JPH052935A - Manufacture of bi series oxide superconductor fabricated by fusion method - Google Patents

Manufacture of bi series oxide superconductor fabricated by fusion method

Info

Publication number
JPH052935A
JPH052935A JP3177233A JP17723391A JPH052935A JP H052935 A JPH052935 A JP H052935A JP 3177233 A JP3177233 A JP 3177233A JP 17723391 A JP17723391 A JP 17723391A JP H052935 A JPH052935 A JP H052935A
Authority
JP
Japan
Prior art keywords
layer
oxide
material powder
solidification
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177233A
Other languages
Japanese (ja)
Other versions
JP3121864B2 (en
Inventor
Atsushi Kume
篤 久米
Kazuhiko Tomomatsu
和彦 友松
Nobuyuki Sadakata
伸行 定方
Hideo Ishii
英雄 石井
Chikushi Hara
築志 原
Takahiko Yamamoto
隆彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Fujikura Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tokyo Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP03177233A priority Critical patent/JP3121864B2/en
Publication of JPH052935A publication Critical patent/JPH052935A/en
Application granted granted Critical
Publication of JP3121864B2 publication Critical patent/JP3121864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enhance the crystal orientation and heighten the critical temperature and critical current density by forming over a metal base an oxide film and a buffer layer for accomplishing a composite base, and thereover forming an oxide type superconductive layer. CONSTITUTION:An oxide film 7 is formed on the over-surface of a metal base 6, and thereover a buffer layer 8 is formed, and further thereover a crude material powder layer is formed which contains elements constituting a Bi type oxide superconductor. The resultant is heated in a furnace to turn the crude material powder layer into a fusion/solidification layer. Part of this layer is irradiated with a laser beam so as to generate a locally molten band, which is moved in the longitudinal direction of the base, and the whole fusion/solidification layer is left to unidirectional solidification bit by bit so as to produce an oxide superconductive layer. This suppresses diffusion of composite base 9 constituent elements to the oxide superconductive layer side, and also lessens dispersion of the thickness compared with the case where the crude material powder is directly subjected to unidirectional solidification. This allows enhancing the workmanship of the crystal orientation of the oxide superconductive layer and also heightening the critical temp. and critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融法を用いたBi系酸
化物超電導導体の製造方法に関するもので、溶融凝固後
の超電導相の配向性向上と生成割合の向上、並びに、超
電導層の厚さの均一性を向上させ得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based oxide superconducting conductor using a melting method, which improves the orientation and the generation ratio of a superconducting phase after melting and solidification, and the thickness of the superconducting layer. The present invention relates to a method capable of improving the uniformity of roughness.

【0002】[0002]

【従来の技術】従来、テープ状の基材の上面にBi系の
酸化物超電導層を備えてなる超電導導体の製造方法の一
例として、図8を基に以下に説明する方法が知られてい
る。この方法では、まず、Niなどの金属テープ1を用
意し、この金属テープ1の上面にBi系の酸化物超電導
体を構成する元素の原料粉末層2を形成する。次に前記
金属テープ1の上方からレーザビームを照射して混合粉
末層2の一部微小領域のみを加熱溶融させて溶融帯3を
形成する。そしてこの状態で基材1を一定速度で長手方
向に移動させ、微小な溶融帯3を徐々に移動させること
で基材1の長手方向の全体の混合粉末層2を一方向凝固
させることができ、この後に全体を加熱炉で熱処理する
ことで酸化物超電導層4を備えた酸化物超電導導体5を
製造していた。
2. Description of the Related Art Conventionally, as an example of a method for producing a superconducting conductor having a Bi-based oxide superconducting layer on the upper surface of a tape-shaped substrate, a method described below with reference to FIG. 8 is known. .. In this method, first, a metal tape 1 of Ni or the like is prepared, and a raw material powder layer 2 of an element forming a Bi-based oxide superconductor is formed on the upper surface of the metal tape 1. Next, a laser beam is irradiated from above the metal tape 1 to heat and melt only a small portion of the mixed powder layer 2 to form a melting zone 3. Then, in this state, the base material 1 is moved in the longitudinal direction at a constant speed, and the minute melting zone 3 is gradually moved, so that the entire mixed powder layer 2 in the longitudinal direction of the base material 1 can be unidirectionally solidified. After that, the whole is heat-treated in a heating furnace to manufacture the oxide superconducting conductor 5 having the oxide superconducting layer 4.

