JPH05295534A - Titanium nitride sputtering target and its production - Google Patents

Titanium nitride sputtering target and its production

Info

Publication number
JPH05295534A
JPH05295534A JP12966992A JP12966992A JPH05295534A JP H05295534 A JPH05295534 A JP H05295534A JP 12966992 A JP12966992 A JP 12966992A JP 12966992 A JP12966992 A JP 12966992A JP H05295534 A JPH05295534 A JP H05295534A
Authority
JP
Japan
Prior art keywords
titanium nitride
powder
sputtering target
sintered body
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12966992A
Other languages
Japanese (ja)
Other versions
JP2631793B2 (en
Inventor
Susumu Sawada
進 沢田
Masaaki Fujioka
将明 藤岡
Takeo Ohashi
建夫 大橋
Osamu Kanano
治 叶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP4129669A priority Critical patent/JP2631793B2/en
Publication of JPH05295534A publication Critical patent/JPH05295534A/en
Application granted granted Critical
Publication of JP2631793B2 publication Critical patent/JP2631793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titanium nitride sputtering target which hardly generates particles at the time of sputtering and can stably form a high quality titanium nitride film. CONSTITUTION:A sintered compact having 80-88% density ratio is formed by sintering Ti powder. A sintered compact is formed by hot-pressing Ti powder having 5-200mum average particle diameter at 600-1,000 deg.C. A sintered compact is formed by sintering Ti powder having 5-200mum average particle diameter at 900-1,300 deg.C after cold pressing. A sintered compact is formed by subjecting Ti powder having 5-200-mum average particle diameter to hot isostatic pressing. One of the above-mentioned Ti sintered compacts is nitrided by heating in the atmosphere of a nitrogen-contg. gas to produce the objective titanium nitride sputtering target having 80-88% density ratio and >=10-kgf/mm<2> compression strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、実用スパッタリング
タ−ゲットとして十分に満足できる特性を有し、ICデ
バイスや半導体バリア−等としての窒化チタン皮膜形成
に好適な窒化チタンスパッタリングタ−ゲット、並びに
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium nitride sputtering target suitable for forming a titanium nitride film as an IC device, a semiconductor barrier, etc., which has characteristics sufficiently satisfying as a practical sputtering target. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来技術とその課題】従来、IC用窒化チタン薄膜や
半導体バリア−用窒化チタン薄膜は、Tiタ−ゲットを窒
素ガス雰囲気下でスパッタする反応性スパッタリング技
術によって形成されるのが一般的であったが、この方法
では窒素分圧によって形成される膜の性質やスパッタ速
度が大きく変動し、そのため信頼性の高い薄膜を再現性
良く生産することが非常に困難であった。
2. Description of the Related Art Conventionally, titanium nitride thin films for ICs and titanium nitride thin films for semiconductor barriers are generally formed by a reactive sputtering technique in which a Ti target is sputtered in a nitrogen gas atmosphere. However, with this method, the properties of the film formed by the partial pressure of nitrogen and the sputter rate fluctuate greatly, which makes it very difficult to produce a highly reliable thin film with good reproducibility.

【0003】そのため、窒化チタンタ−ゲットを用いた
スパッタリングによって窒化チタン膜を形成しようとの
検討が進められてきたが、入手できる窒化チタンスパッ
タリングタ−ゲットの性能が十分でないため形成される
膜質に難があり、より特性の優れた窒化チタンスパッタ
リングタ−ゲットの開発が強く望まれていた。
Therefore, studies have been conducted to form a titanium nitride film by sputtering using a titanium nitride target, but the quality of the formed film is difficult because the titanium nitride sputtering target that is available has insufficient performance. Therefore, development of a titanium nitride sputtering target having more excellent characteristics has been strongly desired.

