JPH05294642A - Mold for molding optical glass element and production of optical glass element - Google Patents

Mold for molding optical glass element and production of optical glass element

Info

Publication number
JPH05294642A
JPH05294642A JP10117692A JP10117692A JPH05294642A JP H05294642 A JPH05294642 A JP H05294642A JP 10117692 A JP10117692 A JP 10117692A JP 10117692 A JP10117692 A JP 10117692A JP H05294642 A JPH05294642 A JP H05294642A
Authority
JP
Japan
Prior art keywords
film
molding
mold
carbide
optical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10117692A
Other languages
Japanese (ja)
Inventor
Makoto Umetani
梅谷  誠
Kiyoshi Kuribayashi
清 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10117692A priority Critical patent/JPH05294642A/en
Publication of JPH05294642A publication Critical patent/JPH05294642A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • C03B2215/17Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain high-precision optical glass elements by using a mold having formed a specific multi-layer film on the molding face of a processing parent material comprising a cermet having a specific composition, a sintered compact of WC, etc., heating glass lump and press molding. CONSTITUTION:A parent material composed of a super hard alloy consisting essentially of tungsten carbide, a cermet consisting essentially of titanium carbide or titanium nitride or a sintered material of tungsten carbide is prepared. The, the parent material is processed in high accuracy into a shape of a desired optical glass element to prepare a mold 11. The molding face of the mold 11 is provided with a multi-layer film 12 obtained by alternately laminating a nitride film and a carbide film or a boride film and a platinum-group alloy film. Then glass lump of target molding is placed between a pair of upper and lower molds 11, heated to >= the softening point of the glass lump and press molded to produce an optical glass element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高精度な形状を有する光
学ガラス素子を製造するための光学ガラス素子の製造方
法と、そのために必要な成形用金型に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical glass element manufacturing method for manufacturing an optical glass element having a highly precise shape, and a molding die required for the method.

【0002】[0002]

【従来の技術】高精度の光学ガラス素子を、加圧成形し
て製造する場合良好な像形成品質が要求される。このた
め金型材料としては高温度でもガラスに対して化学的に
不活性であり、また、ガラスの成形面となる部分が、充
分硬く、擦傷等の損傷を受けにくく、高温での成形によ
り成形面が塑性変形や粒成長を起こさず、繰り返し成形
が行えるように耐熱衝撃性が優れ、さらに、超精密加工
が行えるように加工性に優れていることが必要である。
従来知られている金型材料としては、SiCまたはSi
34が報告されている(特開昭52−45613号公報
参照)。
2. Description of the Related Art Good quality of image formation is required when a high precision optical glass element is manufactured by pressure molding. Therefore, as a mold material, it is chemically inert to glass even at high temperatures, and the molding surface of the glass is sufficiently hard to resist damage such as scratches. It is necessary that the surface has excellent thermal shock resistance so that plastic deformation or grain growth does not occur and repeated molding can be performed, and further that workability is excellent so that ultra-precision processing can be performed.
Conventionally known mold materials include SiC or Si
3 N 4 has been reported (see JP-A-52-45613).

【0003】また、最近では超硬合金母材上に白金族合
金薄膜をコーティングした金型も提案されている(特開
昭60−246230)。
Recently, a die in which a platinum group alloy thin film is coated on a cemented carbide base material has also been proposed (Japanese Patent Laid-Open No. 60-246230).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、そのよ
うなSiCまたはSi34を金型材料に用いた場合、こ
れらの材料は極めて硬度が高いために、所望の形状の成
形用金型に加工すること自体が非常に困難であり、さら
に、これらの材料はいずれも高温でガラスとの反応性に
富んでいるので、繰り返しプレス成形を行なうと、ガラ
スが金型に付着し、高精度な光学ガラス素子が成形でき
なくなるという課題が存在する。
However, when such SiC or Si 3 N 4 is used as a mold material, since these materials have extremely high hardness, they can be processed into a mold having a desired shape. It is very difficult to do this, and since all of these materials are highly reactive with glass at high temperatures, repeated press molding causes the glass to adhere to the mold, resulting in high-precision optics. There is a problem that the glass element cannot be molded.