【0003】[0003]

【発明が解決しようとする課題】前記の方法で酸化物超
電導導体5を製造する場合、基材1が移動しているの
で、微小な溶融帯3においては、混合粉末層2の供給と
この層の溶融と溶融した部分の凝固の3つの現象が同時
に進行していることになる。このような微小領域におい
て3つの現象が進行している状態では、レーザービーム
のパワーに若干のゆらぎが発生しても3つの現象のバラ
ンスが崩れるおそれが高い。そうすると、一定の基材移
動速度を維持していても、溶融部分の量が変化し、その
ために凝固する部分の厚さが不均一になり、結晶配向性
も悪くなる問題がある。また、前記の場合、目的とする
組成の酸化物超電導体以外に、例えば、Bi2Sr2Cu
Oy等で代表される非超電導相の析出が起こり、超電導
特性の劣化を引き起こす問題があった。
When the oxide superconducting conductor 5 is manufactured by the above-mentioned method, since the base material 1 is moving, in the minute melting zone 3, the mixed powder layer 2 is supplied and this layer is supplied. It means that the three phenomena of the melting and solidification of the melted part are proceeding at the same time. In a state where three phenomena are progressing in such a minute region, there is a high possibility that the balance of the three phenomena will be lost even if a slight fluctuation occurs in the power of the laser beam. Then, even if a constant substrate moving speed is maintained, there is a problem that the amount of the melted portion changes, the thickness of the solidified portion becomes nonuniform, and the crystal orientation deteriorates. In the above case, in addition to the oxide superconductor having the desired composition, for example, Bi 2 Sr 2 Cu
There is a problem in that a non-superconducting phase represented by Oy or the like is deposited and the superconducting characteristics are deteriorated.

【0004】更に、前記の製造方法において用いられる
基材は、熱処理温度に耐えるようなNiなどの耐熱材料
からなるが、部分溶融時あるいは熱処理時にNiなどの
基材構成元素が酸化物超電導層側に拡散してしまう問題
があった。このように基材構成元素が酸化物超電導層側
に拡散すると、酸化物超電導層の結晶構造を乱すため
に、臨界温度と臨界電流密度の低下を引き起こす問題が
あった。
Further, the base material used in the above-mentioned manufacturing method is made of a heat-resistant material such as Ni that can withstand the heat treatment temperature. However, the constituent elements of the base material such as Ni during partial melting or heat treatment are on the oxide superconducting layer side. There was a problem of spreading to. When the element constituting the base material diffuses toward the oxide superconducting layer side in this manner, the crystal structure of the oxide superconducting layer is disturbed, which causes a problem that the critical temperature and the critical current density are lowered.

【0005】本発明は前記背景に鑑みてなされたもの
で、目的の組成であって、厚さが均一な臨界温度が高い
Bi系酸化物超電導体を溶融法を応用して基材上に形成
することができる方法の提供を目的とする。
The present invention has been made in view of the above background, and a Bi-based oxide superconductor having a desired composition and a uniform thickness and a high critical temperature is formed on a substrate by applying a melting method. The purpose is to provide a possible method.

【0006】[0006]

【課題を解決するための手段】請求項1に記載した発明
は前記課題を解決するために、金属基材の表面に酸化皮
膜を形成し、酸化皮膜上にバッファ層を形成し、バッフ
ァ層上にBi系の酸化物超電導体を構成する元素を含有
する原料粉末層を形成するとともに、この原料粉末層を
加熱炉で870〜1000℃に加熱して原料粉末層を溶
融凝固層にするとともに、この後に溶融凝固層の一部に
レーザビームを照射して照射部分に部分溶融帯を形成
し、次にこの部分溶融帯を基材の長手方向に移動させて
溶融凝固層の全体を順次一方向凝固させて酸化物超電導
層を形成するものである。
In order to solve the above-mentioned problems, the invention described in claim 1 forms an oxide film on the surface of a metal substrate, forms a buffer layer on the oxide film, and forms a buffer layer on the buffer layer. While forming a raw material powder layer containing an element constituting a Bi-based oxide superconductor, and heating the raw material powder layer to 870 to 1000 ° C. in a heating furnace to make the raw material powder layer a melt-solidified layer, After this, a laser beam is irradiated to a part of the melt-solidified layer to form a partial melted zone on the irradiated portion, and then this partial melted zone is moved in the longitudinal direction of the substrate to sequentially move the entire melt-solidified layer in one direction. It solidifies to form an oxide superconducting layer.

【0007】[0007]

【作用】金属基材上に酸化皮膜を形成し、バッファ層を
形成してから酸化物超電導層を形成するので、部分溶融
時と熱処理時における金属基材の構成元素の酸化物超電
導層側への拡散が抑制される。よって酸化物超電導層の
結晶の乱れが少なくなり、臨界温度と臨界電流密度が向
上する。
[Function] Since the oxide superconducting layer is formed after the oxide film is formed on the metal substrate and the buffer layer is formed, the oxide superconducting layer side of the constituent elements of the metal substrate during partial melting and heat treatment Is suppressed. Therefore, the disorder of the crystal of the oxide superconducting layer is reduced, and the critical temperature and the critical current density are improved.

