JPH0266136A - Wc-co sintered hard alloy and its manufacture - Google Patents

Wc-co sintered hard alloy and its manufacture

Info

Publication number
JPH0266136A
JPH0266136A JP63218739A JP21873988A JPH0266136A JP H0266136 A JPH0266136 A JP H0266136A JP 63218739 A JP63218739 A JP 63218739A JP 21873988 A JP21873988 A JP 21873988A JP H0266136 A JPH0266136 A JP H0266136A
Authority
JP
Japan
Prior art keywords
solid solution
amt
alloy
cemented carbide
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218739A
Other languages
Japanese (ja)
Inventor
Tetsuo Kato
哲男 加藤
Koichi Sudo
須藤 興一
Toshimitsu Kimura
利光 木村
Jiro Ichikawa
市川 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63218739A priority Critical patent/JPH0266136A/en
Publication of JPH0266136A publication Critical patent/JPH0266136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title alloy having high strength and high toughness by sintering WC-Co sintered hard alloy powder, thereafter subjecting it to carburizing treatment and specifying the relationship between the amt. of solid solution W and the amt. of solid solution C in a bonding phase. CONSTITUTION:The powder of a WC-Co sintered hard alloy is charged to a mold, is heated in an inert atmosphere or in vacuum and is sintered. The sintered body is then subjected to carburizing treatment to regulate the relationship between the amt.(x)(atom%) of solid solution W and the amt.(y) of solid solution C in a bonding phase of the alloy in such a manner that the formulae of (x)+5(y)-18>0, 3<=(x)<=8 and (y)<=4 are satisfied. In this way, the amt. of solid solution W and the amt. of solid solution C are increased, so that the alloy having high hardness and high toughness can be manufactured by simple treatment. The alloy is applicable to a cutting tool, drawing die, die material, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、常温および高温において高硬度であり耐摩耗
性の良好な超硬合金およびその製造方法に関するもので
、例えば切削工具、線引きダイス、型材料に適用される
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cemented carbide that has high hardness and good wear resistance at room temperature and high temperature, and a method for manufacturing the same, such as cutting tools, wire drawing dies, Applied to mold material.

(従来の技術) 一般に、WC−Co系超硬合金は、常温ないし高温にお
いても、高硬度であり良好な耐摩耗性、品切性を有して
いる。
(Prior Art) In general, WC-Co cemented carbide has high hardness and good wear resistance and stockability even at room temperature to high temperature.

WC−Co系超硬合金の硬さと靭性(抗折力)は、結合
相の量により太き(変化する。例えば、この超硬合金の
Co含有量が5原子%(以下、単に%と称す)のとき、
硬さ1600 (Hv)、抗折力+ 50 (kgf/
mm”)であり、Co含有量が25%であるとき、硬さ
950()Iv)、抗折力270 (kgf/mm”)
であって、結合相の1が多いと硬さは低く抗折力は高く
なり、反対に結合相の量が少ないと硬さは高く抗折力は
低くなる。
The hardness and toughness (transverse rupture strength) of WC-Co-based cemented carbide vary depending on the amount of the binder phase.For example, if the Co content of this cemented carbide is 5 at. )When,
Hardness 1600 (Hv), transverse rupture strength + 50 (kgf/
mm"), and when the Co content is 25%, the hardness is 950 () Iv) and the transverse rupture strength is 270 (kgf/mm")
If the amount of 1 in the binder phase is large, the hardness will be low and the transverse rupture strength will be high, whereas if the amount of the binder phase is small, the hardness will be high and the transverse rupture strength will be low.