【0005】また、超硬合金母材上に白金族合金薄膜を
コーティングした金型は加工性に優れ、低融点ガラスで
あれば繰り返しプレス成形を行なっても高精度の光学ガ
ラス素子を成形できるが、高融点ガラスをプレス成形す
ると粒成長により面荒れが生じ、高精度な光学ガラス素
子が成形できなくなるという課題があった。
Further, a die in which a platinum group alloy thin film is coated on a cemented carbide base material is excellent in workability, and a high-precision optical glass element can be formed by repeatedly press-forming a low melting point glass. However, when high-melting-point glass is press-molded, surface roughness occurs due to grain growth, making it impossible to form a highly accurate optical glass element.

【0006】本発明は、このような従来の高融点の光学
ガラス素子の製造方法の課題を考慮し、高温度でもガラ
スに対して化学的に不活性であり、また、ガラスの成形
面となる部分が、充分硬く、擦傷等の損傷を受けにく
く、高温での成形により成形面が塑性変形や粒成長を起
こさず、繰り返し成形が行えるように耐熱衝撃性が優
れ、さらに、超精密加工が行えるように加工性に優れて
いる光学ガラス素子の成形用金型を提供することを目的
とするものである。
In view of the problems of the conventional method for manufacturing an optical glass element having a high melting point, the present invention is chemically inert to glass even at a high temperature, and becomes a glass molding surface. The part is sufficiently hard, is not easily damaged by scratches, etc., and the molding surface does not undergo plastic deformation or grain growth due to molding at high temperature, and it has excellent thermal shock resistance so that it can be repeatedly molded. Thus, it is an object of the present invention to provide a mold for molding an optical glass element which is excellent in workability.

【0007】[0007]

【課題を解決するための手段】本発明は、光学ガラス素
子の形状に高精度に加工した、タングステンカーバイド
(WC)を主成分とする超硬合金、チタンカーバイド
(TiC)あるいはチタンナイトライド(TiN)を主
成分とするサーメットまたはWC焼結体からなる母材の
成形面に、窒化膜、炭化膜あるいはほう化膜と白金族合
金膜とを交互に積層した多層膜が形成されている光学ガ
ラス素子の成形用金型である。
DISCLOSURE OF THE INVENTION According to the present invention, a cemented carbide containing tungsten carbide (WC) as a main component, titanium carbide (TiC) or titanium nitride (TiN), which is processed into a shape of an optical glass element with high precision. ), An optical glass in which a multilayer film in which a nitride film, a carbide film or a boride film and a platinum group alloy film are alternately laminated is formed on the molding surface of a base material made of a cermet or WC sintered body containing It is a mold for molding an element.

【0008】また、本発明は、光学ガラス素子の形状に
高精度に加工したWCを主成分とする超硬合金、TiC
あるいはTiNを主成分とするサーメットまたはWC焼
結体からなる母材の成形面に、窒化膜、炭化膜あるいは
ほう化膜と、白金族合金膜とを交互に積層した多層膜を
形成してなる上下一対の成形用金型の間に、成型対象の
ガラス塊を設置し、そのガラスの軟化点以上に加熱した
後、加圧成形して光学ガラス素子を製造する光学ガラス
素子の製造方法である。
Further, the present invention is a cemented carbide containing WC as a main component, which is processed into a shape of an optical glass element with high precision, and TiC.
Alternatively, a multilayer film in which a nitride film, a carbide film or a boride film and a platinum group alloy film are alternately laminated is formed on a molding surface of a base material made of cermet or WC sintered body containing TiN as a main component. Between a pair of upper and lower molding dies, a glass lump to be molded is placed, heated to a temperature equal to or higher than the softening point of the glass, and then pressure-molded to manufacture an optical glass element, which is a method for manufacturing an optical glass element. ..

