JPH05299204A - Manufacture of ptc resistor - Google Patents
Manufacture of ptc resistorInfo
- Publication number
- JPH05299204A JPH05299204A JP4096902A JP9690292A JPH05299204A JP H05299204 A JPH05299204 A JP H05299204A JP 4096902 A JP4096902 A JP 4096902A JP 9690292 A JP9690292 A JP 9690292A JP H05299204 A JPH05299204 A JP H05299204A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- ptc
- graphite
- ptc resistor
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、PTC抵抗体の製造方
法に関し、特に過電流(短絡電流)を抑制する限流抵抗
体に利用できるPTC{Positive Temperature Coeffic
ient}効果を持つ抵抗体組成物の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a PTC resistor, and more particularly to a PTC {Positive Temperature Coeffic which can be used as a current limiting resistor for suppressing overcurrent (short circuit current).
The present invention relates to a method for producing a resistor composition having the effect of “ientient”.
【0002】[0002]
【従来の技術】従来、大きなPTC効果を持つセラミッ
クスとしては、BaTiO3(チタン酸バリウム)とV2O
3(三酸化バナジウム)とが知られている。2. Description of the Related Art Conventional ceramics having a large PTC effect are BaTiO 3 (barium titanate) and V 2 O.
3 (vanadium trioxide) is known.
【0003】上記BaTiO3はポジスター(正特性サー
ミスター)として弱電用には広く使われているが、電力
用には次の2つの理由によって使用できない。The BaTiO 3 is widely used as a posistor (positive characteristic thermistor) for weak electric current, but cannot be used for electric power for the following two reasons.
【0004】1.室温の比抵抗値が小さなものでも数Ω
cm以上あり、電力用に使用するとワットロスが大きくな
る。1. A few Ω even if the resistivity value at room temperature is small
Since it is more than cm, the watt loss becomes large when used for electric power.
【0005】2.PTC効果の出現は粒界の機構に関係
しており、温度の上昇により粒界高抵抗になるが、温度
があまり高くなると吸収したエネルギーのために粒界破
壊を起こしてしまう。2. The appearance of the PTC effect is related to the mechanism of the grain boundary, and the resistance of the grain boundary becomes high due to the rise of temperature, but if the temperature becomes too high, the energy absorbed will cause the grain boundary destruction.
【0006】一方、V2O3はBaTiO3に比較して比抵
抗が4桁程度小さくできるが、セラミックスとしては焼
結性が悪く、大きな電流を流したときの耐熱衝撃性に問
題がある。このため、V2O3の強度の向上が望まれてい
る。On the other hand, although the specific resistance of V 2 O 3 can be reduced by about 4 orders of magnitude as compared with BaTiO 3 , it has poor sinterability as a ceramic and has a problem in thermal shock resistance when a large current is applied. Therefore, it is desired to improve the strength of V 2 O 3 .
【0007】[0007]
【発明が解決しようとする課題】通常、V2O3系のPT
C抵抗抵抗体は、V2O3、V2O5等の酸化バナジウムに
微量のCr2O3,Al2O3, Sc2O3等のPTC特性を誘
発する副成分を添加混合し、これを水素雰囲気中で還元
焼成して得られる。Usually, V 2 O 3 -based PT is used.
The C-resistive resistor is obtained by adding vanadium oxide such as V 2 O 3 or V 2 O 5 with a trace amount of an auxiliary component such as Cr 2 O 3 , Al 2 O 3 or Sc 2 O 3 which induces PTC characteristics. This can be obtained by reduction firing in a hydrogen atmosphere.
【0008】上記焼成工程は、1300℃〜1700℃程度の高
温にて水素をフローさせる必要があるのでランニングコ
ストが高く、設備費も高い。[0008] In the above firing step, since it is necessary to flow hydrogen at a high temperature of about 1300 ° C to 1700 ° C, running costs are high and equipment costs are high.