【0008】更に、金属基材上面の原料粉末層を加熱炉
で溶融凝固させるので、この段階で原料量粉末層は緻密
な均一な厚さの溶融凝固層になる。この溶融凝固層をレ
ーザビームで一方向凝固させるならば、一方向凝固する
微小領域においては、溶融凝固層の再溶融と凝固が進行
することになり、従来のように原料粉末層の供給とその
層の溶融と凝固の3つの現象が進行する場合に比較して
起こる現象数が少なくなる。よって、仮にレーザビーム
のパワーに若干のゆらぎが生じても厚さの均一な酸化物
超電導層が生成する。厚さの均一な酸化物超電導層が生
成するので、一方向溶融凝固時の結晶粒の方向が揃い易
くなり、酸化物超電導層の結晶配向性の向上につなが
り、臨界温度と臨界電流密度の高いものが生成する。
Furthermore, since the raw material powder layer on the upper surface of the metal substrate is melted and solidified in the heating furnace, the raw material amount powder layer becomes a dense and solidified melt-solidified layer at this stage. If this melt-solidified layer is unidirectionally solidified by a laser beam, remelting and solidification of the melt-solidified layer will proceed in the minute region where unidirectional solidification occurs, and the supply of the raw material powder layer and The number of phenomena occurring is smaller than that in the case where the three phenomena of layer melting and solidification proceed. Therefore, even if the laser beam power slightly fluctuates, an oxide superconducting layer having a uniform thickness is generated. Since an oxide superconducting layer with a uniform thickness is generated, the direction of crystal grains during unidirectional melting and solidification is easily aligned, leading to improvement of the crystal orientation of the oxide superconducting layer, and high critical temperature and critical current density. Things are generated.

【0009】以下に本発明を更に詳細に説明する。本発
明を実施してBi-Sr-Ca-Cu-O系の酸化物超電導体を
製造するには、まず、出発材料を用意する。この出発材
料としては、Bi化合物とSr化合物とCa化合物とCu化
合物を用いる。前記化合物として、各元素の酸化物、塩
化物、炭酸塩、硫化物、フッ化物などのいずれを用いて
も良い。この例で具体的に用いるのは、Bi23粉末と
SrCO3粉末とCaCO3粉末とCuO粉末である。な
お、用いる化合物は粒状、粉末状を問わないが、できる
限り粒径の小さなものが好ましい。なおまた、Pbを含
むBi系超電導体を製造する場合は前記の化合物に加え
てPb化合物を混合すれば良い。
The present invention will be described in more detail below. In order to carry out the present invention to manufacture a Bi-Sr-Ca-Cu-O-based oxide superconductor, first, a starting material is prepared. Bi compounds, Sr compounds, Ca compounds and Cu compounds are used as the starting materials. As the compound, any of oxides, chlorides, carbonates, sulfides, fluorides and the like of each element may be used. Specifically used in this example are Bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder, and CuO powder. The compound used may be in the form of particles or powder, but it is preferable that the compound has a particle size as small as possible. In addition, when manufacturing a Bi-based superconductor containing Pb, a Pb compound may be mixed in addition to the above compounds.

【0010】前記各粉末を用意したならばBi:Sr:Ca:
Cu=2:2:1:2の割合になるように秤量して自動乳鉢
などで所要時間かけて均一に混合し、混合粉末を作製す
る。ここで前記各元素の割合が2:2:2:3のものは
その割合で粉末を混合し、前記各元素に加えてPbを添
加するものにあっては、前記Biの一部(例えばBiの
数割)をPbで置換して配合すれば良い。次にこの混合
粉末を大気中において800〜850℃で24〜100
時間程度加熱して仮焼することにより不要成分を除去す
る。仮焼後、この仮焼物を粉砕して仮焼物を粉末化す
る。
If the above powders are prepared, Bi: Sr: Ca:
Weigh so as to have a ratio of Cu = 2: 2: 1: 2, and uniformly mix in an automatic mortar or the like for a required time to prepare a mixed powder. Here, in the case where the ratio of each element is 2: 2: 2: 3, powder is mixed in that ratio, and in the case where Pb is added in addition to each element, a part of Bi (for example, Bi It may be possible to substitute Pb for (a few percent of) and mix it. Next, this mixed powder is exposed to the air at 800 to 850 ° C. for 24 to 100.
Unnecessary components are removed by heating for about an hour and calcining. After the calcination, the calcination product is pulverized to powder the calcination product.

【0011】一方、図1に示すような金属テープ状の金
属基材6を用意する。この金属基材6は、撓曲性に富む
もので、後述する熱処理に耐えるものであればいずれの
金属からなるものでも差し支えない。具体的にはNiや
Ni合金製のものなどを用いる。この金属基材6を電気
炉などの加熱装置によって加熱してその表面を酸化さ
せ、図2に示すように酸化皮膜7を形成する。この際の
加熱条件は、金属基材6がNi製の場合は950℃に1
0時間以上加熱するものとする。この処理によって金属
基材6の表面にはNiOからなる厚さ10〜20μm程
度の酸化皮膜が生成する。
On the other hand, a metal tape-shaped metal substrate 6 as shown in FIG. 1 is prepared. The metal base material 6 is highly flexible and may be made of any metal as long as it can withstand the heat treatment described later. Specifically, a material such as Ni or Ni alloy is used. The metal base material 6 is heated by a heating device such as an electric furnace to oxidize the surface thereof to form an oxide film 7 as shown in FIG. The heating condition at this time is 1 at 950 ° C. when the metal base material 6 is made of Ni.
It shall be heated for 0 hours or more. By this treatment, an oxide film of NiO having a thickness of about 10 to 20 μm is formed on the surface of the metal substrate 6.