【0009】[0009]

【作用】本発明では、耐熱性に優れた窒化物、炭化物あ
るいはほう化物と、溶融ガラスとの反応性の乏しい白金
族合金とを交互に積層した多層膜を金型表面に形成する
ことによって、窒化物、炭化物あるいはほう化物の欠点
であるガラスとの反応性を改善し、さらに、白金族合金
の欠点である耐熱性を著しく向上させ、両方の利点を兼
ね備えた金型を製造出来る。従って、本発明の金型を用
いることによって、従来成形が困難であった、BK−
7、SK系、La系等の高融点光学ガラスをプレス成形
できるようになる。
In the present invention, a multilayer film in which a nitride, a carbide or a boride having excellent heat resistance and a platinum group alloy having poor reactivity with molten glass are alternately laminated is formed on the mold surface, It is possible to manufacture a mold having both advantages by improving reactivity with glass, which is a drawback of nitrides, carbides, or borides, and remarkably improving heat resistance, which is a drawback of platinum group alloys. Therefore, by using the mold of the present invention, BK-
7, it becomes possible to press-mold high melting point optical glass such as SK type and La type.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】先ず、本発明の光学ガラス素子の製造方法
の一実施例に付いて説明する。まず、直径20mm、厚さ
6mmのTiNを主成分とするサーメットを、曲率半径が
それぞれ46mm及び200mmの凹面形状のプレス面を有
する上下の型からなる一対の光学ガラスレンズのプレス
成形用型に加工した。これらの型のプレス面を超微細な
ダイヤモンド砥粒を用いて鏡面に研磨した。次に、この
鏡面状に研磨したプレス面にスパッタリング法によって
多層膜を形成した。この多層膜はTiNとPt−Ir合
金をそれぞれ300Åずつ交互に積層し、全体の膜厚を
約1μmとした。
First, an embodiment of the method for manufacturing an optical glass element of the present invention will be described. First, a cermet mainly composed of TiN having a diameter of 20 mm and a thickness of 6 mm is processed into a pair of optical glass lens press-molding dies having upper and lower dies having concave press surfaces having a radius of curvature of 46 mm and 200 mm, respectively. did. The press surfaces of these molds were mirror-polished using ultrafine diamond abrasive grains. Next, a multilayer film was formed on the mirror-polished press surface by a sputtering method. In this multilayer film, TiN and Pt-Ir alloy were alternately laminated in an amount of 300 Å, and the total film thickness was about 1 μm.

【0012】図1は、このようにして作製した金型の片
方の断面図である。TiNを主成分とするサーメットを
レンズの反転形状に精密に加工した母材11の表面に、
TiNとPt−Ir合金をそれぞれ300Åずつ交互に
積層した多層膜12が形成されている。
FIG. 1 is a cross-sectional view of one side of the mold thus manufactured. On the surface of the base material 11 in which the cermet containing TiN as a main component is precisely processed into the inverted shape of the lens,
A multilayer film 12 is formed by alternately laminating 300 N each of TiN and Pt-Ir alloy.

【0013】このような上下型を図2に示したプレス成
形機にセットする。図2に於て、上型用固定ブロック2
1は、上型23を固定するためのブロックであり、その
中に上型用加熱ヒーター22が埋設されている。下型用
固定ブロック27は、下型25を固定するためのブロッ
クであり、その中に下型用加熱ヒーター26が埋設され
ている。その上型23内には、上型用熱電対28が、ま
た、下型25内には下型用熱電対29が埋設されてい
る。そして、上型23と下型25の間には、加工しよう
とするガラス塊24が挟まれている。なお、210はプ
ランジャー、211は位置決めセンサー、212はスト
ッパー、213は覆いである。
Such upper and lower molds are set in the press molding machine shown in FIG. In FIG. 2, fixed block 2 for upper mold
Reference numeral 1 is a block for fixing the upper mold 23, in which the upper mold heater 22 is embedded. The lower die fixing block 27 is a block for fixing the lower die 25, and the lower die heater 26 is embedded therein. An upper mold thermocouple 28 is embedded in the upper mold 23, and a lower mold thermocouple 29 is embedded in the lower mold 25. A glass gob 24 to be processed is sandwiched between the upper mold 23 and the lower mold 25. In addition, 210 is a plunger, 211 is a positioning sensor, 212 is a stopper, and 213 is a cover.

