JPH02239102A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02239102A
JPH02239102A JP1056235A JP5623589A JPH02239102A JP H02239102 A JPH02239102 A JP H02239102A JP 1056235 A JP1056235 A JP 1056235A JP 5623589 A JP5623589 A JP 5623589A JP H02239102 A JPH02239102 A JP H02239102A
Authority
JP
Japan
Prior art keywords
laser beam
laser
oxide superconductor
sample
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056235A
Other languages
Japanese (ja)
Inventor
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1056235A priority Critical patent/JPH02239102A/en
Publication of JPH02239102A publication Critical patent/JPH02239102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce the oxide superconductor having high c-axis orientation by irradiating an oxide superconducting material with laser beam whose energy distribution in the direction perpendicular to the scanning direction is made higher from the center toward both sides. CONSTITUTION:The thin film (sample) 1 of an oxide superconductor formed on a substrate 2 is irradiated with laser beam 3 almost at a perpendicular angle and scanned in direction of the arrow A, and the irradiated part 1a is heated and melted. As the laser beam 3 moves, the part is cooled from the rear and crystallized. Two round beams formed by using two laser sources 10, mirrors 11 and 12 and a prism 13 are used as the laser beam 3. The irradiation of the beam 3 is carried out at a specified interval in the X-X' direction perpendicular to the scanning direction A. The temp. distribution of the sample 1 has a gradient rising from the center of the beam 3 toward both ends in the direction perpendicular to the scanning direction. Consequently, the crystal orientation can be easily controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、YBCO系あるいはBi系などの酸化物超電
導体の製造方法に関し、特に、結晶の一方向性凝固を可
能にした酸化物超電導体の製造方法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor such as a YBCO-based or a Bi-based oxide superconductor, and particularly relates to an oxide superconductor that enables unidirectional solidification of crystals. It pertains to the manufacturing method.

[従来の技術] 従来から、酸化物超電導体は、その特性が結晶方位によ
り大きく異なり異方性があることが知られている。特に
C@方向はそれと直交するa@およびb軸を含む面(a
,b面)内方向に比べ電気抵抗値がはるかに大きい.従
って結晶のC軸配向を高め、a,b面内を電流通路とす
ることが、臨界電流密度および臨界磁界の向上のために
望まれている。
[Prior Art] It has been known that oxide superconductors have properties that vary greatly depending on crystal orientation and are anisotropic. In particular, the C@ direction is a plane (a
, b plane) The electrical resistance value is much larger than that in the inward direction. Therefore, it is desired to increase the C-axis orientation of the crystal so that the current path is in the a and b planes in order to improve the critical current density and the critical magnetic field.

ところで、通常の合成方法では、特に焼結体(バルク)
の場合、その結晶方位がランダムとなるため、電気・磁
気特性共に実用的なレベルに達し゛Cいない。
By the way, in normal synthesis methods, especially sintered bodies (bulk)
In this case, since the crystal orientation is random, both the electrical and magnetic properties do not reach a practical level.

結晶の配同性を上げる方法として、酸化物超電導体を溶
融し、温度勾配を持つ電気炉中で温度勾配を生じさせな
がら再結晶させる方法がある。ここで結晶の配同性は温
度勾配が大きいほど綺麗に揃うことが知られているが、
電気炉では熱伝導により均熱化されやすく急峻な温度勾
配を付けることが不可能であり、配向性の制御は困難で
ある. また、酸化物超電導物質にレーザ光を照射し、局部的に
加熱して帯域溶融し、それを移動(走査)させることに
より走査方向に温度勾配を付けて照射部分を順次結晶化
させる試みが行われているが、この場合、照射部分はそ
の中心部が最も高温になるため、この中心部から放射状
に温度勾配ができ、レーザ光を一方向に走査するにも拘
らず、結晶の配向け一方向に揃わない。従って、配向性
の制御ができないという難点があった。
One way to increase the conformality of a crystal is to melt an oxide superconductor and recrystallize it in an electric furnace with a temperature gradient while creating a temperature gradient. It is known that the larger the temperature gradient, the more neatly the conformation of the crystal aligns.
In electric furnaces, the temperature tends to be uniform due to heat conduction, and it is impossible to create a steep temperature gradient, making it difficult to control orientation. In addition, an attempt was made to irradiate an oxide superconducting material with laser light, locally heat it, melt it in a band, and then move it (scan) to create a temperature gradient in the scanning direction and sequentially crystallize the irradiated area. However, in this case, the temperature is highest at the center of the irradiated area, so a temperature gradient is created radially from this center, and even though the laser beam is scanned in one direction, the orientation of the crystal is not uniform. Not aligned in direction. Therefore, there was a problem that the orientation could not be controlled.