【0012】次に前記金属基材6を高周波スパッタ装置
などの成膜装置にセットして成膜処理を施し、一方の酸
化皮膜7上に厚さ1〜10μm程度のバッファ層8を図
3に示すように形成して複合基材9を得る。前記バッフ
ァ層8は、MgO、SrTiO3などのように熱膨張係
数が酸化物超電導体に近いものであって、結晶構造がB
i系の酸化物超電導体に近いものが好ましい。
Next, the metal substrate 6 is set in a film forming apparatus such as a high frequency sputtering apparatus and subjected to a film forming process, and a buffer layer 8 having a thickness of about 1 to 10 μm is formed on one oxide film 7 in FIG. The composite base material 9 is obtained by forming as shown. The buffer layer 8 has a thermal expansion coefficient close to that of an oxide superconductor, such as MgO and SrTiO 3, and has a crystal structure of B.
A material close to an i-based oxide superconductor is preferable.

【0013】また、前述の工程で得られた粉末を図4に
示すような有機溶媒10を満たした容器11の内部に投
入して分散媒を形成する。次にこの分散媒に複合基材9
を浸積して引き上げ、複合基材9に図5に示す厚さ10
〜100μm程度の原料粉末層13を形成する。
Further, the powder obtained in the above process is put into a container 11 filled with an organic solvent 10 as shown in FIG. 4 to form a dispersion medium. Next, the composite substrate 9 is added to this dispersion medium.
Is immersed and pulled up, and the composite substrate 9 has a thickness 10 shown in FIG.
The raw material powder layer 13 having a thickness of about 100 μm is formed.

【0014】次に、原料粉末層13を固定した複合基材
9を赤外線イメージ炉などの加熱炉中において870〜
1000℃の温度で1分〜1時間程度加熱溶融する。こ
の温度で溶融すると、原料粉末層13の全体または一部
分が溶融するために、原料粉末層13は凝固後に図6に
示す均一な厚さの溶融凝固層14となり、この溶融凝固
層14はバッファ層8に密着する。この溶融凝固層14
は原料粉末層13が溶融凝固したものであるために、原
料粉末層13の内部に存在していた空孔などが閉塞さ
れ、原料粉末層13に含まれている不要成分が排出され
た後のものであるために、密度と純度が高くなってお
り、原料粉末層13よりも若干薄く、その厚さも均一化
されている。
Next, the composite base material 9 to which the raw material powder layer 13 is fixed is heated in a heating furnace such as an infrared image furnace to 870-870.
It is heated and melted at a temperature of 1000 ° C. for about 1 minute to 1 hour. When the raw material powder layer 13 is melted at this temperature, the whole or a part of the raw material powder layer 13 is melted, so that the raw material powder layer 13 becomes a melt-solidified layer 14 having a uniform thickness shown in FIG. 6 after solidification. Adhere to 8. This melting and solidifying layer 14
Since the raw material powder layer 13 is melted and solidified, pores and the like existing inside the raw material powder layer 13 are closed, and unnecessary components contained in the raw material powder layer 13 are discharged. Since it is a material, the density and purity are high, it is slightly thinner than the raw material powder layer 13, and its thickness is also uniform.

【0015】次いで前記溶融凝固層14に図7に示すよ
うに上方からレーザビームを照射するとともに、レーザ
ビームの照射部分に対応する複合基材9の裏面側からも
レーザビームを照射することで溶融凝固層14の一部分
に図7に示す微小な部分溶融帯15を形成する。この部
分溶融帯15はレーザビームの焦点に対応する部分に形
成されるので、幅2mm程度の狭い領域である。複合基
材9の裏面側からもレーザビームを照射するのは、溶融
凝固層14の上方側からのみレーザビームを照射する
と、溶融凝固層14の表面側の部分はレーザビームによ
る加熱温度に容易に加熱されるが、溶融凝固層14の底
部側の部分が加熱されにくくなるので複合基材9の裏面
側からもレーザビームで加熱し、酸複合基材9も加熱す
るならば、部分溶融帯15の温度を表面部側と底部側と
で均一化することができる。
Then, the melting and solidifying layer 14 is irradiated with a laser beam from above as shown in FIG. 7, and is also irradiated with a laser beam from the back surface side of the composite base material 9 corresponding to the irradiated portion of the laser beam. A minute partial melting zone 15 shown in FIG. 7 is formed in a part of the solidified layer 14. Since the partial melting zone 15 is formed in a portion corresponding to the focus of the laser beam, it is a narrow region having a width of about 2 mm. Irradiation of the laser beam from the back surface side of the composite base material 9 is achieved by irradiating the laser beam only from above the melting and solidifying layer 14 so that the portion on the surface side of the melting and solidifying layer 14 is easily heated to the heating temperature by the laser beam. Although it is heated, the bottom portion of the melt-solidified layer 14 is less likely to be heated. Therefore, if the acid composite substrate 9 is also heated by the laser beam from the back surface side of the composite substrate 9, the partial melting zone 15 The temperature of can be made uniform on the surface side and the bottom side.