【0014】このようなプレス成形機を用いて成形す
る。すなわち、半径10mmの球面形状に加工したSK
−14ガラス塊24を下型25の上に置き、その上に上
型23を置いて、そのまま700℃まで昇温し、窒素雰
囲気で約40Kg/cm2のプレス圧により2分間圧力
を保持し、その後、そのままの状態で600℃まで冷却
して、成形された光学ガラス素子を取り出して、光学ガ
ラス素子のプレス成形工程を完了する。
Molding is performed using such a press molding machine. That is, SK processed into a spherical shape with a radius of 10 mm
-14 Place the glass gob 24 on the lower mold 25, place the upper mold 23 on it, raise the temperature to 700 ° C. as it is, and hold the pressure for 2 minutes by a pressing pressure of about 40 Kg / cm 2 in a nitrogen atmosphere. Then, after that, it is cooled to 600 ° C. in that state, the molded optical glass element is taken out, and the press molding step of the optical glass element is completed.

【0015】以上の工程を繰り返して、10,000回
目のプレス終了時に上下の金型23及び25を成形機よ
り取り外して、プレス面の状態を光学顕微鏡により観察
し、同時に、その時の表面粗さ(rms値、Å)を測定
して、それぞれの型精度を評価した。比較実験として、
従来使用されていたSiC焼結体の金型およびWCを主
成分とする超硬合金母材にPt−Ir合金膜を形成した
金型を作製し、同様に10,000回プレス成形を行い
型精度を評価した。
By repeating the above steps, at the end of the 10,000th press, the upper and lower molds 23 and 25 are removed from the molding machine, and the state of the pressed surface is observed by an optical microscope, and at the same time, the surface roughness at that time is measured. (Rms value, Å) was measured to evaluate the mold accuracy of each. As a comparative experiment,
A conventionally used mold of a SiC sintered body and a mold in which a Pt-Ir alloy film is formed on a cemented carbide base material containing WC as a main component are produced, and the mold is subjected to press molding 10,000 times in the same manner. The accuracy was evaluated.

【0016】プレス試験の結果を表1に示す。The results of the press test are shown in Table 1.

【0017】[0017]

【表1】 試料No.2のSiC焼結体で作製した従来の金型は数
回のプレス成形によって、上下両方の金型ともに、表面
にガラスが付着しそれ以上ガラスをプレスすることがで
きなくなった。
[Table 1] Sample No. The conventional die made of the SiC sintered body of No. 2 was press-molded several times, and the glass adhered to the surface of both the upper and lower dies, and the glass could not be pressed any more.

【0018】試料No.3のWC母材のPt−Ir合金
膜を形成した従来の金型では、プレス成形回数が増すに
従い、表面粗さが徐々に大きくなり、10,000回の
プレス後には上型が57.9Å、下型が68.1Åとな
り、プレス前に比べてかなり表面が荒れてしまうことが
わかる。これらの表面を顕微鏡によって観察すると、粒
成長が認められ、耐熱性が良くないことがわかる。
Sample No. In the conventional die in which the Pt-Ir alloy film of the WC base material of No. 3 was formed, the surface roughness gradually increased as the number of times of press forming increased, and the upper die was 57.9 Å after 10,000 times of pressing. , The lower die became 68.1Å, which shows that the surface is considerably rougher than before pressing. When these surfaces are observed with a microscope, grain growth is recognized and it is found that the heat resistance is not good.

【0019】以上のように、従来のガラスのプレス成形
に使用されていた金型ではSK−14ガラスのような高
融点ガラスを、繰り返し高精度にプレス成形することが
できなかった。
As described above, it has been impossible to repeatedly press-mold high-melting-point glass such as SK-14 glass with high precision using a mold used for press-molding conventional glass.

【0020】これらの金型に比べて、試料No.1の本
発明の金型はSK−14ガラスを繰り返しプレス成形し
ても、表面状態はまったく変化せず、10000回プレ
ス後も、表面粗さの変化は認められなかった。すなわ
ち、TiNとPt−Ir合金をそれぞれ300Åずつ交
互に積層することによって、TiNの欠点である、ガラ
スとの反応性を抑制し、Pt−Ir合金の欠点である、
耐熱性を向上させることができた。
Compared with these molds, the sample No. The mold of the present invention of No. 1 did not change the surface condition at all even after repeatedly press-molding SK-14 glass, and no change in surface roughness was observed even after pressing 10,000 times. That is, TiN and Pt-Ir alloy are alternately laminated by 300 Å to suppress the reactivity with TiN, which is a drawback of TiN, and is a drawback of Pt-Ir alloy.
The heat resistance could be improved.

