the area of the wafer 8), or the insulating film Since the specific resistance of No. 4 (10 12 Ωcm or less) is reduced, the electrostatic capacitance Cw between the wafer 8 and the RF electrode 1 can be increased. Therefore, the self-bias potential of plasma can be increased, the efficiency of incidence of ions on the wafer 8 can be increased, and the processing efficiency of the wafer 8 can be improved. This will be specifically described with reference to the drawings. In addition, here, the insulating film 4 and the insulating film 7
Total film thickness (distance between RF electrode 1 and wafer 8 da
Although the case where + db) is shaken is shown, the effect of the present invention can be obtained by reducing at least the film thickness (distance da) of the insulating film 4 as can be seen from the equation.

【0013】本発明では、図2に示す様に、ウェーハ8
とRF電極1間の絶縁膜4、7の厚さを薄くすると、R
F電極1とウェーハ8間の静電容量Cwを増加させるこ
とができるのが判る。これに伴い、RFのカプリングコ
ンデンサーとの合成容量Cも図3に示すように増加させ
ることができる。そして、これに伴い、図4に示すよう
に、ウェーハのRFバイアス電位も高くすることがで
き、イオンのウェーハへの入射効率を高くすることがで
きる。更に、図5に示すように、エッチングレートを大
きくすることができる。なお、図5はSiO2 の反応性
スパッタエッチングにおけるエッチングレートを示す図
である。
In the present invention, as shown in FIG.
When the thickness of the insulating films 4 and 7 between the RF electrode 1 and the RF electrode 1 is reduced, R
It can be seen that the electrostatic capacitance Cw between the F electrode 1 and the wafer 8 can be increased. Along with this, the combined capacitance C of the RF with the coupling capacitor can also be increased as shown in FIG. Along with this, as shown in FIG. 4, the RF bias potential of the wafer can also be increased, and the incidence efficiency of ions on the wafer can be increased. Further, as shown in FIG. 5, the etching rate can be increased. FIG. 5 is a diagram showing the etching rate in the reactive sputter etching of SiO 2 .

【0014】[0014]

【実施例】以下、本発明を図面に基づいて説明する。 (実施例1)図6は、本発明の実施例1に則した静電吸
着装置の構造を示す断面図であり、ここでは一極式の静
電吸着装置を示している。図6において、図1と同一符
号は同一または担当部分を示す。本実施例では、静電吸
着装置の静電吸着電極5とRF電極1間の絶縁膜4の膜
厚と、静電吸着電極5とウェーハ8間の絶縁膜7の膜厚
を各々0.3mmにして構成する。このため、前述の如く
静電チェックの吸着力を十分とった状態でウェーハ8と
RF電極1間の静電容量を大きくすることができ、プラ
ズマのセルフバイアス電位を高めることができる。従っ
て、イオンのウェーハ8への入射効率を高めてウェーハ
8の処理効率を向上させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 6 is a sectional view showing the structure of an electrostatic chucking device according to the first embodiment of the present invention, in which a one-pole type electrostatic chucking device is shown. 6, the same reference numerals as those in FIG. 1 indicate the same or responsible parts. In this embodiment, the thickness of the insulating film 4 between the electrostatic attraction electrode 5 and the RF electrode 1 of the electrostatic attraction device and the thickness of the insulating film 7 between the electrostatic attraction electrode 5 and the wafer 8 are set to 0.3 mm, respectively. Configure. Therefore, as described above, the electrostatic capacitance between the wafer 8 and the RF electrode 1 can be increased while the electrostatic check attraction force is sufficient, and the plasma self-bias potential can be increased. Therefore, the efficiency of incidence of ions on the wafer 8 can be increased and the processing efficiency of the wafer 8 can be improved.