【0004】つまり、これまでの窒化チタンスパッタリ
ングタ−ゲットは、まず窒化チタン粉末(平均粒径が1
〜2μm程度)を準備し、この窒化チタン粉末をホット
プレス等により固化する手段によって製造されている。
窒化チタン粉末の製造は比較的短時間で行えるので、こ
の方法による窒化チタンスパッタリングタ−ゲットは短
い時間で製造できるという利点はあったが、本来、窒化
チタン粉は焼結性が悪いのでホットプレス後の窒化チタ
ン粒子間の結合が不十分となり、スパッタ時にパ−ティ
クルの発生が多くてVLSI(超大規模集積回路)製造
プロセスでの使用に耐え得ないという問題が指摘され
た。密度についても、コントロ−ルすることが特に難し
いため75〜95%とバラツキが大きかった。その上、
窒化と粉砕を繰り返して製造される窒化チタン粉は不純
物(Fe,O2等)による汚染が高く、この点もタ−ゲッ
ト性能の劣化につながっていた。
That is, in the conventional titanium nitride sputtering target, first, titanium nitride powder (average particle size 1
Of about 2 μm) and the titanium nitride powder is solidified by hot pressing or the like.
Since the production of titanium nitride powder can be performed in a relatively short time, the titanium nitride sputtering target produced by this method had the advantage that it can be produced in a short time. It has been pointed out that the subsequent bonding between titanium nitride particles becomes insufficient, and many particles are generated during sputtering, so that they cannot be used in a VLSI (Very Large Scale Integrated Circuit) manufacturing process. As for the density as well, since it was particularly difficult to control, there was a large variation of 75 to 95%. Moreover,
Titanium nitride powder produced by repeating nitriding and pulverization is highly contaminated by impurities (Fe, O 2, etc.), which also leads to deterioration of target performance.

【0005】もっとも、窒化チタン粒子間の強固な結合
を確保しようとの観点からすれば、ホットプレスに際し
て a) 微細粉末(例えばサブミクロン粉)を用いる, b) ホットプレス温度を上げる(例えば1800〜20
00℃), c) ホットプレス圧力を上げる(例えば300〜500k
g/cm2) 等の条件を採用することも考えられるが、実際には前記
a)の条件によっても粒子間結合力は不十分であり、また
前記b)の条件では窒化チタンの分解を引き起す懸念があ
り、更に前記c)の条件はダイス強度の点から望ましいと
は言えなかった。
From the viewpoint of securing a strong bond between titanium nitride particles, however, a) a fine powder (for example, submicron powder) is used for hot pressing, and b) a hot pressing temperature is increased (for example, 1800). 20
00 ℃), c) Increase hot press pressure (eg 300 to 500k)
g / cm 2 ) etc. may be adopted, but in reality
The interparticle bonding force is insufficient even under the condition of a), and the condition of b) may cause the decomposition of titanium nitride, and the condition of c) is preferable from the viewpoint of die strength. There wasn't.

【0006】このようなことから、本発明が目的とした
のは、上述した従来材の問題点を払拭し、不純物汚染が
少なく、かつスパッタ時におけるパ−ティクルの発生が
少なくて高品質窒化チタン膜を安定して生成できる窒化
チタンスパッタリングタ−ゲットを提供することであっ
た。
In view of the above, the object of the present invention is to eliminate the above-mentioned problems of the conventional materials, to reduce the contamination of impurities, and to reduce the generation of particles during sputtering, thus producing high-quality titanium nitride. It was an object of the present invention to provide a titanium nitride sputtering target capable of stably forming a film.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく様々な観点に立って鋭意研究を行っ
た結果、次のような知見を得ることができた。 (a) 従来の窒化チタンスパッタリングタ−ゲットをVL
SIの製造等に適用できなかった大きな理由は、窒化チ
タンが高融点材料で難焼結性の故にホットプレスによっ
ても窒化チタン粒子同士の強固な結合を得るのが困難で
あり、そのためスパッタ時のパ−ティクル発生が特に多
かったことにあるが、この点は、窒化チタンスパッタリ
ングタ−ゲットの原料として比較的焼結しやすいTi粉を
用い、そのTi粒とTi粒との強固な結合をまず造り出し、
次にこれを窒化することで結合しているTi粒を窒化チタ
ン粒に変えてやることによって解決できる。即ち、これ
によって“互いに強固に結合していたTi粒同士”が“互
いに強固に結合した窒化チタン粒同士”に変化し、窒化
チタン粒と窒化チタン粒とが強固に結合した窒化チタン
スパッタリングタ−ゲットが得られるためである。
The inventors of the present invention have made extensive studies from various viewpoints in order to achieve the above object, and have obtained the following findings. (a) VL of conventional titanium nitride sputtering target
The main reason why it could not be applied to the production of SI is that it is difficult to obtain a strong bond between titanium nitride particles even by hot pressing because titanium nitride is a refractory material and is difficult to sinter. There are particularly many particles generated, but this point is that Ti powder that is relatively easy to sinter is used as a raw material of the titanium nitride sputtering target, and a strong bond between the Ti particles and the Ti particles is first Created
Next, this can be solved by nitriding this and changing the bonded Ti grains to titanium nitride grains. That is, by this, "Ti particles that are firmly bonded to each other" are changed to "Titan nitride particles that are firmly bonded to each other", and a titanium nitride sputtering target in which titanium nitride particles and titanium nitride particles are strongly bonded is used. This is because the get can be obtained.