また、超硬合金の結合相中の固溶C量や固溶W毒の多少
によって硬さ、抗折力等が影響されることが知られてい
る。すなわち、固溶Wiが高くなると、固溶Cf量が低
くなり、その結果、結合相の硬さは硬くなり、そのため
合金の硬さが硬くなり抗折力は低下する。反対に、固溶
Cmが高くなると、固溶Wmが低くなり、その結果、結
合相の硬さは低くなるため、合金の硬さは低くなり抗折
力は高くなる。
Further, it is known that hardness, transverse rupture strength, etc. are influenced by the amount of solidly dissolved C in the binder phase of cemented carbide and the amount of solidly dissolved W poison. That is, as the solid solution Wi increases, the solid solution Cf amount decreases, and as a result, the hardness of the binder phase increases, so the hardness of the alloy increases and the transverse rupture strength decreases. On the contrary, as the solid solution Cm increases, the solid solution Wm decreases, and as a result, the hardness of the binder phase decreases, so the hardness of the alloy decreases and the transverse rupture strength increases.

このように結合相の硬さが上昇すると、超硬合金の抗折
力は低下することは、従来より知られている。これは、
Wの固溶量の増大にともない硬さが上昇するためである
と考えられる。
It has been conventionally known that as the hardness of the binder phase increases, the transverse rupture strength of the cemented carbide decreases. this is,
This is thought to be because the hardness increases as the amount of solid solution of W increases.

(発明が解決しようとする課題) しかし、従来の焼結法により造られた超硬合金において
は、第1図に示すように、結合相中の固溶C量と固溶w
lとが焼結時の相平衡より律されているため、固溶WN
を増大すると固溶C量が減小してしまうので、固溶W毒
と固溶C1の澄をともに増加させた高硬度および高靭性
の超硬合金を造ることは、かなり困難であった。
(Problems to be Solved by the Invention) However, in cemented carbide made by the conventional sintering method, as shown in Fig. 1, the amount of solid solute C in the binder phase and the solid solute w
1 is controlled by the phase equilibrium during sintering, solute WN
Since increasing the amount of solid solute C decreases, it has been quite difficult to produce a cemented carbide with high hardness and high toughness in which both the solute W poison and the solid solute C1 content are increased.

本発明者らは、WC−Co系超硬合合材の硬さおよび抗
折力と結晶相中の固溶CgLおよび固溶W量の関係を分
析検討した結果、固溶Wiを一定にしたまま固溶C遣を
増加させることにより、合金硬さが上昇するとともに抗
折力が向上することを見出した。
The present inventors analyzed and investigated the relationship between the hardness and transverse rupture strength of WC-Co-based cemented carbide and the amount of solid solute CgL and solid solute W in the crystal phase, and as a result, the solid solute Wi was kept constant. It has been found that by increasing the solid solution C content, the alloy hardness increases and the transverse rupture strength improves.

本発明の目的は、高硬度かつ高靭性のWC−Co系超硬
合金およびその製造方法を得ることにある。
An object of the present invention is to obtain a WC-Co cemented carbide having high hardness and high toughness and a method for producing the same.

(課題を解決するための手段) 本発明の第1発明の超硬合金は、WC−Co系超硬合金
の結合相中の固溶Wfflx(原子%)と固溶CNy(
原子%)の関係式が x+5y−18>0 3≦X≦8 y≦4 であることを特徴とする。
(Means for Solving the Problems) The cemented carbide of the first aspect of the present invention has solid solution Wfflx (atomic %) and solid solution CNy (
It is characterized in that the relational expression of x+5y-18>0 3≦X≦8 y≦4.

本発明の第2発明は、WC−Co系超硬合金粉末を不活
性雰囲気中または真空中で焼結した後、浸炭処理により
前記超硬合金を造ることを特徴とする。
A second aspect of the present invention is characterized in that the WC-Co based cemented carbide powder is sintered in an inert atmosphere or in a vacuum, and then the cemented carbide is produced by carburizing treatment.

本発明における超硬合金の結合相中の固溶w1X(原子
%)と固溶Cf量y (原子%)の関係式を1!;1述
のように限定した理1[口ま、次のとおりである。
The relational expression between the solid solution w1X (atomic %) and the solid solute Cf amount y (atomic %) in the binder phase of the cemented carbide in the present invention is 1! ; Reason 1 limited as stated above is as follows.