【0015】なお、実施例1では、絶縁膜4、7の膜厚
を小さくしてRF電極1とウェーハ8間の静電容量を大
きくする場合について説明したが、本発明においては、
絶縁膜4、7の比誘電率(3以上)を大きくする場合
や、絶縁膜4、7面積を(ウェーハ8面積に対して80%
以上)を広くする場合、あるいは絶縁膜4、7の比抵抗
(1012Ωcm以下)を小さくする場合であってもよい。 (実施例2)図7は本発明の実施例2に則した静電吸着
装置の構造を示す断面図であり、ここでは2極式の静電
吸着装置を示している。図7において、図1、6と同一
符号は同一または相当部分を示す。本実施例は2極式の
静電吸着電極5を用いて構成した場合であり、実施例1
と同様に静電吸着電極5とRF電極1間の絶縁膜4の膜
厚と、静電吸着電極5とウェーハ8間の絶縁膜7の膜厚
とを各々0.3mmにして構成する。このため、前述の如
く静電チェックの吸着力を十分とった状態でウェーハ8
をRF電極1間の静電容量を大きくすることができ、プ
ラズマのセルフバイアス電位を高めることができる。従
って、イオンのウェーハ8への入射効率を高めてウェー
ハ8の処理効率を向上させることができる。
In the first embodiment, the case where the film thickness of the insulating films 4 and 7 is reduced to increase the electrostatic capacitance between the RF electrode 1 and the wafer 8 has been described.
When increasing the relative dielectric constant (3 or more) of the insulating films 4 and 7, the area of the insulating films 4 and 7 (80% relative to the area of the wafer 8%
The above may be widened or the specific resistance (10 12 Ωcm or less) of the insulating films 4 and 7 may be reduced. (Embodiment 2) FIG. 7 is a sectional view showing the structure of an electrostatic chucking device according to a second embodiment of the present invention, in which a two-pole type electrostatic chucking device is shown. 7, the same reference numerals as those in FIGS. 1 and 6 denote the same or corresponding parts. The present embodiment is a case where the electrostatic attraction electrode 5 of the two-pole type is used.
Similarly, the thickness of the insulating film 4 between the electrostatic attraction electrode 5 and the RF electrode 1 and the thickness of the insulating film 7 between the electrostatic attraction electrode 5 and the wafer 8 are each set to 0.3 mm. For this reason, as described above, the wafer 8 is kept in a state where the electrostatic check has a sufficient suction force.
The capacitance between the RF electrodes 1 can be increased, and the self-bias potential of plasma can be increased. Therefore, the efficiency of incidence of ions on the wafer 8 can be increased and the processing efficiency of the wafer 8 can be improved.

【0016】なお、実施例2では、絶縁膜4、7の膜厚
を小さくしてRF電極1とウェーハ8間の静電容量を大
きくする場合について説明したが、本発明においては、
絶縁膜4、7の比誘電率(3以上)を大きくする場合
や、絶縁膜4、7面積(ウェーハ8面積に対して80%以
上)を広くする場合、あるいは絶縁膜4、7の比抵抗を
(1012Ωcm以下)を小さくする場合であってもよい。 (実施例3)図8は、本発明の実施例3に則した静電吸
着装置の構造を示す断面図であり、ここでは一極式の静
電吸着装置を示している。図8において、図1、6、7
と同一符号は同一または相当部分を示し、11は静電吸着
電極を兼ねた高周波印加電極であり、12はこの静電吸着
電極を兼ねた高周波印加電極11に形成された絶縁膜であ
る。
In the second embodiment, the case where the film thickness of the insulating films 4 and 7 is reduced to increase the capacitance between the RF electrode 1 and the wafer 8 has been described.
When increasing the relative permittivity (3 or more) of the insulating films 4 and 7, or widening the area of the insulating films 4 and 7 (80% or more with respect to the area of the wafer 8), or the specific resistance of the insulating films 4 and 7. (10 12 Ωcm or less) may be reduced. (Embodiment 3) FIG. 8 is a sectional view showing the structure of an electrostatic chucking device according to a third embodiment of the present invention, in which a one-pole type electrostatic chucking device is shown. In FIG. 8, FIGS.
The same reference numerals denote the same or corresponding portions, 11 is a high frequency applying electrode also serving as an electrostatic attraction electrode, and 12 is an insulating film formed on the high frequency applying electrode 11 also serving as an electrostatic attraction electrode.