【0021】このように、本発明の金型を用いることに
よってSK−14ガラスのような高融点ガラスでも非常
に精度良く、繰り返しプレス成形することができるよう
になった。
As described above, by using the mold of the present invention, it becomes possible to perform the press molding with high accuracy even with high melting point glass such as SK-14 glass.

【0022】なお、本発明を説明するために、実施例に
於て、プレス成形用金型の母材として、TiNを主成分
とするサーメットを用いたが、タングステンカーバイド
(WC)を主成分とする超硬合金、チタンカーバイド
(TiC)あるいはチタンナイトライド(TiN)を主
成分とするサーメットまたはWC焼結体を母材に用いて
も全く同様の結果が得られた。
In order to explain the present invention, a cermet containing TiN as a main component was used as the base material of the press-molding die in the examples, but tungsten carbide (WC) was the main component. Similar results were obtained even when a cermet or WC sintered body containing a cemented carbide, titanium carbide (TiC), or titanium nitride (TiN) as a main component was used as the base material.

【0023】また、多層膜にはTiNとPt−Ir合金
をそれぞれ300Åずつ交互に積層した膜を示したが、
耐熱性のある他の窒化膜、炭化膜あるいはほう化膜と、
ガラスとの反応性の乏しい他の白金族合金膜とを交互に
積層した多層膜を用いても同様の結果が得られた。更
に、その窒化膜の例としては、TiN、シリコンナイト
ライド(Si34)、アルミニウムナイトライド(Al
N)、タンタルナイトライド(TaN)、ジルコニウム
ナイトライド(ZrN)あるいはチタンアルミニウムナ
イトライド(TiAlN)等が可能である。また、炭化
膜の例としては、TiC、シリコンカーバイド(Si
C)、タンタルカーバイド(TaC)、ジルコニウムカ
ーバイド(ZrC)あるいはクロムカーバイド(Cr2
3)が可能である。また、ほう化膜の例としては、ジ
ルコニウムボライド(ZrB2)、ニオビウムボライド
(NbB2)あるいはタンタルボライド(TaB2)等が
可能である。また、白金族合金膜の例としては、白金
(Pt)、ロジウム(Rh)、イリジウム(Ir)、ル
テニウム(Ru)あるいはオスミウム(Os)の中から
少なくとも1種類以上含有する合金膜等が可能である。
The multilayer film is a film in which TiN and Pt-Ir alloy are alternately laminated in an amount of 300 Å.
Other heat-resistant nitride film, carbide film or boride film,
Similar results were obtained by using a multilayer film in which other platinum group alloy films having poor reactivity with glass were alternately laminated. Furthermore, examples of the nitride film include TiN, silicon nitride (Si 3 N 4 ), aluminum nitride (Al
N), tantalum nitride (TaN), zirconium nitride (ZrN), titanium aluminum nitride (TiAlN), or the like is possible. Further, examples of the carbonized film include TiC and silicon carbide (Si
C), tantalum carbide (TaC), zirconium carbide (ZrC) or chrome carbide (Cr 2)
C 3 ) is possible. Further, as an example of the boride film, zirconium boride (ZrB 2 ), niobium boride (NbB 2 ) or tantalum boride (TaB 2 ) can be used. As an example of the platinum group alloy film, an alloy film containing at least one of platinum (Pt), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) can be used. is there.

【0024】[0024]

【発明の効果】以上述べたところから明らかなように、
本発明は、光学ガラス素子の形状に高精度に加工した、
WCを主成分とする超硬合金、TiCあるいはTiNを
主成分とするサーメットまたはWC焼結体からなる母材
の成形面に、窒化膜、炭化膜あるいはほう化膜と白金族
合金膜とを交互に積層した多層膜を形成することによっ
て、耐熱性が良く、ガラスと反応しない光学ガラス素子
のプレス成形用金型を提供出来る。
As is clear from the above description,
The present invention is processed into a shape of an optical glass element with high precision,
A nitride film, a carbide film or a boride film and a platinum group alloy film are alternately formed on the molding surface of a base material made of WC-based cemented carbide, TiC or TiN-based cermet or WC sintered body. By forming a multi-layer film laminated on the above, it is possible to provide a mold for press molding of an optical glass element which has good heat resistance and does not react with glass.