【0016】部分溶融帯15が形成されたならば、複合
基材9を図7の矢印B方向に一定速度で移動させる。こ
の処理によって部分溶融帯15は溶融凝固層14に沿っ
て徐々に移動し、部分溶融帯15が移動した後の部分は
凝固して酸化物超電導基層16が生成する。このように
生成された酸化物超電導基層16は加熱炉で一度溶融凝
固された溶融凝固層14を再度一方向凝固させて生成さ
れるので、原料粉末層13を直接溶融凝固させる場合と
は異なり、厚さの変動は生じない。
After the partial melting zone 15 is formed, the composite substrate 9 is moved in the direction of arrow B in FIG. 7 at a constant speed. By this treatment, the partial melting zone 15 gradually moves along the melting and solidifying layer 14, and the portion after the partial melting zone 15 has moved solidifies to form the oxide superconducting base layer 16. Since the oxide superconducting base layer 16 thus generated is generated by unidirectionally solidifying the melt-solidified layer 14 once melt-solidified in the heating furnace, unlike the case where the raw material powder layer 13 is directly melt-solidified, No thickness variation occurs.

【0017】そして、前記一方向凝固処理の後に800
〜870℃で数時間〜数百時間熱処理することにより酸
化物超電導基層16の全体を酸化物超電導層17にする
ことができ、図8に示す酸化物超電導導体18を得るこ
とができる。
After the unidirectional solidification treatment, 800
By heat treating at 870 ° C. for several hours to several hundred hours, the entire oxide superconducting base layer 16 can be converted into the oxide superconducting layer 17, and the oxide superconducting conductor 18 shown in FIG. 8 can be obtained.

【0018】ここで前記一方向凝固する微小領域におい
ては、溶融凝固層14の再溶融と凝固が進行することに
なり、従来のように原料粉末層の供給とその層の溶融と
凝固の3つの現象が進行する場合に比較して起こる現象
数が少なくなり、仮にレーザビームのパワーに若干のゆ
らぎが生じても厚さの均一な超電導基層16が生成す
る。このように厚さの均一な超電導基層16が生成する
ので、溶融凝固時の結晶粒の方向が揃い易くなり、酸化
物超電導層17の結晶配向性の向上につながり、臨界温
度と臨界電流密度の高いものが生成する。
In the unidirectionally solidified minute region, the re-melting and solidification of the melt-solidified layer 14 progresses, and three kinds of feeding of the raw material powder layer and melting and solidification of the layer are performed as in the conventional case. The number of phenomena occurring is smaller than that in the case where the phenomenon progresses, and even if a slight fluctuation occurs in the power of the laser beam, the superconducting base layer 16 having a uniform thickness is generated. Since the superconducting base layer 16 having a uniform thickness is generated in this way, the directions of the crystal grains during melt solidification are easily aligned, which leads to improvement of the crystal orientation of the oxide superconducting layer 17, and the critical temperature and the critical current density. High ones produce.

【0019】以上説明したように得られた酸化物超電導
層17は厚さが均一で密度の高いものであり、内部には
原料粉末層13に存在していた空孔はほとんどなくなっ
ている。また、一方向凝固させる場合に元々密度の高い
溶融凝固層14が再溶融されるので、結晶の配向が円滑
になされる。よって結晶配向性に優れ、高密度であっ
て、臨界温度と臨界電流密度の高い酸化物超電導層17
を備えた酸化物超電導導体18を得ることができる。
The oxide superconducting layer 17 obtained as described above has a uniform thickness and a high density, and the voids existing in the raw material powder layer 13 are almost eliminated inside. Further, when the unidirectional solidification is performed, the originally melted and solidified layer 14 having a high density is remelted, so that the crystal orientation is smoothly performed. Therefore, the oxide superconducting layer 17 is excellent in crystal orientation, has a high density, and has a high critical temperature and a high critical current density.
It is possible to obtain the oxide superconducting conductor 18 provided with.

【0020】以上の方法で製造されたBi系の酸化物超
電導導体18は、臨界温度が液体窒素温度(77K)より
も高いので液体窒素で冷却して使用する際に、温度マー
ジンがとれるとともに、単に粉末を焼結して製造した酸
化物超電導体に比較してより緻密な結晶組織であるの
で、高い臨界電流密度を発揮する。
The Bi-based oxide superconducting conductor 18 manufactured by the above method has a critical temperature higher than the liquid nitrogen temperature (77 K), so that a temperature margin can be secured when it is cooled with liquid nitrogen and used. Since it has a denser crystal structure than an oxide superconductor produced simply by sintering powder, it exhibits a high critical current density.