【0017】本実施例では、静電吸着装置の静電吸着電
極を兼ねた高周波印加電極11とウェーハ8間の絶縁膜12
の膜厚を0.3mmにして構成する。このため、この静電
チェックの吸着力を十分とった状態でウェーハ8と静電
吸着電極を兼ねた高周波印加電極11間の静電容量を大き
くすることができ、プラズマのセルフバイアス2電位を
高めることができる。従って、イオンのウェーハ8への
入射効率を高めてウェーハ8の処理効率を向上させるこ
とができる。
In this embodiment, the insulating film 12 between the high frequency applying electrode 11 also serving as the electrostatic attraction electrode of the electrostatic attraction device and the wafer 8 is used.
The film thickness is set to 0.3 mm. Therefore, the electrostatic capacity between the wafer 8 and the high-frequency applying electrode 11 which also functions as an electrostatic attraction electrode can be increased while the attraction force of this electrostatic check is sufficiently obtained, and the self-bias 2 potential of plasma is increased. be able to. Therefore, the efficiency of incidence of ions on the wafer 8 can be increased and the processing efficiency of the wafer 8 can be improved.

【0018】なお、実施例3では、絶縁膜12の膜厚を小
さくして静電吸着電極を兼ねた高周波印加電極11とウェ
ーハ8間の静電容量を大きくする場合について説明した
が、本発明においては、絶縁膜12の比誘電率(3以上)
を大きくする場合や、絶縁膜12の面積(ウェーハ8面積
に対して80%以上)を広くする場合、あるいは絶縁膜12
の比抵抗(1012Ωcm以下)を小さくする場合であって
もよい。
In the third embodiment, the case where the film thickness of the insulating film 12 is reduced to increase the capacitance between the high frequency applying electrode 11 also serving as the electrostatic attraction electrode and the wafer 8 has been described. In, the relative dielectric constant of the insulating film 12 (3 or more)
Or when increasing the area of the insulating film 12 (80% or more of the wafer 8 area),
The specific resistance (10 12 Ωcm or less) may be reduced.

【0019】[0019]

【発明の効果】本発明によれば、ウェーハと高周波印加
電極間の静電容量を大きくしてプラズマのセルフバイア
ス電位を高めることができ、イオンのウェーハへの入射
効率を高めてウェーハの処理効率を向上させることがで
きるという効果がある。
According to the present invention, the self-bias potential of plasma can be increased by increasing the electrostatic capacitance between the wafer and the high frequency applying electrode, and the efficiency of incidence of ions on the wafer can be increased to improve the wafer processing efficiency. There is an effect that can improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明のための静電吸着装置の構造
を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of an electrostatic attraction device for explaining the principle of the present invention.

【図2】本発明の原理説明のためのRF電極とウェーハ
間距離を振った時のウェーハとRF電極間の静電容量を
示す図である。
FIG. 2 is a diagram showing the electrostatic capacitance between the wafer and the RF electrode when the distance between the RF electrode and the wafer is changed for explaining the principle of the present invention.

【図3】本発明の原理説明のためのRF電極とウェーハ
間距離を振った時のウェーハのRF結合容量を示す図で
ある。
FIG. 3 is a diagram showing the RF coupling capacitance of the wafer when the distance between the RF electrode and the wafer is changed for explaining the principle of the present invention.

【図4】本発明の原理説明のためのRF電極とウェーハ
間距離を振った時のRFバイアス電位を示す図である。
FIG. 4 is a diagram showing an RF bias potential when the distance between the RF electrode and the wafer is changed for explaining the principle of the present invention.

【図5】本発明の原理説明のためのRF電極とウェーハ
間距離を振った時のSiO2 エッチングレートを示す図
である。
FIG. 5 is a diagram showing the SiO 2 etching rate when the distance between the RF electrode and the wafer is changed for explaining the principle of the present invention.