【0025】従って、本発明の金型を用いることによっ
て、SK−14のような高融点のガラスも、精度良く繰
り返しプレス成形が可能となる。
Therefore, by using the mold of the present invention, high melting point glass such as SK-14 can be repeatedly press-molded with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のプレス成形用金型の概略断
面図である。
FIG. 1 is a schematic cross-sectional view of a press molding die according to an embodiment of the present invention.

【図2】本発明の光学ガラス素子のプレス成形用金型を
組み込んだプレス成形機の概略図である。
FIG. 2 is a schematic view of a press molding machine incorporating a press molding die for an optical glass element of the present invention.

【符号の説明】[Explanation of symbols]

11 TiNを主成分とするサーメットをレンズの反転
形状に精密に加工した母材 12 TiNとPt−Ir合金をそれぞれ300Åずつ
交互に積層した多層膜 24 ガラス材料
11 Base material obtained by precisely processing a cermet mainly composed of TiN into an inverted shape of a lens 12 Multilayer film in which 300 Å of TiN and Pt-Ir alloy are alternately laminated 24 Glass material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光学ガラス素子の形状に高精度に加工し
た、タングステンカーバイド(WC)を主成分とする超
硬合金、チタンカーバイド(TiC)あるいはチタンナ
イトライド(TiN)を主成分とするサーメットまたは
WC焼結体からなる母材の成形面に、窒化膜、炭化膜あ
るいはほう化膜と白金族合金膜とを交互に積層した多層
膜が形成されていることを特徴とする光学ガラス素子の
成形用金型。
1. A cemented carbide containing tungsten carbide (WC) as a main component, titanium carbide (TiC) or titanium nitride (TiN) as a main component, which is processed into a shape of an optical glass element with high accuracy, or Molding of an optical glass element, characterized in that a multilayer film in which a nitride film, a carbide film or a boride film and a platinum group alloy film are alternately laminated is formed on a molding surface of a base material made of a WC sintered body. Mold for.
【請求項2】 窒化膜が、TiN、シリコンナイトライ
ド(Si34)、アルミニウムナイトライド(Al
N)、タンタルナイトライド(TaN)、ジルコニウム
ナイトライド(ZrN)あるいはチタンアルミニウムナ
イトライド(TiAlN)であることを特徴とする請求
項1記載の光学ガラス素子の成形用金型。
2. The nitride film comprises TiN, silicon nitride (Si 3 N 4 ) and aluminum nitride (Al
N), tantalum nitride (TaN), zirconium nitride (ZrN), or titanium aluminum nitride (TiAlN), The mold for molding an optical glass element according to claim 1.
【請求項3】 炭化膜が、TiC、シリコンカーバイド
(SiC)、タンタルカーバイド(TaC)、ジルコニ
ウムカーバイド(ZrC)あるいはクロムカーバイド
(Cr23)であることを特徴とする請求項1記載の光
学ガラス素子の成形用金型。
3. The optical element according to claim 1, wherein the carbonized film is TiC, silicon carbide (SiC), tantalum carbide (TaC), zirconium carbide (ZrC) or chromium carbide (Cr 2 C 3 ). Mold for molding glass elements.
【請求項4】 ほう化膜が、ジルコニウムボライド(Z
rB2)、ニオビウムボライド(NbB2)あるいはタン
タルボライド(TaB2)であることを特徴とする請求
項1記載の光学ガラス素子の成形用金型。
4. The boride film is zirconium boride (Z
The mold for molding an optical glass element according to claim 1, which is rB 2 ), niobium boride (NbB 2 ) or tantalum boride (TaB 2 ).
【請求項5】 白金族合金膜が、白金(Pt)、ロジウ
ム(Rh)、イリジウム(Ir)、ルテニウム(Ru)
あるいはオスミウム(Os)の中の、少なくとも1種類
以上の金属を含有する合金膜であることを特徴とする請
求項1記載の光学ガラス素子の成形用金型。
5. The platinum group alloy film is platinum (Pt), rhodium (Rh), iridium (Ir), ruthenium (Ru).
Alternatively, it is an alloy film containing at least one kind of metal in osmium (Os), and the mold for molding an optical glass element according to claim 1.
【請求項6】 光学ガラス素子の形状に高精度に加工し
たWCを主成分とする超硬合金、TiCあるいはTiN
を主成分とするサーメットまたはWC焼結体からなる母
材の成形面に、窒化膜、炭化膜あるいはほう化膜と、白
金族合金膜とを交互に積層した多層膜を形成してなる上
下一対の成形用金型の間に、成型対象のガラス塊を設置
し、そのガラスの軟化点以上に加熱した後、加圧成形し
て光学ガラス素子を製造することを特徴する光学ガラス
素子の製造方法。
6. A cemented carbide containing WC as a main component, which is processed into a shape of an optical glass element with high precision, TiC or TiN.
A pair of top and bottom formed by forming a multilayer film in which a nitride film, a carbide film or a boride film and a platinum group alloy film are alternately laminated on the molding surface of a base material made of cermet or WC sintered body containing A glass lump to be molded is placed between the molding dies, heated to a softening point of the glass or higher, and pressure-molded to manufacture an optical glass element. ..
JP10117692A 1992-04-21 1992-04-21 Mold for molding optical glass element and production of optical glass element Pending JPH05294642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117692A JPH05294642A (en) 1992-04-21 1992-04-21 Mold for molding optical glass element and production of optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117692A JPH05294642A (en) 1992-04-21 1992-04-21 Mold for molding optical glass element and production of optical glass element