さらに、YBCO系の酸化物超電導体では一般に溶融後
焼結させた場合、絶縁性のいわゆる211構造体(YJ
aCuOs−m)になってしまい、超電導性の123構
造体(YBa2Cu.O,−z)ができないという難点
があった. [発明が解決しようとする課題] 上述したように、従来の方法では、すぐれたC軸配向を
有する酸化物超電導体を得ることは困難であった。本発
明はこのような従来の欠点を解決し、結晶の一方向凝固
を可能とし、その結果、高いC軸配向を有する酸化物超
電導体の製造方法を提供することを目的とする。
Furthermore, YBCO-based oxide superconductors generally have an insulating so-called 211 structure (YJ
aCuOs-m), and a superconducting 123 structure (YBa2Cu.O, -z) could not be formed. [Problems to be Solved by the Invention] As described above, it has been difficult to obtain an oxide superconductor with excellent C-axis orientation using conventional methods. It is an object of the present invention to solve these conventional drawbacks and provide a method for manufacturing an oxide superconductor that enables unidirectional solidification of crystals and, as a result, has a high C-axis orientation.

[課題を解決するための手段] このような目的を達成するために本発明の酸化物超電導
体の製造方法は、酸化物超電導物質または溶融・焼結に
よって酸化物超電導物質を生成する物質にレーザ光を走
査し・酸化物超電導物質または前記物質を帯域溶融ある
いは半溶融後結晶化するにあたり、レーザ光として走査
方向と直角方向のエネルギー分布が中央から両端に向か
って高くなるようなレーザ光を用いることを特徴とする
[Means for Solving the Problems] In order to achieve such an object, the method for producing an oxide superconductor of the present invention involves applying a laser beam to an oxide superconducting substance or a substance that produces an oxide superconducting substance by melting and sintering. When scanning light and crystallizing an oxide superconducting material or the above-mentioned material after zone melting or semi-melting, a laser light whose energy distribution in the direction perpendicular to the scanning direction increases from the center toward both ends is used as the laser light. It is characterized by

[作 用] 本発明によれば、試料上に走査方向に揃った急峻な温度
勾配を形成することができるので、走査方向に一軸性を
有し、かつ試料表面に垂直方向にC軸配向した酸化物超
電導体を作製することができる. [実施例] 以下、本発明による酸化物超電導体の製造方法の一実施
例を図面に従って詳述する。
[Function] According to the present invention, it is possible to form a steep temperature gradient aligned in the scanning direction on the sample. Oxide superconductors can be created. [Example] Hereinafter, an example of the method for producing an oxide superconductor according to the present invention will be described in detail with reference to the drawings.