【0021】[0021]

【実施例】Bi23粉末とSrCO3粉末とCaCO3
末とCuO粉末をBi:Sr:Ca:Cu=2:2:
1:2のモル比になるように配合し、自動乳鉢で1時間
混合する。この混合粉末を大気中において800〜85
0℃で24〜100時間仮焼し、仮焼物を粉砕する。
EXAMPLES Bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder and CuO powder were mixed with Bi: Sr: Ca: Cu = 2: 2:
Mix so that the molar ratio is 1: 2, and mix in an automatic mortar for 1 hour. This mixed powder is 800-85 in the air.
It is calcined at 0 ° C. for 24 to 100 hours to pulverize the calcined product.

【0022】次に幅2mm、厚さ0.5mmのNiテー
プを用意し、このNiテープを電気炉中で950℃で1
0時間加熱してNiテープの表面に厚さ15μmの酸化
皮膜を形成した。続いてこのテープの上面に高周波スパ
ッタ装置によって厚さ5μmのMgO膜を形成して複合
基材を得た。このMgO膜の結晶構造をX線回折装置に
よって測定したところ、MgOの(100)面の回折ピ
ークが強く現われ、MgO膜が結晶化していることが判
明した。
Next, a Ni tape having a width of 2 mm and a thickness of 0.5 mm was prepared, and the Ni tape was heated at 950 ° C. for 1 hour in an electric furnace.
By heating for 0 hour, an oxide film having a thickness of 15 μm was formed on the surface of the Ni tape. Subsequently, a MgO film having a thickness of 5 μm was formed on the upper surface of this tape by a high frequency sputtering device to obtain a composite base material. When the crystal structure of this MgO film was measured by an X-ray diffractometer, a diffraction peak on the (100) plane of MgO appeared strongly and it was found that the MgO film was crystallized.

【0023】一方、前記粉砕物をエタノールを満たした
容器に、エタノール1リットルに対して粉砕物400g
の割合で混合して分散媒を作成し、この分散媒に複合基
材を浸積して引き上げ、複合基材上に厚さ100μmの
混合粉末層を形成した。次に前記混合粉末層を形成した
Niテープを電気炉中で900℃に加熱して混合粉末層
を溶融させた後に凝固させて厚さ50μmの溶融凝固層
を形成した。この状態では加熱炉において全体を均一に
加熱溶融させているので、原料粉末層は均一な厚さで凹
凸のない溶融凝固層となった。
On the other hand, 400 g of the crushed product was added to 1 liter of ethanol in a container filled with the crushed product.
To prepare a dispersion medium, and the composite substrate was immersed in the dispersion medium and pulled up to form a mixed powder layer having a thickness of 100 μm on the composite substrate. Next, the Ni tape on which the mixed powder layer was formed was heated to 900 ° C. in an electric furnace to melt the mixed powder layer and then solidified to form a melt-solidified layer having a thickness of 50 μm. In this state, the entire raw material powder layer was uniformly heated and melted in the heating furnace, so that the raw material powder layer was a melt-solidified layer having a uniform thickness and no unevenness.

【0024】次に溶融凝固層の表面側と金属基材の裏面
側からそれぞれCO2ガスレーザを照射して溶融凝固層
の一部に幅2mmの溶融帯を形成した。これと同時にN
iテープを5mm/時の速度で移動させ、溶融帯も移動
させて溶融凝固層の全体を一方向凝固させた。凝固後、
800〜870℃で100時間熱処理することで酸化物
超電導導体を得ることができた。
Next, a CO 2 gas laser was radiated from the front side of the melt-solidified layer and the back side of the metal base material to form a melt zone having a width of 2 mm in a part of the melt-solidified layer. At the same time as N
The i-tape was moved at a speed of 5 mm / hour, and the melting zone was also moved to unidirectionally solidify the entire melt-solidified layer. After solidification,
An oxide superconducting conductor could be obtained by heat treatment at 800 to 870 ° C. for 100 hours.

【0025】得られた酸化物超電導導体を液体窒素で冷
却して臨界温度(Tc)と臨界電流密度(Jc)を測定
したところ、Tc=82K、Jc=1000A/cm2
を示した。
The obtained oxide superconducting conductor was cooled with liquid nitrogen and the critical temperature (Tc) and critical current density (Jc) were measured. As a result, Tc = 82K, Jc = 1000A / cm 2
showed that.

【0026】[0026]

【比較例】前記の実施例に用いた金属基材と同等の基材
上に前記と同等の原料粉末層を形成し、これを加熱炉で
一度溶融凝固させる処理を省略し、その後の処理は前記
実施例と同等の処理を行なって酸化物超電導導体を得
た。得られた酸化物超電導導体の臨界温度と臨界電流密
度を測定したところ、Tc=78K、Jc=50A/c
2を示した。なお、このように得られた酸化物超電導
層にあっては、部分的に微細な凹凸が形成されているこ
とが確認できた。
Comparative Example A raw material powder layer equivalent to the above is formed on a base material equivalent to the metal base material used in the above example, and the process of melting and solidifying the raw material powder layer once in a heating furnace is omitted. The same treatment as in the above example was performed to obtain an oxide superconducting conductor. When the critical temperature and the critical current density of the obtained oxide superconducting conductor were measured, Tc = 78K, Jc = 50A / c
m 2 was shown. In the oxide superconducting layer thus obtained, it was confirmed that fine irregularities were partially formed.