【0008】(b) なお、Ti焼結体をそのまま窒化して窒
化チタンスパッタリングタ−ゲットとする技術は画期的
なものであり類例を見ないものであるが、これは工夫な
くしてTi焼結体の窒化を試みても内部まで窒化された健
全な窒化チタンを得ることができないためである。その
理由を、「NのTiN中の拡散速度が遅いため」と説明で
きる。つまり、一旦Tiが窒化して窒化チタンが表面に生
成すると、この窒化チタン中をNが拡散するのに極めて
長時間かかるので窒化は表面だけに止まり、内部まで窒
化させることは不可能と考えられていたためである。し
かるに、Ti焼結体の密度をコントロ−ルし、貫通ポア
(Ti表面とつながっているポア)を残存させることによ
ってNの拡散距離を短くした上で焼結体全体の窒化処理
を行えば、内部まで窒化された健全な窒化チタン体を実
現することができる。
(B) The technique of nitriding a Ti sintered body as it is to form a titanium nitride sputtering target is epoch-making and unparalleled. This is because even if an attempt is made to nitride the solid, it is not possible to obtain a sound titanium nitride that is nitrided to the inside. The reason can be explained as "because the diffusion speed of N in TiN is slow". In other words, once Ti is nitrided and titanium nitride is produced on the surface, it takes an extremely long time for N to diffuse in the titanium nitride, so that nitriding is confined to the surface only and it is considered impossible to nitride the inside. Because it was. However, if the density of the Ti sintered body is controlled and the penetrating pores (pores connected to the Ti surface) are left to shorten the diffusion distance of N, the nitriding treatment of the entire sintered body is performed. It is possible to realize a sound titanium nitride body in which the inside is nitrided.

【0009】(c) このようにして作られた強度の高い窒
化チタンスパッタリングタ−ゲットは、不純物汚染が少
ない上、スパッタ時に発生するパ−ティクル数も従来品
と比較して格段に少なく、VLSI製造プロセス等にも
使用可能である。
(C) The high-strength titanium nitride sputtering target produced in this manner has less impurity contamination, and the number of particles generated during sputtering is significantly smaller than that of the conventional product. It can also be used in manufacturing processes and the like.

【0010】本発明は、上記知見事項等を基に更なる検
討を重ねて完成されたものであり、 「 A) Ti粉を焼結して密度比80〜88%の焼結体を造
る, B) 平均粒径5〜200μmのTi粉を600〜1000
℃の加熱下で加圧して焼結体を造る, C) 平均粒径5〜200μmのTi粉をコ−ルドプレス後、
900〜1300℃で焼結して焼結体を造る, D) 平均粒径5〜200μmのTi粉をHIP(Hot Isost
atic Pressing)処理して焼結体を造る, の何れかの方法によってTi焼結体を造り、 次にこれを窒
素含有ガス雰囲気中で加熱して窒化することにより、 密
度比が80〜88%で、 かつ圧縮強度が10kgf/mm2
上であるところの、 成膜特性の優れた窒化チタンスパッ
タリングタ−ゲットを安定して提供できるようにした
点」に大きな特徴を有している。
The present invention has been completed by further studies based on the above findings and the like. "A) Ti powder is sintered to produce a sintered body having a density ratio of 80 to 88%, B) 600 to 1000 of Ti powder having an average particle size of 5 to 200 μm
C) to make a sintered body under pressure, C) After cold pressing Ti powder with an average particle size of 5 to 200 μm,
Sinter at 900-1300 ℃ to make a sintered body. D) HIP (Hot Isost) Ti powder with an average particle size of 5-200 μm.
atic Pressing) to produce a sintered body, a Ti sintered body is produced by any one of the following methods, and the Ti sintered body is heated in a nitrogen-containing gas atmosphere for nitriding to obtain a density ratio of 80 to 88%. In addition, it is possible to stably provide a titanium nitride sputtering target having excellent film-forming characteristics, which has a compressive strength of 10 kgf / mm 2 or more. "

【0011】なお、本発明において、窒化チタンスパッ
タリングタ−ゲットの密度比及び圧縮強度,中間材たる
Ti焼結体の密度比,原料たるTi粉の平均粒径,Ti粉を加
熱・加圧(ホットプレス)して焼結体とする際の加熱温
度,並びにコ−ルドプレス後のTi粉成形体の焼結温度を
それぞれ前記の如くに数値限定したのは次の理由によ
る。
In the present invention, the density ratio and compressive strength of the titanium nitride sputtering target, and the intermediate material
Density ratio of Ti sintered body, average particle size of Ti powder as raw material, heating temperature when heating and pressing (hot pressing) Ti powder to form a sintered body, and Ti powder compact after cold pressing The reason for limiting the sintering temperature of each of the above numerical values is as follows.