■ x+5y−18>0 としたのは、従来のW C−Co系超硬合金よりも固溶
Cvlおよび固r8 W IJ’tをともに増大するこ
とにより、固溶形態の異なるC(侵入型)とW(置換4
;2 )の固溶硬化を促進するためである。
■ The reason for setting x+5y-18>0 is that by increasing both solid solution Cvl and solid r8 W IJ't compared to conventional W C-Co cemented carbide, C (interstitial type) with a different solid solution form is set. and W (replacement 4
;2) This is to promote solid solution hardening.

■ X≦8 としたのは、x>8とすると脆性相が出現し抗折力が低
「し脆化が河しくなるからである。
■ The reason for setting X≦8 is that when x>8, a brittle phase appears, the transverse rupture strength becomes low, and embrittlement becomes severe.

■ 3≦x、y≦4 としたのは、:S > xとすると靭性が著しく低下す
るからであり、y>4とすると遊i!l1lCが析出し
、それ以−LlI!J!化しにくいからである。
■ The reason why we set 3≦x and y≦4 is that if :S > x, the toughness decreases significantly, and if y>4, the play i! l1lC precipitates, and then -LlI! J! This is because it is difficult to change.

前述したXとyの比の範囲においては、同一の固溶W 
[;tにおいて固溶C1;1を増用することにより、高
硬度かつ高抗折力の超硬合金が得られる。
In the range of the ratio of X and y mentioned above, the same solid solution W
By increasing the amount of solid solution C1;1 in [;t, a cemented carbide with high hardness and high transverse rupture strength can be obtained.

本発明の第2発明における浸炭処理としては、j′を空
浸炭あるいはプラズマ浸炭を用いるのがよい。
As the carburizing treatment in the second aspect of the present invention, it is preferable to use air carburizing or plasma carburizing for j'.

プラズマ浸炭は、処理時間、Chlの制御精度等の点か
ら特に優れている。
Plasma carburizing is particularly excellent in terms of processing time, Chl control accuracy, and the like.

浸炭処理条件としては、処理温度が1280℃未満に設
定する。これは、処理温度が1280℃以上になると5
組成によっては液相を生成し、固)容wHも変化してし
まうためである。また浸炭処理温度が低過ぎると、Cの
固溶限が低下するため、浸炭処理温度は1200℃程度
以上であることが望ましい。
As the carburizing treatment conditions, the treatment temperature is set to less than 1280°C. This is 5 when the processing temperature is 1280℃ or higher.
This is because depending on the composition, a liquid phase is generated and the solid volume wH also changes. Furthermore, if the carburizing temperature is too low, the solid solubility limit of C will decrease, so it is desirable that the carburizing temperature is about 1200° C. or higher.

浸炭量としては、処理温度での固溶限以下であって、例
えば処理温度1200℃で3.5%程度、1270℃で
4%程度に設定するのがよい、これは、それ以上浸炭す
ると遊離Cが生成されて抗折力が著しく低下するためで
ある。なお、浸炭後の冷却は迅やかに行なうほうがCの
析出を防止する点で望ましい。
The amount of carburization is preferably set to be below the solid solubility limit at the processing temperature, for example, about 3.5% at a processing temperature of 1200°C and about 4% at 1270°C. This is because C is generated and the transverse rupture strength is significantly reduced. Note that it is preferable to cool quickly after carburizing in order to prevent precipitation of C.

(実施例) 本発明の実施例について説明する。(Example) Examples of the present invention will be described.

超硬合金の製法は、純度の高い粒径0.1〜05μm位
のW粉末にC粉末を混合し、WCの細かい粉末を造り、
この粉末にCOの細かい粉末を加える。これらの粉末を
充分に混ぜ合わせてから金型に入れ、約1000気圧で
押し固めてから、1350〜1500℃の還元雰囲気中
か真空中で加熱する。すると、Coが溶融し、WC粉末
が焼結する。
The manufacturing method of cemented carbide is to mix C powder with highly pure W powder with a particle size of about 0.1 to 05 μm to create fine WC powder.
Add fine powder of CO to this powder. These powders are thoroughly mixed, put into a mold, pressed together at about 1,000 atmospheres, and then heated in a reducing atmosphere at 1,350 to 1,500°C or in a vacuum. Then, the Co is melted and the WC powder is sintered.