第1図に示すように酸化物超電導体製造用試料I(以下
、試料という)は、長尺の基板2上に形成ざれた薄膜で
あり、試料1に対しほぼ直角にレーザ光3を照射しなが
ら矢印八方向に走査することにより、照射部分1aが加
熱・溶融され、レーザ光8の移動に伴い後方より冷却さ
れ結晶化する. ここで、試料1は酸化物超電導物質または溶融・焼結に
よって酸化物超電導物質を生成する物質の何れでもよく
、後者の溶融・焼結によって酸化物超電導物質になる物
質は、例えばY,Ba,Cuの酸化物などの超電導材料
を固相法によりベレット化したもの、金属アルコキシド
その他の有機・金属化合物および無機化合物を利用した
超電導体溶液のコーティング膜、ドクターブレード法に
より作成した原料粉体と有機バインダー等からなる溶液
のスラリーの厚膜等を用いる. また、酸化物超電導体原料の高温溶融液中に基板を浸漬
し、急冷することによって作成したアモルファスの厚膜
なとも採用することができる。この場合、レーザによる
帯域溶融後の密度変化は小さく、クラック等が生じにく
い。
As shown in FIG. 1, sample I for producing an oxide superconductor (hereinafter referred to as the sample) is a thin film formed on a long substrate 2, and the sample 1 is irradiated with laser light 3 almost at right angles. By scanning in the eight directions of the arrows, the irradiated portion 1a is heated and melted, and as the laser beam 8 moves, it is cooled from behind and crystallized. Here, sample 1 may be either an oxide superconducting material or a material that produces an oxide superconducting material by melting and sintering, and the latter material that becomes an oxide superconducting material by melting and sintering is, for example, Y, Ba, Superconducting materials such as Cu oxides made into pellets using the solid phase method, coating films of superconducting solutions using metal alkoxides and other organic/metallic compounds and inorganic compounds, and raw material powders and organic materials created using the doctor blade method. A thick film of a slurry of a solution consisting of a binder, etc. is used. It is also possible to employ an amorphous thick film created by immersing the substrate in a high-temperature melt of the oxide superconductor raw material and rapidly cooling it. In this case, the change in density after zone melting by laser is small and cracks are less likely to occur.

また酸化物超電導物質としては、上記物質を溶融後焼結
させたものの他、エキシマレーザによるレーザスバッタ
法, (:VD法,スプレーバイロリシス法などの方法
で基板2上に形成したもの等を用いる。
Further, as the oxide superconducting material, in addition to those obtained by melting and sintering the above-mentioned materials, those formed on the substrate 2 by a laser scattering method using an excimer laser, a VD method, a spray virolysis method, etc. are used.

基板2は板状体またはテープの何れでもよく、銀,ジル
コニウムなどの金属基板、金属基板上に酸化マグネシウ
ム,イッ1・リア安定化ジルコニア(YSZ).チタン
酸ストロンチウム等のバッファ層を設けたもの、あるい
は酸化マグネシウム, YSZ等の絶縁性基板の何れも
採用できる。ただし、基板として金属基板を用いる場合
には、レーザ照射後、基板2を強制冷却し、基板表面と
試料1との反応を防止し、また冷却する際、放射状の熱
拡散が生じないようにする必要がある。
The substrate 2 may be either a plate-shaped body or a tape, and may be a metal substrate such as silver or zirconium, or a metal substrate with magnesium oxide, 1-rea stabilized zirconia (YSZ), etc. Either a substrate provided with a buffer layer such as strontium titanate, or an insulating substrate such as magnesium oxide or YSZ can be used. However, if a metal substrate is used as the substrate, the substrate 2 should be forcibly cooled after laser irradiation to prevent a reaction between the substrate surface and the sample 1, and also to prevent radial thermal diffusion from occurring during cooling. There is a need.