【0012】イ) 窒化チタンスパッタリングタ−ゲット
及びTi焼結体の密度比 密度比が80%を下回るようなポ−ラスなタ−ゲットで
は、所望強度が確保できない上に成膜時の消費も速いた
め、均質で品位の高い窒化チタン膜を作業性良く形成さ
せることができない。そして、密度比80%以上の窒化
チタンスパッタリングタ−ゲットを得るためには、中間
材たるTi焼結体の密度比も80%以上に調整する必要が
ある。一方、Ti焼結体の密度比(即ち窒化チタンスパッ
タリングタ−ゲットの密度比)が88%を上回ると、ポ
アの量が少なすぎて内部まで均一に窒化させることがで
きなくなり、均質で品位の高い窒化チタン膜が得られる
タ−ゲットを実現することができない。
A) Density ratio of titanium nitride sputtering target and Ti sintered body With a porous target having a density ratio of less than 80%, desired strength cannot be ensured and consumption at the time of film formation is also not possible. Because of its high speed, it is not possible to form a uniform and high-quality titanium nitride film with good workability. Then, in order to obtain a titanium nitride sputtering target having a density ratio of 80% or more, it is necessary to adjust the density ratio of the Ti sintered body as an intermediate material to 80% or more. On the other hand, when the density ratio of the Ti sintered body (that is, the density ratio of the titanium nitride sputtering target) exceeds 88%, the amount of pores is too small to uniformly nitrid the inside, so that the quality is uniform. It is not possible to realize a target with which a high titanium nitride film can be obtained.

【0013】ロ) 窒化チタンスパッタリングタ−ゲット
の圧縮強度 窒化チタンスパッタリングタ−ゲットの圧縮強度が低い
ということは焼結Ti粒が窒化して生じた窒化チタン粒同
士の結合強度が弱いことを意味しており、窒化チタンス
パッタリングタ−ゲットの圧縮強度が10kgf/mm2 より
も低いとスパッタ時のパ−ティクル発生が多くなって品
位の高い窒化チタン膜が得られず、VLSI等の製造プ
ロセスに適用することができない。
B) Compressive strength of titanium nitride sputtering target The low compressive strength of the titanium nitride sputtering target means that the bonding strength between titanium nitride particles produced by nitriding the sintered Ti particles is weak. However, if the compressive strength of the titanium nitride sputtering target is lower than 10 kgf / mm 2, particles will be generated during sputtering so much that a high-quality titanium nitride film cannot be obtained, which is not suitable for VLSI manufacturing processes. Not applicable.

【0014】ハ) 原料たるTi粉の平均粒径 平均粒径が5μm未満の細かいTi粉の場合には、焼結が
容易に進みすぎて前記所定の密度比を超えてしまう。一
方、Ti粉の平均粒径が200μmを超える粗い粒子では
焼結が不十分となって前記所定の密度比を達成すること
ができない。
(C) Average particle size of Ti powder as a raw material In the case of fine Ti powder having an average particle size of less than 5 μm, sintering easily proceeds too much and exceeds the predetermined density ratio. On the other hand, if the Ti powder has coarse particles having an average particle size of more than 200 μm, the sintering will be insufficient and the predetermined density ratio cannot be achieved.

【0015】ニ) Ti粉をホットプレスして焼結体とする
際の加熱温度 Ti焼結体、ひいては窒化チタンスパッタリングタ−ゲッ
トの密度比を80〜88%に制御するためには、ホット
プレス時の加熱温度を600〜1000℃に調整する必
要があり、この温度域を外れると所望する密度比を達成
することができない。
D) Heating temperature for hot pressing Ti powder into a sintered body In order to control the density ratio of the Ti sintered body, and by extension, the titanium nitride sputtering target to 80 to 88%, hot pressing is performed. It is necessary to adjust the heating temperature at 600 to 1000 ° C., and if the temperature is out of this range, the desired density ratio cannot be achieved.