【図6】本発明の実施例1に則した静電吸着装置の構造
を示す断面図である。
FIG. 6 is a cross-sectional view showing the structure of the electrostatic attraction device according to the first embodiment of the present invention.

【図7】本発明の実施例2に則した静電吸着装置の構造
を示す断面図である。
FIG. 7 is a cross-sectional view showing a structure of an electrostatic attraction device according to a second embodiment of the present invention.

【図8】本発明の実施例3に則した静電吸着装置の構造
を示す断面図である。
FIG. 8 is a cross-sectional view showing the structure of an electrostatic attraction device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 RF電極 2 カプリングコンデンサー 3 RF電源 4 絶縁膜 5、5a、5b 静電吸着電極 6 RFフィルター 7 絶縁膜 8 ウェーハ 11 静電吸着電極を兼ねた高周波印加電極 12 絶縁膜 1 RF Electrode 2 Coupling Capacitor 3 RF Power Supply 4 Insulation Film 5, 5a, 5b Electrostatic Adsorption Electrode 6 RF Filter 7 Insulation Film 8 Wafer 11 High Frequency Applying Electrode 12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高周波印加電極(1)上に第1の絶縁膜
(4)が形成され、該第1の絶縁膜(4)上に静電吸着
電極(5)が形成され、該静電吸着電極(5)上に第2
の絶縁膜(7)が形成され、該第2の絶縁膜(7)上に
ウェーハ(8)が静電吸着されてなる静電吸着装置にお
いて、 該高周波印加電極(1)と該静電吸着電極(5)間の該
第1の絶縁膜(4)の膜厚を0.1 mm以上1mm以下に
するか、あるいは該第1の絶縁膜(4)の比誘電率を3
以上にするか、あるいは該第1の絶縁膜(4)の面積を
該ウェーハ(8)面積の80%以上にするか、若しくは該
第1の絶縁膜(4)の比抵抗を1012Ωcm以下にするこ
とを特徴とする静電吸着装置
1. A first insulating film (4) is formed on a high frequency applying electrode (1), and an electrostatic adsorption electrode (5) is formed on the first insulating film (4). Second on the adsorption electrode (5)
Of the wafer (8) is electrostatically adsorbed on the second insulating film (7), the high-frequency applying electrode (1) and the electrostatic adsorption device. The film thickness of the first insulating film (4) between the electrodes (5) is set to 0.1 mm or more and 1 mm or less, or the relative dielectric constant of the first insulating film (4) is set to 3
Or more, the area of the first insulating film (4) is 80% or more of the area of the wafer (8), or the specific resistance of the first insulating film (4) is 10 12 Ωcm or less. Electrostatic attraction device characterized by
【請求項2】 前記ウェーハ(8)と前記静電吸着電極
(5)間の前記第2の絶縁膜(7)の膜厚を0.1 mm以
上1mm以下にするか、あるいは該第2の絶縁膜(7)
の比誘電率を3以上にするか、あるいは該第2の絶縁膜
(7)の面積を該ウェーハ(8)面積の80%以上にする
か、若しくは該第2の絶縁膜の比抵抗を1012Ωcm以下
にすることを特徴とする請求項1記載の静電吸着装置。
2. The film thickness of the second insulating film (7) between the wafer (8) and the electrostatic attraction electrode (5) is set to 0.1 mm or more and 1 mm or less, or the second insulating film (7)
The relative dielectric constant of 3 or more, or the area of the second insulating film (7) is 80% or more of the area of the wafer (8), or the specific resistance of the second insulating film is 10 or more. The electrostatic attraction device according to claim 1, wherein the electrostatic attraction device has a resistance of 12 Ωcm or less.
【請求項3】 前記装置は2極式静電吸着装置であるこ
とを特徴とする請求項1乃至4記載の静電吸着装置。
3. The electrostatic attraction device according to claim 1, wherein the device is a two-pole type electrostatic attraction device.
【請求項4】 静電吸着電極を兼ねた高周波印加電極
(11)上に絶縁膜(12)が形成され、該絶縁膜(12)上
にウェーハ(8)が静電吸着されてなる静電吸着装置に
おいて、 該静電吸着電極を兼ねた高周波印加電極(11)と該ウェ
ーハ(8)間の該絶縁膜(12)の膜厚を0.1 mm以上1
mm以下にするか、あるいは該絶縁膜(12) の比誘電率
を3以上にするか、あるいは該絶縁膜(12)の面積を該
ウェーハ(8)面積の80%以上にするか、若しくは該絶
縁膜(12)の比抵抗を1012Ωcm以下にすることを特徴
とする静電吸着装置。
4. An electrostatic device comprising an insulating film (12) formed on a high-frequency applying electrode (11) also serving as an electrostatic attraction electrode, and a wafer (8) being electrostatically attracted onto the insulating film (12). In the adsorption device, the film thickness of the insulating film (12) between the high frequency applying electrode (11) also serving as the electrostatic adsorption electrode and the wafer (8) is 0.1 mm or more 1
mm or less, or the dielectric constant of the insulating film (12) is 3 or more, or the area of the insulating film (12) is 80% or more of the area of the wafer (8), or An electrostatic adsorption device characterized in that the specific resistance of the insulating film (12) is 10 12 Ωcm or less.
JP10316192A 1992-04-22 1992-04-22 Electrostatic attracting apparatus Withdrawn JPH05299494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316192A JPH05299494A (en) 1992-04-22 1992-04-22 Electrostatic attracting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316192A JPH05299494A (en) 1992-04-22 1992-04-22 Electrostatic attracting apparatus