【0027】以上説明した結果から、本発明方法を実施
することで、厚さが均一であって臨界温度と臨界電流密
度の高い優れた特性を有するBi系酸化物超電導導体を
製造できることが判明した。
From the results described above, it was found that by carrying out the method of the present invention, it is possible to produce a Bi-based oxide superconducting conductor having excellent characteristics of uniform thickness and high critical temperature and critical current density. ..

【0028】ところで、前記レーザビームによる一方向
凝固を行なう場合、基材12の移動速度を20mm/時
以上にすると、移動速度が早過ぎて満足な超電導特性の
ものが得られない。ちなみに、移動速度を20mm/時
に設定して製造した酸化物超電導導体においては、Tc
=72Kを示した。(#基材の移動速度を変更すること
で、得られる酸化物超電導体の臨界温度と臨界電流密度
に影響があるような場合、将来の特許要件になり得ます
ので、上記の空欄に臨界速度の数値を記入して下さ
い。)
By the way, in the case of unidirectional solidification by the laser beam, if the moving speed of the substrate 12 is set to 20 mm / hour or more, the moving speed is too fast to obtain satisfactory superconducting characteristics. By the way, in the oxide superconducting conductor manufactured by setting the moving speed to 20 mm / hour, Tc
= 72K was shown. (# Changing the moving speed of the base material may affect future patent requirements if it affects the critical temperature and critical current density of the resulting oxide superconductor. Please enter the value of.)

【0029】[0029]

【発明の効果】以上説明したように本発明は、金属基材
上に酸化皮膜を形成し、更にバッファ層を形成してなる
複合基材上に酸化物超電導層を形成するので、酸化物超
電導層の形成後に行なう部分溶融時と熱処理時における
複合基材の構成元素の酸化物超電導層側への拡散が抑制
される。よって酸化物超電導層の結晶の乱れが少なくな
り、配向性の良好な臨界温度と臨界電流密度の高い優れ
た酸化物超電導導体を得ることができる。
As described above, according to the present invention, the oxide superconducting layer is formed on the composite substrate formed by forming the oxide film on the metal substrate and further forming the buffer layer. Diffusion of constituent elements of the composite base material to the oxide superconducting layer side during the partial melting and the heat treatment performed after the layer formation is suppressed. Therefore, the disorder of the crystal of the oxide superconducting layer is reduced, and an excellent oxide superconducting conductor having a good orientation and a high critical temperature and a high critical current density can be obtained.

【0030】また、複合基材上に形成した原料粉末層を
一度溶融させた後に一方向凝固させるので、原料粉末を
直接一方向凝固させる場合に比較し、厚さのばらつきが
少なく、緻密であって、結晶配向性の優れたBi系の酸
化物超電導層を有する酸化物超電導導体を得ることがで
きる。
Further, since the raw material powder layer formed on the composite base material is once melted and then unidirectionally solidified, the variation in thickness is small and the material powder is dense as compared with the case where the raw material powder is directly unidirectionally solidified. Thus, an oxide superconducting conductor having a Bi-based oxide superconducting layer having excellent crystal orientation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は金属基材の断面図である。FIG. 1 is a cross-sectional view of a metal base material.

【図2】図2は金属基材に酸化皮膜を形成した状態を示
す断面図である。
FIG. 2 is a cross-sectional view showing a state in which an oxide film is formed on a metal base material.

【図3】図3は複合基材の断面図である。FIG. 3 is a cross-sectional view of a composite substrate.

【図4】図4は複合基材上に原料粉末層を形成している
状態を示す説明図である。
FIG. 4 is an explanatory view showing a state in which a raw material powder layer is formed on a composite base material.

【図5】図5は複合基材上に原料粉末層を形成した状態
を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a raw material powder layer is formed on a composite base material.

【図6】図6は原料粉末層を溶融凝固させた状態を示す
断面図である。
FIG. 6 is a sectional view showing a state in which a raw material powder layer is melted and solidified.

【図7】図7は溶融凝固層を一方向凝固させている状態
を示す断面図である。
FIG. 7 is a cross-sectional view showing a state in which the melt-solidified layer is unidirectionally solidified.

【図8】図8は酸化物超電導導体の断面図である。FIG. 8 is a cross-sectional view of an oxide superconducting conductor.

【図9】図9は従来法における一方向凝固法を説明する
ための断面図である。
FIG. 9 is a cross-sectional view for explaining the unidirectional solidification method in the conventional method.