【0016】ホ) Ti粉をコ−ルドプレスして得たTi粉成
形体の焼結温度 コ−ルドプレスしたTi粉成形体を焼結してTi焼結体とす
る場合に、得られるTi焼結体(つまりは窒化チタンスパ
ッタリングタ−ゲット)の密度比を80〜88%に制御
するためには、真空焼結温度を900〜1300℃に調
整する必要があり、この温度域を外れると所望する密度
比を達成することができない。なお、コ−ルドプレス時
の加圧は750〜2000kg/cm2の範囲とするのが良
い。
(E) Sintering temperature of Ti powder compact obtained by cold-pressing Ti powder. Ti sintering obtained when the cold-pressed Ti powder compact is sintered into a Ti sintered body. In order to control the density ratio of the body (that is, the titanium nitride sputtering target) to 80 to 88%, it is necessary to adjust the vacuum sintering temperature to 900 to 1300 ° C, and it is desirable to deviate from this temperature range. The density ratio cannot be achieved. The pressure applied during cold pressing is preferably in the range of 750 to 2000 kg / cm 2 .

【0017】また、HIP処理によって焼結体を造る場
合には、所定密度を確保する上で加熱温度を600〜1
000℃に調整するのが好ましい。
When a sintered body is produced by the HIP process, the heating temperature is 600 to 1 in order to secure a predetermined density.
It is preferable to adjust the temperature to 000 ° C.

【0018】ところで、Ti粉を処理して得られたTi焼結
体は、窒素含有ガス雰囲気中での加熱により窒化され、
常法に従って機械加工,ボンディングが施されて窒化チ
タンスパッタリングタ−ゲットとされる。
By the way, the Ti sintered body obtained by treating the Ti powder is nitrided by heating in a nitrogen-containing gas atmosphere,
Titanium nitride sputtering target is obtained by machining and bonding according to the usual method.

【0019】Ti焼結体の窒化は窒素含有ガス(N2
ス,NH3 ガス,N2 +Arガス等)雰囲気中での加熱に
より行われるが、雰囲気中のN2 分圧は〔大気圧〜9kg
/cm2〕程度とするのが適当である。この際、窒化温度が
高いほど窒化速度が速くなり、最高2500℃程度の窒
化温度とすることも可能であるが、純Tiの融点(167
0℃)を超える温度では部分的に窒化していない部位の
溶融を招く恐れがあるため、通常は1670℃以下程度
の加熱に止めるのが良い。しかしながら、ある程度窒化
が進めば融点が上昇し、上述した2500℃までは溶融
の心配がなくなるので、N2 リッチにする場合は167
0℃を超えて2500℃まで温度を上げることができ
る。
Nitriding of the Ti sintered body is performed by heating in a nitrogen-containing gas (N 2 gas, NH 3 gas, N 2 + Ar gas, etc.) atmosphere, and the N 2 partial pressure in the atmosphere is [atmospheric pressure to 9 kg
/ cm 2 ] is appropriate. At this time, the higher the nitriding temperature, the faster the nitriding rate, and it is possible to set the nitriding temperature up to about 2500 ° C.
If the temperature is higher than 0 ° C., there is a possibility that the part that is not nitrided may be partially melted. Therefore, it is usually preferable to stop the heating at about 1670 ° C. or lower. However, increases the melting point Progress in somewhat nitride, since up to 2500 ° C. as described above concerns the melting is eliminated, when the N 2 rich 167
The temperature can be raised above 0 ° C to 2500 ° C.

【0020】次に例示するのは、本発明に係る窒化チタ
ンスパッタリングタ−ゲットを製造する工程の具体例で
ある。 (1) [Ti粉] →ホットプレス(600〜1000℃) → [Ti焼結
体] →窒化→機械加工・ボンディング→ [窒化チタンス
パッタリングタ−ゲット] 。 (2) [Ti粉] →コ−ルドプレス(750〜2000kg/cm2)→真
空焼結(900〜1300℃)→ [Ti焼結体] →窒化→機械加工
・ボンディング→ [窒化チタンスパッタリングタ−ゲッ
ト] 。 (3) [Ti粉] →HIP処理(600〜1000℃)→ [Ti焼結体]
→窒化→機械加工・ボンディング→ [窒化チタンスパ
ッタリングタ−ゲット] 。
The following is a specific example of the process for producing the titanium nitride sputtering target according to the present invention. (1) [Ti powder] → hot press (600 to 1000 ° C) → [Ti sintered body] → nitriding → machining / bonding → [titanium nitride sputtering target]. (2) [Ti powder] → Cold press (750 to 2000 kg / cm 2 ) → Vacuum sintering (900 to 1300 ° C) → [Ti sintered body] → Nitriding → Machining / bonding → [Titanium nitride sputtering machine] get] . (3) [Ti powder] → HIP treatment (600-1000 ℃) → [Ti sintered body]
→ Nitriding → Machining / bonding → [Titanium nitride sputtering target].