【0009】また、水素還元等の現在の還元方法は、抵
抗体表面から還元を行っているので、抵抗体自体が大口
径であったり、厚物形状である場合は形状効果が発生す
るので均一な特性が得られにくい。In addition, in the current reduction method such as hydrogen reduction, reduction is performed from the surface of the resistor, and therefore, when the resistor itself has a large diameter or a thick shape, a shape effect occurs, so that it is uniform. It is difficult to obtain various characteristics.
【0010】従って、上記PTC抵抗抵抗体は大容量P
TC抵抗抵抗体を配電用遮断器等に適用する場合等に重
要となる抵抗体の均一性が悪く、このため常時の熱損失
が大きい。 更に、遮断器の短絡時に発生する短絡電流をPTC抵抗
抵抗体で限流する場合、抵抗体内部が不均一であること
からPTC倍率の倍率が大きく、抵抗体自体が熱歪みに
より破壊されてしまう。Therefore, the PTC resistor resistor has a large capacity P.
The uniformity of the resistor, which is important when the TC resistor resistor is applied to a circuit breaker or the like, is poor, and therefore heat loss is large at all times. Further, when the short-circuit current generated when the circuit breaker is short-circuited is limited by the PTC resistance resistor, the PTC magnification is large because the inside of the resistor is non-uniform, and the resistor itself is destroyed by thermal strain. ..
【0011】本発明は上記背景のもとになされたもので
あり、容易かつ安価で、更に抵抗体の焼成を均一に行う
ことのできるPTC抵抗体の製造方法を提供することを
目的とする。The present invention has been made based on the above background, and an object of the present invention is to provide a method for manufacturing a PTC resistor which is easy and inexpensive, and which can uniformly sinter the resistor.
【0012】[0012]
【課題を解決するための手段及び作用】上記課題を解決
するため、本発明は 主原料である酸化バナジウムにP
TC特性を誘発する副成分を混合し、これにより得られ
る混合物を造粒した後に成形して焼成を行うPTC抵抗
体の製造方法において、前記混合物に黒鉛を加えた後に
造粒及び成形を行い、更に前記焼成を真空雰囲気中にて
行うことを特徴とする。In order to solve the above-mentioned problems, the present invention uses vanadium oxide as a main raw material and P
In a method for producing a PTC resistor in which a subcomponent that induces TC characteristics is mixed, and a mixture obtained thereby is granulated and then molded and fired, after adding graphite to the mixture, granulation and molding are performed, Further, the firing is performed in a vacuum atmosphere.
【0013】以下、本発明について更に詳細に説明す
る。The present invention will be described in more detail below.
【0014】本発明において用いる酸化バナジウムとし
ては、例えばV2O5、V2O3等が挙げられ、好ましくは
V2O3を用いる。PTC特性を誘発する副成分としては
例えばCr、Al、Fe及びこれらの化合物等が挙げら
れ、好ましくはCr2O3を添加する。[0014] vanadium oxide for use in the invention, for example, V 2 O 5, V 2 O 3 and the like, preferably using a V 2 O 3. Examples of the accessory component that induces the PTC characteristic include Cr, Al, Fe and compounds thereof, and preferably Cr 2 O 3 is added.
【0015】次に、好ましくは上記酸化バナジウムと上
記副成分との混合物に焼結助剤としてFe、Ni、Cu等
を加える。Next, Fe, Ni, Cu or the like is preferably added as a sintering aid to the mixture of the vanadium oxide and the subcomponents.
【0016】これに黒鉛粉末を加え、アルコール中にて
湿式粉砕混合してスラリーを得る。黒鉛粉末を添加する
ことで以下の式により酸化金属の還元が反応が起きる。Graphite powder is added to this, and wet pulverized and mixed in alcohol to obtain a slurry. The addition of graphite powder causes a reaction of reducing metal oxide according to the following formula.