【符号の説明】[Explanation of symbols]

6・・・金属基材、 7・・・酸化皮膜、 8・・・
バッファ層、9・・・複合基材、13・・・原料粉末
層、14・・・溶融凝固層、15・・・溶融帯、 16
・・・酸化物超電導基層、17・・・酸化物超電導層、
18・・・酸化物超電導導体。
6 ... Metal base material, 7 ... Oxide film, 8 ...
Buffer layer, 9 ... Composite base material, 13 ... Raw material powder layer, 14 ... Melt solidification layer, 15 ... Melt zone, 16
... Oxide superconducting base layer, 17 ... Oxide superconducting layer,
18 ... Oxide superconducting conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定方 伸行 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 石井 英雄 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 原 築志 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 山本 隆彦 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuyuki Tadakata Inventor Nobuyuki Kiba 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Line Co., Ltd. (72) Hideo Ishii 2-4-1 Nishiazajigaoka, Chofu-shi, Tokyo TEPCO Technical Research Institute (72) Inventor Tsukushi Hara 2-4-1 Nishitsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Co. Technical Research Institute (72) Inventor Takahiko Yamamoto 2-4-1 Nishiazajigaoka, Chofu-shi, Tokyo No. TEPCO Technical Research Institute

Claims (1)

【特許請求の範囲】 【請求項1】 金属基材の表面に酸化皮膜を形成し、酸
化皮膜上にバッファ層を形成し、バッファ層上にBi系
の酸化物超電導体を構成する元素を含有する原料粉末層
を形成するとともに、この原料粉末層を加熱炉で870
〜1000℃に加熱して原料粉末層を溶融凝固層にする
とともに、この後に溶融凝固層の一部にレーザビームを
照射して照射部分に部分溶融帯を形成し、次にこの部分
溶融帯を基材の長手方向に移動させて溶融凝固層の全体
を順次一方向凝固させて酸化物超電導層を形成すること
を特徴とする溶融法によるBi系酸化物超電導導体の製
造方法。
Claim: What is claimed is: 1. An oxide film is formed on the surface of a metal base material, a buffer layer is formed on the oxide film, and the buffer layer contains an element constituting a Bi-based oxide superconductor. Forming a raw material powder layer, and 870 this raw material powder layer in a heating furnace.
While heating the raw material powder layer to a melting and solidifying layer by heating to ˜1000 ° C., a part of the melting and solidifying layer is thereafter irradiated with a laser beam to form a partial melting zone at the irradiated portion, and then this partial melting zone is formed. A method for producing a Bi-based oxide superconducting conductor by a melting method, which comprises moving the base material in the longitudinal direction to sequentially unidirectionally solidify the entire melt-solidified layer to form an oxide superconducting layer.
JP03177233A 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method Expired - Fee Related JP3121864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03177233A JP3121864B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03177233A JP3121864B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Publications (2)

Publication Number Publication Date
JPH052935A true JPH052935A (en) 1993-01-08
JP3121864B2 JP3121864B2 (en) 2001-01-09

Family

ID=16027483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03177233A Expired - Fee Related JP3121864B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Country Status (1)

Country Link
JP (1) JP3121864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006239A1 (en) * 2019-07-08 2021-01-14 株式会社フジクラ Oxide superconducting wire material, oxide superconducting coil, and oxide superconducting wire material manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058848B2 (en) 2018-07-03 2022-04-25 シヤチハタ株式会社 Stamp sheet body and stand frame using this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006239A1 (en) * 2019-07-08 2021-01-14 株式会社フジクラ Oxide superconducting wire material, oxide superconducting coil, and oxide superconducting wire material manufacturing method

Also Published As

Publication number Publication date
JP3121864B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JPH06318411A (en) Preparation of high critical temperature superconductive flexible conductor
EP0498306B1 (en) Method of preparing oxide superconducting material
JPH052935A (en) Manufacture of bi series oxide superconductor fabricated by fusion method
JPH052934A (en) Manufacture of bi oxide superconductor fabricated by fusion method
JPH0328122A (en) Manufacture of object containing super conducting oxide material
US5151407A (en) Method of producing Bi-Sr-Ca-Cu-O superconducting materials in cast form
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JPH0255298A (en) Method for growing oxide superconductor single crystal
JPH0421521A (en) Production of bi-based superconductor having ni base material
JPH026330A (en) Production of superconducting material and superconducting single crystal
JPH02239102A (en) Production of oxide superconductor
JP2754494B2 (en) Method for producing an oriented layer of Bi-Sr-Ca-Cu-oxide or T1-Ba-Ca-Cu-oxide high temperature superconductor
JPH02302324A (en) Method for formation of conductive film and product produced by it
JPH027309A (en) Manufacture of oxide type superconductive wire
JPH06211588A (en) Production of y-containing oxide superconductor crystal
JPH0264019A (en) Production of bi-sr-ca-cu-o-based superconducting oxide thick film
JPH01226735A (en) Production of superconducting material
JP3122765B2 (en) Method for producing oxide superconductor thick film tape material
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JPH03223116A (en) Production of bi-based oxide superconductor
JPS63315572A (en) Production of superconductor
JPH05234437A (en) Manufacture of oxide superconductive wire
JPH02258693A (en) Production of oxide superconductor
JPH02257525A (en) Manufacture of oxide superconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

LAPS Cancellation because of no payment of annual fees