【0021】続いて、本発明を実施例によって更に具体
的に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】実施例1 まず、−100メッシュのTi粉(平均粒径50μm)を
温度800℃,加圧力200kg/cm2の条件で真空ホット
プレスし、密度比85%のTi焼結体を得た。次に、この
Ti焼結体を、3kg/cm2加圧状態の窒素ガス中で最高16
50℃まで加熱することにより窒化し、TiNタ−ゲット
(N/Ti =0.99) を得た。このタ−ゲットには多数のポ
アが存在していたが、圧縮強度21kgf/mm2 を示した。
Example 1 First, -100 mesh Ti powder (average particle size 50 μm) was vacuum hot pressed at a temperature of 800 ° C. and a pressure of 200 kg / cm 2 to obtain a Ti sintered body having a density ratio of 85%. Obtained. Then this
Maximum of 16 Ti sintered bodies in nitrogen gas under pressure of 3 kg / cm 2
Nitriding was performed by heating to 50 ° C. to obtain a TiN target (N / Ti = 0.99). Although this target had many pores, it exhibited a compressive strength of 21 kgf / mm 2 .

【0022】このタ−ゲットを用い、Ar100%雰囲気
(3mTorr)中にて出力2.5kWの条件でスパッタしたとこ
ろ、Siウエハ−上に600Å/minというデポレ−トでTi
N膜が得られた。また、このSiウエハ−上の膜を光学顕
微鏡で観察したところ、パ−ティクルは一切観察されな
かった。
When this target was sputtered in an atmosphere of 100% Ar (3 mTorr) at an output of 2.5 kW, a Ti wafer was deposited on the Si wafer at a rate of 600 Å / min.
An N film was obtained. When the film on the Si wafer was observed with an optical microscope, no particles were observed.

【0023】実施例2 −100メッシュのTi粉(平均粒径50μm)を100
0kg/cm2でコ−ルドプレスした後、1200℃で真空焼
結し、密度比82%のTi焼結体を得た。このTi焼結体を
実施例1と同じ条件で窒化してTiNタ−ゲットを得た。
得られたTiNタ−ゲットには多数のポアが存在していた
が、圧縮強度18kgf/mm2 を示した。
Example 2 A 100-mesh Ti powder (average particle size 50 μm) was added to 100
After cold pressing at 0 kg / cm 2 , vacuum sintering was performed at 1200 ° C. to obtain a Ti sintered body having a density ratio of 82%. This Ti sintered body was nitrided under the same conditions as in Example 1 to obtain a TiN target.
Although many pores were present in the obtained TiN target, the compression strength was 18 kgf / mm 2 .

【0024】このタ−ゲットを用い、「N2 / (N2
Ar) =90%」なる割合のArとN2の混合ガス雰囲気(3
mTorr)中にて出力2.5kWの条件でスパッタリングした
ところ、Siウエハ−上に300Å/minというデポレ−ト
でTiN膜が得られた。このSiウエハ−上の膜を光学顕微
鏡で観察したところ、パ−ティクルは観察されなかっ
た。
Using this target, "N 2 / (N 2 +
Ar) = 90% "mixed gas atmosphere of Ar and N 2 (3
When sputtered in an mTorr) at an output of 2.5 kW, a TiN film was obtained on the Si wafer at a deposition rate of 300 Å / min. When the film on the Si wafer was observed with an optical microscope, no particles were observed.

【0025】実施例3 −200メッシュのTi粉(平均粒径30μm)をHIP
して密度比88%のTi焼結体を得た。このTi焼結体を実
施例1と同じ条件で窒化してTiNタ−ゲットを得た。得
られたTiNタ−ゲットには多数のポアが存在していた
が、圧縮強度29kgf/mm2 を示した。
Example 3 HIP with 200-mesh Ti powder (average particle size 30 μm)
Thus, a Ti sintered body having a density ratio of 88% was obtained. This Ti sintered body was nitrided under the same conditions as in Example 1 to obtain a TiN target. Although many pores were present in the obtained TiN target, the compressive strength was 29 kgf / mm 2 .

【0026】このタ−ゲットを用い、Ar100%雰囲気
(3mTorr)中にて出力1.5kWの条件でスパッタしたとこ
ろ、Siウエハ−上に400Å/minというデポレ−トでTi
N膜が得られた。このSiウエハ−上の膜を光学顕微鏡で
観察したところ、パ−ティクルは検出されなかった。
When this target was sputtered in an atmosphere of 100% Ar (3 mTorr) under the condition of an output of 1.5 kW, Ti was deposited on a Si wafer at a rate of 400 Å / min.
An N film was obtained. When the film on this Si wafer was observed with an optical microscope, no particles were detected.