Publications (1)

Publication Number Publication Date
JPH05294642A true JPH05294642A (en) 1993-11-09

Family

ID=14293697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117692A Pending JPH05294642A (en) 1992-04-21 1992-04-21 Mold for molding optical glass element and production of optical glass element

Country Status (1)

Country Link
JP (1) JPH05294642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116179884A (en) * 2022-12-28 2023-05-30 吉林大学 Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles
WO2024135487A1 (en) * 2022-12-21 2024-06-27 株式会社前川製作所 Mold apparatus for molding press, and press molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135487A1 (en) * 2022-12-21 2024-06-27 株式会社前川製作所 Mold apparatus for molding press, and press molding method
CN116179884A (en) * 2022-12-28 2023-05-30 吉林大学 Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles

Similar Documents

Publication Publication Date Title
JP3147481B2 (en) Mold for forming glass diffraction grating, method for manufacturing the same, and method for manufacturing glass diffraction grating
KR900002704B1 (en) Elements and a molding method using the same
US5171348A (en) Die for press-molding optical element
KR900000622B1 (en) Method for forming of optical glass element
JP3206845B2 (en) Method for producing optical glass element and press mold for optical glass element used in the method
JP2001302273A (en) Mold for molding optical glass element
JPH05294642A (en) Mold for molding optical glass element and production of optical glass element
JPH0725557B2 (en) Method for producing press-molding die for optical element and method for producing optical element
JPH06144850A (en) Mold for forming optical glass element and method of forming optical glass element
JPH0688803B2 (en) Mold for optical glass element
JPS60264330A (en) Mold for press molding of optical glass element
JP2785888B2 (en) Mold for optical element molding
JPH06183755A (en) Optical glass element forming die and its production method
JPH0725628A (en) Mold for forming precision optical glass element and production of the mold
JPH0572336B2 (en)
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JPS61242922A (en) Pressing mold for optical glass element
JPH04265234A (en) Forming die for optical glass element
JP2003048723A (en) Press forming method and press formed equipment
JPS62292637A (en) Production of optical glass element
JP2004210550A (en) Molding mold
JPS63166729A (en) Production of optical glass element
JPH0741326A (en) Press-forming die for optical glass element, production thereof and method for press-forming the element
JPH0712942B2 (en) Method for manufacturing optical glass element
JPH1029821A (en) Forming die of optical element