【0017】[0017]
【化1】MO+C→M+CO …(1) (MOY+YC→M+YCO) 上記のように、この反応は還元される酸化金属中の酸素
と等モルのC(黒鉛)を必要とする。この際、一般に黒
鉛の添加量が少ないと還元が不十分となってPTC特性
が低下し、また添加量が多すぎると焼成時に酸化しきれ
なかった黒鉛が抵抗体内部に残留してボイドが発生し、
PTC特性が低下してしまう。## STR1 ## MO + C → M + CO (1) (MO Y + YC → M + YCO) As described above, this reaction requires C (graphite) in the same mole as oxygen in the metal oxide to be reduced. At this time, generally, if the addition amount of graphite is small, the reduction will be insufficient and the PTC characteristics will be deteriorated. On the other hand, if the addition amount is too large, graphite that could not be completely oxidized during firing will remain inside the resistor to cause voids. Then
The PTC characteristics will deteriorate.
【0018】従って、黒鉛の添加量は、還元する金属中
の酸素原子と等モル程度とすることが好ましく、一般に
上記のように酸化バナジウムを主成分とするPTC抵抗
体においては、黒鉛の添加量を0.01%〜10%程度とする
と良好なPTC特性が得られる。Therefore, the amount of graphite added is preferably about equimolar to the oxygen atoms in the metal to be reduced. Generally, as described above, in the PTC resistor containing vanadium oxide as the main component, the amount of graphite added. A good PTC characteristic can be obtained by setting the ratio to 0.01% to 10%.
【0019】更に、金属と黒鉛との反応性を良くするた
めに、黒鉛の粒径をV2O3等の原料粉末と同程度の大き
さとすることが好ましく、好ましくは30μm以下とする
ことで良好なPTC特性が得られる。Further, in order to improve the reactivity between the metal and the graphite, it is preferable that the particle size of the graphite is about the same as that of the raw material powder such as V 2 O 3 , and preferably 30 μm or less. Good PTC characteristics can be obtained.
【0020】尚、上記PTC抵抗体の製造方法におい
て、予めV2O3と副成分とを混合した後に上記黒鉛、焼
結助剤を添加してもよい。In the method of manufacturing the PTC resistor, the graphite and the sintering aid may be added after mixing V 2 O 3 and the subcomponents in advance.
【0021】次に、上記のように主原料に副成分、焼結
助剤、黒鉛を添加して湿式粉砕混合することにより得ら
れるスラリーを造粒、成形し焼成を行ってPTC抵抗体
を得る。Next, the PTC resistor is obtained by granulating, molding and firing the slurry obtained by adding the auxiliary component, the sintering aid and the graphite to the main raw material as described above and wet pulverizing and mixing. ..
【0022】好ましくは、上記スラリーを例えばスプレ
ードライヤで乾燥して適度の顆粒を生成し、これを金型
プレス、CIP等で加圧成形することにより上記造粒及
び成形を行う。また、焼成を行う際は、成形体を真空中
にて1000℃〜1700℃で焼成することが好まし
い。Preferably, the above slurry is dried by, for example, a spray dryer to produce appropriate granules, and the granules and molding are carried out by press-molding the granules with a die press, CIP or the like. Further, when firing is performed, it is preferable that the molded body be fired at 1000 ° C. to 1700 ° C. in vacuum.
【0023】[0023]
【実施例】本実施例においてはV2O3を主成分としてこ
れにCr2O3を微量添加し、更にFeを加えてPTC抵抗
体を製造した。以下にその詳細を示す。EXAMPLE In this example, a PTC resistor was manufactured by using V 2 O 3 as a main component, adding a small amount of Cr 2 O 3 , and further adding Fe. The details are shown below.
【0024】まず、V2O3にCr2O3及びFeを加え、基
本組成を(V0・996Cr0・004)2O3としてこれに5wt%の
Feを添加し、更に黒鉛粉末を加えた後に、この混合物
をアルコール中で湿式粉砕混合してスラリーを得た。First, Cr 2 O 3 and Fe were added to V 2 O 3 , the basic composition was (V 0 .996 Cr 0 .004 ) 2 O 3 , and 5 wt% Fe was added to this, and further graphite powder was added. After the addition, the mixture was wet milled and mixed in alcohol to obtain a slurry.