【0027】比較例 −200メッシュのTi粉を窒素雰囲気中で窒化してTiN
粉末とした後、これを乾式ボ−ルミルによって不活性雰
囲気で粉砕し、平均粒径1μmのTiN粉末(N/Ti =0.
99) を得た。このTiN粉末を用い、N2 雰囲気中にて温
度1800℃,加圧力200kg/cm2の条件でホットプレ
スした。その結果、密度比90%のTiNタ−ゲットを得
ることができた。なお、得られたTiNタ−ゲットには多
数のポアが存在しており、圧縮強度は8kgf/mm2 を示し
た。
Comparative Example- TiN of 200 mesh is powdered by nitriding Ti powder in a nitrogen atmosphere.
After forming the powder, it was pulverized by a dry ball mill in an inert atmosphere, and TiN powder having an average particle size of 1 μm (N / Ti = 0.
99) got. This TiN powder was hot pressed in a N 2 atmosphere at a temperature of 1800 ° C. and a pressure of 200 kg / cm 2 . As a result, a TiN target with a density ratio of 90% could be obtained. The resulting TiN target had a large number of pores, and the compressive strength was 8 kgf / mm 2 .

【0028】このTiNタ−ゲットを用い、Ar100%雰
囲気(3mTorr)中にて出力2.5kWの条件でスパッタした
ところ、Siウエハ−上に600Å/minなるデポレ−トで
TiN膜が得られた。このSiウエハ−上の膜を観察したと
ころ、目視で分かるようなパ−ティクルが検出された。
When this TiN target was sputtered in an Ar 100% atmosphere (3 mTorr) at an output of 2.5 kW, it was deposited on a Si wafer at a rate of 600 Å / min.
A TiN film was obtained. As a result of observing the film on this Si wafer, particles that could be visually recognized were detected.

【0029】[0029]

【効果の総括】以上に説明した如く、この発明によれ
ば、スパッタリング時のパ−ティクル発生が極めて少な
く、高品位のTiN膜を安定して得ることのできる窒化チ
タンスパッタリングタ−ゲットを提供することができ、
VLSI製造プロセスに適用してTiN膜を形成させた場
合でも満足できる結果が得られるなど、産業上有用な効
果がもたらされる。
[Summary of Effect] As described above, according to the present invention, there is provided a titanium nitride sputtering target capable of stably obtaining a high-quality TiN film with very little generation of particles during sputtering. It is possible,
Industrially useful effects such as satisfactory results are obtained even when the TiN film is formed by applying it to the VLSI manufacturing process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 叶野 治 茨城県北茨城市華川町臼場187番地 日本 鉱業株式会社磯原工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kano 187 Usba, Hwagawa Town, Kitaibaraki City, Ibaraki Prefecture Japan Mining Co., Ltd. Isohara Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密度比が80〜88%で、かつ圧縮強度
が10kgf/mm2 以上である窒化チタンスパッタリングタ
−ゲット。
1. A titanium nitride sputtering target having a density ratio of 80 to 88% and a compressive strength of 10 kgf / mm 2 or more.
【請求項2】 Ti粉を焼結して密度比80〜88%の焼
結体を造り、次にこれを窒素含有ガス雰囲気中で加熱し
て窒化することを特徴とする、請求項1に記載の窒化チ
タンスパッタリングタ−ゲットの製造方法。
2. The Ti powder is sintered to form a sintered body having a density ratio of 80 to 88%, which is then heated in a nitrogen-containing gas atmosphere to be nitrided. A method for producing a titanium nitride sputtering target as described above.
【請求項3】 平均粒径5〜200μmのTi粉を600
〜1000℃の加熱下で加圧して焼結体を造り、次にこ
れを窒素含有ガス雰囲気中で加熱して窒化することを特
徴とする、請求項1に記載の窒化チタンスパッタリング
タ−ゲットの製造方法。
3. Ti powder having an average particle size of 5 to 200 μm is 600
The titanium nitride sputtering target according to claim 1, wherein a sintered body is produced by pressurizing under heating at up to 1000 ° C. and then heated in a nitrogen-containing gas atmosphere to be nitrided. Production method.
【請求項4】 平均粒径5〜200μmのTi粉をコ−ル
ドプレス後、900〜1300℃で焼結して焼結体を造
り、次にこれを窒素含有ガス雰囲気中で加熱して窒化す
ることを特徴とする、請求項1に記載の窒化チタンスパ
ッタリングタ−ゲットの製造方法。
4. A Ti powder having an average particle size of 5 to 200 μm is cold pressed and then sintered at 900 to 1300 ° C. to prepare a sintered body, which is then heated in a nitrogen-containing gas atmosphere to be nitrided. The method for producing a titanium nitride sputtering target according to claim 1, wherein
【請求項5】 平均粒径5〜200μmのTi粉をHIP
処理して焼結体を造り、次にこれを窒素含有ガス雰囲気
中で加熱して窒化することを特徴とする、請求項1に記
載の窒化チタンスパッタリングタ−ゲットの製造方法。
5. A Ti powder having an average particle size of 5 to 200 μm is HIPed.
The method for producing a titanium nitride sputtering target according to claim 1, wherein the sintered body is treated to produce a sintered body, and then the sintered body is heated in a nitrogen-containing gas atmosphere to be nitrided.
JP4129669A 1992-04-22 1992-04-22 Titanium nitride sputtering target and method of manufacturing the same Expired - Lifetime JP2631793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129669A JP2631793B2 (en) 1992-04-22 1992-04-22 Titanium nitride sputtering target and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129669A JP2631793B2 (en) 1992-04-22 1992-04-22 Titanium nitride sputtering target and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05295534A true JPH05295534A (en) 1993-11-09
JP2631793B2 JP2631793B2 (en) 1997-07-16