この焼結超硬合金から縦、横、高さが4.4.50mm
の試験片を作製した。この超硬合金の試験片に真空浸炭
(実施例■)、プラズマ浸炭(実施例2)を施したもの
を作製した。
From this sintered cemented carbide, the length, width, and height are 4.4.50 mm.
A test piece was prepared. Test pieces of this cemented carbide were subjected to vacuum carburization (Example 2) and plasma carburization (Example 2) to produce test pieces.

これらの試験片について結合相中の固溶Cmおよび固溶
WfflをX線マイクロアナライザにより測定した。
Solid solution Cm and solid solution Wffl in the binder phase of these test pieces were measured using an X-ray microanalyzer.

焼結条件は、1370℃、1時間とした。The sintering conditions were 1370°C for 1 hour.

試験結果は第1表に示すとおりであった。The test results were as shown in Table 1.

(以下、余白) 第1表において、実施例1の真空浸炭条件は、10−”
Lorrに減圧した後1270℃に加熱し、10分保持
し、C3HIlガスを導入し、加熱炉内の圧力を350
 Lorrとし、30分間浸炭した。
(Hereinafter, blank space) In Table 1, the vacuum carburizing conditions of Example 1 are 10-"
After reducing the pressure to Lorr, it was heated to 1270°C, held for 10 minutes, C3HIl gas was introduced, and the pressure in the heating furnace was reduced to 350°C.
Lorr and carburized for 30 minutes.

実施例2のプラズマ浸炭条件は、  I O−”tor
rに減圧し、1270℃に加熱し10分間均熱処理を施
し、その後ArまたはH2ガスを導入し、加熱炉内の圧
力を2 torrに設定し、試験片を陰極とした陽極と
の間に500Vの直流電圧を印加し、グロー放電を5分
間行ない、その後A「またはH2ガスを排気し、C,H
,ガスを導入し圧力2 torrに設定し、グロー放電
を15分間行なった。
The plasma carburizing conditions of Example 2 were as follows: IO-”tor
After reducing the pressure to Apply a DC voltage of 5 minutes, perform glow discharge for 5 minutes, then exhaust the
, gas was introduced, the pressure was set at 2 torr, and glow discharge was performed for 15 minutes.

比較例3では、焼結後、浸炭を行なわなかった。In Comparative Example 3, carburization was not performed after sintering.

第1表から明らかなように、比較例3に比べて実施例1
および2は、固溶Wffiを同一■としたまま固溶C1
を増量しており、実施例1および2は、浸炭処理を施さ
ない比較例3に比べ硬さおよび抗折力がともに高硬度、
高靭性の値をとっていることが判った。
As is clear from Table 1, Example 1 compared to Comparative Example 3.
and 2 are solid solution C1 while keeping solid solution Wffi the same
In Examples 1 and 2, both hardness and transverse rupture strength are higher than in Comparative Example 3, which is not carburized.
It was found that it had a high toughness value.

(発明の効果) 以上説明したように、本発明によれば、WC−Co系超
硬合金の固溶wHおよび固溶CHをともに従来のWC−
Co系超硬合金よりも増量したので、高硬度および高靭
性の超硬合金が得られるという効果がある。
(Effects of the Invention) As explained above, according to the present invention, both the solid solution wH and the solid solution CH of the WC-Co cemented carbide are replaced by the conventional WC-
Since the amount is increased compared to the Co-based cemented carbide, there is an effect that a cemented carbide with high hardness and high toughness can be obtained.