【0025】このスラリーに有機バインダを添加して混
合した後に、スプレードライヤで乾燥し、適度の顆粒を
得る。これを金型プレス、CIP等で加圧成形し、得ら
れた成形体を真空中、1000℃〜1700℃で焼成し
てPTC抵抗体を得た。An organic binder is added to this slurry and mixed, and then dried with a spray drier to obtain appropriate granules. This was pressure-molded with a die press, CIP, etc., and the obtained molded body was baked at 1000 ° C. to 1700 ° C. in vacuum to obtain a PTC resistor.
【0026】本実施例においては、上記製造方法におい
て黒鉛の添加量を0〜15wt%として抵抗体試料a〜h
を製造した。In the present embodiment, the resistor samples a to h were prepared by adding graphite in an amount of 0 to 15 wt% in the above manufacturing method.
Was manufactured.
【0027】また、上記PTC抵抗体の製造方法におい
て、黒鉛を添加せずに焼成雰囲気をH2,N2として試料
i,jを製造し、これら試料a〜jのそれぞれについて
PTC特性を調べた。その結果を表1に示す。Further, in the method for producing the PTC resistor, samples i and j were produced without adding graphite and the firing atmosphere was H 2 and N 2 , and the PTC characteristics of each of the samples a to j were examined. .. The results are shown in Table 1.
【0028】[0028]
【表1】 [Table 1]
【0029】上記表1により、黒鉛の添加量が少ないと
還元が不十分となってPTC特性が低下し、また添加量
が多すぎると焼成時に酸化しきれなかった黒鉛が抵抗体
内部に残留してボイドが発生し、PTC特性が低下して
しまうことがわかる。From Table 1 above, when the amount of graphite added is small, the reduction is insufficient and the PTC characteristics deteriorate, and when the amount of graphite added is too large, graphite that cannot be fully oxidized during firing remains inside the resistor. It can be seen that voids are generated and the PTC characteristics deteriorate.
【0030】従って、黒鉛の添加量は、還元する金属中
の酸素原子と等モル程度とすることが好ましく、一般に
上記のように酸化バナジウムを主成分とするPTC抵抗
体においては、黒鉛の添加量を0.01%〜10%程度とする
と良好なPTC特性が得られる。Therefore, the amount of graphite added is preferably approximately equimolar to the oxygen atoms in the metal to be reduced. Generally, in the PTC resistor containing vanadium oxide as the main component as described above, the amount of graphite added is A good PTC characteristic can be obtained by setting the ratio to 0.01% to 10%.
【0031】更に、金属と黒鉛との反応性を良くするた
めに、黒鉛の粒径をV2O3等の原料粉末と同程度の大き
さとすることが好ましく、本実施例においては少なくと
も30μm以下とすることで良好なPTC特性が得られ
た。Further, in order to improve the reactivity between the metal and the graphite, it is preferable that the particle size of the graphite is as large as that of the raw material powder such as V 2 O 3 , and in this embodiment, it is at least 30 μm or less. By doing so, good PTC characteristics were obtained.
【0032】[0032]
【発明の効果】以上説明したように、本発明にてはPT
C抵抗体の製造方法において、予め黒鉛を成形体に混合
した後にこの成形体の焼成を行うことにより、焼成時に
おける抵抗体の還元を行っている。As described above, according to the present invention, PT
In the method for producing a C resistor, graphite is mixed in advance with a molded body and then the molded body is fired to reduce the resistor during firing.
【0033】従って、従来は水素雰囲気等の還元雰囲気
にて焼成を行うことにより上記還元を行っていたので、
抵抗体表面と抵抗体内部を均一に還元することは非常に
困難であったのに対し、本発明にては抵抗体内の黒鉛に
よって還元が行われるので、容易かつ抵抗体を均一に還
元することができる。Therefore, in the past, since the above reduction was performed by firing in a reducing atmosphere such as a hydrogen atmosphere,
While it was very difficult to reduce the surface of the resistor and the inside of the resistor uniformly, in the present invention, the reduction is performed by the graphite in the resistor, so that the resistor can be easily and uniformly reduced. You can
【0034】また水素雰囲気にて焼成を行う方法に比べ
てランニングコストが安く、更に特別な設備等を必要と
しないので経済的にも有利である。Further, the running cost is lower than the method of firing in a hydrogen atmosphere, and no special equipment is required, which is economically advantageous.