Family

ID=15015226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129669A Expired - Lifetime JP2631793B2 (en) 1992-04-22 1992-04-22 Titanium nitride sputtering target and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2631793B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442650B2 (en) 2007-01-10 2008-10-28 International Business Machines Corporation Methods of manufacturing semiconductor structures using RIE process
CN113897578A (en) * 2021-10-08 2022-01-07 中南大学湘雅医院 Surface modification method for surgical operation instrument metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056608U (en) * 1973-09-26 1975-05-28
JPS5411764A (en) * 1977-06-29 1979-01-29 Fujitsu Ltd Surface condition measuring method of disc substrates
JPS63236759A (en) * 1987-03-24 1988-10-03 日本碍子株式会社 Ceramic material for casting
JPH03249175A (en) * 1990-02-28 1991-11-07 Toshiba Corp Sputtering target and coating film using the same
JPH04116161A (en) * 1990-09-05 1992-04-16 Hitachi Metals Ltd Titanium target material and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056608U (en) * 1973-09-26 1975-05-28
JPS5411764A (en) * 1977-06-29 1979-01-29 Fujitsu Ltd Surface condition measuring method of disc substrates
JPS63236759A (en) * 1987-03-24 1988-10-03 日本碍子株式会社 Ceramic material for casting
JPH03249175A (en) * 1990-02-28 1991-11-07 Toshiba Corp Sputtering target and coating film using the same
JPH04116161A (en) * 1990-09-05 1992-04-16 Hitachi Metals Ltd Titanium target material and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442650B2 (en) 2007-01-10 2008-10-28 International Business Machines Corporation Methods of manufacturing semiconductor structures using RIE process
US8614150B2 (en) 2007-01-10 2013-12-24 International Business Machines Corporation Methods of manufacturing semiconductor structures using RIE process
CN113897578A (en) * 2021-10-08 2022-01-07 中南大学湘雅医院 Surface modification method for surgical operation instrument metal

Also Published As

Publication number Publication date
JP2631793B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US5896553A (en) Single phase tungsten-titanium sputter targets and method of producing same
US4743311A (en) Method of producing a metallic part
US5403628A (en) Process for producing a coated hard-metal cutting body
JP2631793B2 (en) Titanium nitride sputtering target and method of manufacturing the same
JPH0254733A (en) Manufacture of ti sintered material
JP2707185B2 (en) Titanium nitride sputtering target
JP2707184B2 (en) Titanium nitride sputtering target
JPH01156449A (en) Molybdenum sintered compact and its production
JPH02259029A (en) Manufacture of aluminide
JPH06228747A (en) Titanium nitride sputtering target and production thereof
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS61223145A (en) Manufacture of tungsten carbide base sintered hard alloy
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP2726818B2 (en) Fabrication method of fine carbide dispersed alloy using mechanical alloying method
JPH0266136A (en) Wc-co sintered hard alloy and its manufacture
JPH0555472B2 (en)
JPH05287407A (en) Production of ceramic powder coated with metal on surface for powder metallurty
JPS59223274A (en) Method of getting high strength silicon nitride reaction sintered body
JPH04161240A (en) Wurtzite-type boron nitride and carbon powder and its manufacture
JPH05195109A (en) Production of cermet
JPH03277735A (en) Manufacture of cermet
JPH04247836A (en) Manufacture of titanium matrix composite
JPH024932A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JPS6369939A (en) Manufacture of sintered high-alloy steel