また本発明の製造方法によれば、WC−Co系超硬合金
の焼結体に浸炭処理を施すことにしたので、従来のWC
−Co系超硬合金よりも高硬度かつ高靭性の合金を簡単
な処理により得られるという効果がある。
Furthermore, according to the manufacturing method of the present invention, since the sintered body of WC-Co-based cemented carbide is carburized, the conventional WC
This has the effect that an alloy with higher hardness and toughness than -Co-based cemented carbide can be obtained through simple processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超硬合金の組成を説明するための説明
図である。
FIG. 1 is an explanatory diagram for explaining the composition of the cemented carbide of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)WC−Co系超硬合金の結合相中の固溶W量x(
原子%)と固溶C量y(原子%)の関係式がx+5y−
18>0 3≦X≦8 y≦4 であることを特徴とするWC−Co系超硬合金。
(1) Solid solution W amount x (
The relational expression between solid solute C content y (atomic %) is x+5y-
18>0 3≦X≦8 y≦4 A WC-Co cemented carbide.
(2)WC−Co系超硬合金粉末を不活性雰囲気中また
は真空中で焼結した後、浸炭処理により前記請求項1に
記載の超硬合金を造ることを特徴とするWC−Co系超
硬合金の製造方法。
(2) WC-Co-based super-hard alloy powder is sintered in an inert atmosphere or in vacuum, and then the cemented carbide according to claim 1 is produced by carburizing treatment. Hard metal manufacturing method.
JP63218739A 1988-09-01 1988-09-01 Wc-co sintered hard alloy and its manufacture Pending JPH0266136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218739A JPH0266136A (en) 1988-09-01 1988-09-01 Wc-co sintered hard alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218739A JPH0266136A (en) 1988-09-01 1988-09-01 Wc-co sintered hard alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH0266136A true JPH0266136A (en) 1990-03-06

Family

ID=16724667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218739A Pending JPH0266136A (en) 1988-09-01 1988-09-01 Wc-co sintered hard alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH0266136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619593B1 (en) * 2004-12-16 2006-09-07 재단법인 포항산업과학연구원 METHOD OF POST HEAT-TREATMENT FOR THE IMPROVEMENT IN WEAR-RESISTANCE OF NANO-STRUCTURED WC-Co COATINGS
JP2014184521A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool
CN107142445A (en) * 2017-05-02 2017-09-08 四川大学 A kind of carbide surface method for carburizing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619593B1 (en) * 2004-12-16 2006-09-07 재단법인 포항산업과학연구원 METHOD OF POST HEAT-TREATMENT FOR THE IMPROVEMENT IN WEAR-RESISTANCE OF NANO-STRUCTURED WC-Co COATINGS
JP2014184521A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool
CN107142445A (en) * 2017-05-02 2017-09-08 四川大学 A kind of carbide surface method for carburizing
CN107142445B (en) * 2017-05-02 2019-05-07 四川大学 A kind of carbide surface method for carburizing

Similar Documents

Publication Publication Date Title
USRE40100E1 (en) Fabrication of B/C/N/O/Si doped sputtering targets
JP3300409B2 (en) Sintered titanium-based carbonitride alloy and its manufacturing method
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
JPH01142002A (en) Alloy steel powder for powder metallurgy
JPH0266136A (en) Wc-co sintered hard alloy and its manufacture
JPS62294142A (en) Production of nickel-titanium alloy
JPS6270550A (en) Material for target
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPS62224602A (en) Production of sintered aluminum alloy forging
JPS62130235A (en) Production of target material
JPH0790432A (en) Ultralow-chlorine alpha+beta type sintered titanium alloy made of isometric structure
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JP3260157B2 (en) Method for producing diamond-coated member
JPH02221353A (en) Sintered hard alloy for wear-resistant tool and its manufacture
JPH04210401A (en) Production of structural member made of tial intermetallic compound
JPH0633165A (en) Manufacture of sintered titanium alloy
JPS63183145A (en) High hardness titanium-aluminum-vanadium alloy and its production
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPS5839704A (en) Production of ni-base sintered hard alloy
JPS63169341A (en) Production of morybdenum based alloy dispersed with carbide and strengthened thereby
JPS61159539A (en) Manufacture of shape memory alloy
JP4331269B2 (en) Method for producing a titanium-based carbonitride alloy without a binder phase surface layer
JPH03271334A (en) Manufacture of sintered alloy excellent in corrosion resistance
JPH01176066A (en) Ion-nitrided cermet tip and production thereof