Publications (1)

Publication Number Publication Date
JPH05299494A true JPH05299494A (en) 1993-11-12

Family

ID=14346786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316192A Withdrawn JPH05299494A (en) 1992-04-22 1992-04-22 Electrostatic attracting apparatus

Country Status (1)

Country Link
JP (1) JPH05299494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162618A (en) * 2014-02-28 2015-09-07 株式会社日立ハイテクノロジーズ plasma processing apparatus
JP2023010807A (en) * 2017-09-29 2023-01-20 住友大阪セメント株式会社 Electrostatic chuck device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162618A (en) * 2014-02-28 2015-09-07 株式会社日立ハイテクノロジーズ plasma processing apparatus
JP2023010807A (en) * 2017-09-29 2023-01-20 住友大阪セメント株式会社 Electrostatic chuck device

Similar Documents

Publication Publication Date Title
JP3954667B2 (en) Method for manufacturing ferroelectric capacitor
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
EP1193746A1 (en) Apparatus for plasma processing
JP2000323456A (en) Plasma processing device and electrode used therefor
JPH04186653A (en) Electrostatic chuck
JP3292270B2 (en) Electrostatic suction device
JPH05160076A (en) Dry etching device
WO2001069642A3 (en) Plasma deposition method and system
US20090065895A1 (en) MIM capacitor high-k dielectric for increased capacitance density
JP5203663B2 (en) Substrate structure and method for manufacturing substrate structure
JPH05299494A (en) Electrostatic attracting apparatus
JPH1027780A (en) Plasma treating method
JPH0152899B2 (en)
JP2880920B2 (en) Etching equipment
JPS6219060B2 (en)
JP2003100720A (en) Plasma apparatus
JP4026702B2 (en) Plasma etching apparatus and plasma ashing apparatus
JP2000252267A (en) Lower electrode structure and plasma process device using the same
JP2001217304A (en) Substrate stage, substrate processing apparatus and method using the substrate stage
JP3101420B2 (en) Dry etching equipment
KR20030094493A (en) Chuck for supporting a substrate
JPS61174633A (en) Vacuum discharge treating device
JPH05190654A (en) Electrostatic attraction method
JPH10209126A (en) Plasma etching equipment
JPH0451473Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706