【0035】更に、上記のように抵抗体内部からの均一
な還元反応がおこるので、抵抗体のPTC倍率(室温比
抵抗と高温転移後の比抵抗との比)が向上する。Further, since the uniform reduction reaction occurs from the inside of the resistor as described above, the PTC ratio (ratio of the room temperature resistivity and the resistivity after high temperature transition) of the resistor is improved.
【0036】このため、例えばこの抵抗体を配電用遮断
器に組み込んだ場合、短絡電流を十分に抑制することが
可能となる。また均一性が向上するので、円柱状抵抗体
の場合は大口径で大容量用の抵抗体としての運用が可能
となる。Therefore, for example, when this resistor is incorporated in a distribution breaker, the short-circuit current can be sufficiently suppressed. Further, since the uniformity is improved, the columnar resistor can be used as a resistor having a large diameter and a large capacity.
Claims (1)
性を誘発する副成分を混合し、これにより得られる混合
物を造粒した後に成形して焼成を行うPTC抵抗体の製
造方法において、 前記混合物に黒鉛を加えた後に造粒及び成形を行い、更
に前記焼成を真空雰囲気中にて行うことを特徴とするP
TC抵抗体の製造方法。1. A method for producing a PTC resistor, comprising mixing vanadium oxide as a main raw material with a sub-component that induces PTC characteristics, granulating the mixture thus obtained, and then molding and firing the mixture. P is characterized by performing granulation and molding after adding graphite, and further performing the firing in a vacuum atmosphere.
Method for manufacturing TC resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096902A JPH05299204A (en) | 1992-04-17 | 1992-04-17 | Manufacture of ptc resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096902A JPH05299204A (en) | 1992-04-17 | 1992-04-17 | Manufacture of ptc resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05299204A true JPH05299204A (en) | 1993-11-12 |
Family
ID=14177307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4096902A Pending JPH05299204A (en) | 1992-04-17 | 1992-04-17 | Manufacture of ptc resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05299204A (en) |
-
1992
- 1992-04-17 JP JP4096902A patent/JPH05299204A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101213155B (en) | Semiconductor porcelain composition and method of producing the same | |
KR101545763B1 (en) | Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition | |
JPH05299204A (en) | Manufacture of ptc resistor | |
JP3237502B2 (en) | Manufacturing method of grain boundary insulated semiconductor ceramic capacitor | |
JP2691570B2 (en) | Rare earth powder for magnet and manufacturing method thereof | |
JPH06181102A (en) | Manufacture of ptc resistor | |
JPH0522670B2 (en) | ||
JPH05299202A (en) | Manufacture of ptc resistor | |
JPH05135906A (en) | Manufacture of ptc resistor | |
JPH03297101A (en) | Power resistor and manufacture thereof | |
JPH0555005A (en) | Manufacture of ptc resistance element | |
JPH0311082B2 (en) | ||
JPH04154661A (en) | Semiconductor porcelain and its production | |
JPH0335503A (en) | Manufacture of ptc thermistor | |
JPH0338802A (en) | Manufacture of positive temperature coefficient semiconductor porcelain | |
JPS6121966A (en) | Low-temperature sintering method for dielectric ceramic composition | |
JPH05299203A (en) | Manufacture of ptc resistor | |
JPH0632647A (en) | Production of dielectric ceramic composition | |
JPS5923049B2 (en) | Insulating ceramics for high frequency circuit boards | |
JPH0963806A (en) | Manufacturing method of current limiting element | |
JPH05345673A (en) | Electrically conductive silicon carbide composite ceramic | |
JPS6265912A (en) | Aluminum nitride ceramic powder for slip forming | |
JPH03177351A (en) | Preparation of ceramic electronic part | |
JPH05326207A (en) | Manufacture of ptc resistor | |
JPH1070008A (en) | Manufacturing method of PTC thermistor |