レーザ光3は第2図に示すような2つのレーザ源lO、
ミラー11.12およびプリズム13を用いた光学装置
によって形成される2本の平行な丸ビーム(以下、ツイ
ンビームという)が用いられる。このツィンビーム3は
、第3図に示すようにその走査方向Aと直交するX−X
’ 方向に所定の間隔を有して照射される。そして、こ
れらツィンビームは各丸ビームの焦点が最もエネルギー
が大きいので、その焦点間隔をビーム径と等しいか、僅
かに小さくした場合、各焦点を結ぶ線上のエネルギー分
布は中央部分から両側(焦点)へ向けて高くなる.従っ
て、このようなツィンビームにより加熱される試料1の
温度分布は、走査方向と直交する方向においては、第4
図に示すように、ツィンビームの中央部から両端側に向
かって温度が高くなるような温度勾配を持つようになる
。なお、間隔がビーム径よりはるかに大きい場合は中央
部において試料を溶融するに充分なエネルギーが得られ
ない。このようなツインビームのレーザ光としては、試
料の膜厚により異なるが、通常、例えばYAGレーザの
場合、5w以上の出力のものを使用する。また、レーザ
光の走査速度はレーザビーム出力、レーザビーム径によ
り異なるが、上記レーザビーム出力の17ーザでビーム
半径50μI,ビーム焦点間間隔100μ閣のものの場
合、IOcm/sec程度とする。
The laser beam 3 includes two laser sources lO as shown in FIG.
Two parallel round beams (hereinafter referred to as twin beams) formed by an optical device using mirrors 11, 12 and prisms 13 are used. As shown in FIG. 3, this twin beam 3 is
' The beams are irradiated at predetermined intervals in the direction. In these twin beams, the focal point of each round beam has the highest energy, so if the focal distance is made equal to or slightly smaller than the beam diameter, the energy distribution on the line connecting each focal point will be from the center to both sides (focal point). It gets higher towards. Therefore, the temperature distribution of the sample 1 heated by such a twin beam is as follows in the direction perpendicular to the scanning direction.
As shown in the figure, there is a temperature gradient in which the temperature increases from the center of the twin beam toward both ends. Note that if the interval is much larger than the beam diameter, sufficient energy cannot be obtained to melt the sample at the center. Such twin beam laser light varies depending on the film thickness of the sample, but normally, for example, in the case of a YAG laser, one with an output of 5 W or more is used. The scanning speed of the laser beam varies depending on the laser beam output and the laser beam diameter, but in the case of a 17 laser with the above laser beam output, a beam radius of 50 μI, and a beam focal distance of 100 μl, it is approximately IO cm/sec.

なお、ツインビームの代わりにいわゆるM型ビームを用
いてもよい。M型ビームは、第5図(a)  に示すよ
うに通常のエネルギー分布をもつレーザビームを第5図
(b)に示すダブルプリズム14により分けて、第5図
(C)に示すような両端を高エネルギーとしたレーザビ
ームである。このM型ビームはツィンビームと同様にそ
のエネルギー分布は中央部分から両側に向かって温度が
高くなるような勾配をもつ。
Note that a so-called M-type beam may be used instead of the twin beam. The M-type beam is produced by dividing a laser beam with a normal energy distribution as shown in Fig. 5(a) by a double prism 14 shown in Fig. 5(b), and dividing it into two ends as shown in Fig. 5(C). It is a laser beam with high energy. Like the twin beam, this M-type beam has an energy distribution with a gradient such that the temperature increases from the center toward both sides.

このようなエネルギー分布をもつレーザビーム3の照射
により加熱され溶融した試料1の領域は、レーザビーム
が相対的に穆動ずることにより移動方向に温度勾配が生
じ、後方から順次冷却し始め結晶化する。この際、ツィ
ンビームの中央部ではその両端部より優先的に冷却する
ため、ビームの焦点間の領域(第1図において一点釦桿
で図示した部分)では冷却によって生じる温度勾配は移
動方向とほぼ平行となる。結晶化はこの温度勾配に沿っ
て一方向に進行するので、この領域ではほぼ単一相で走
査方向に一軸配向し、しかも、基板と垂直方向にC軸配
向した結晶が形成される。
The region of the sample 1 that is heated and melted by the irradiation with the laser beam 3 having such an energy distribution generates a temperature gradient in the direction of movement due to the relative movement of the laser beam, and begins to cool down sequentially from the rear and crystallizes. do. At this time, since the central part of the twin beam is cooled more preferentially than the opposite ends, the temperature gradient caused by cooling in the region between the focal points of the beam (the area indicated by the single-pointed button in Figure 1) is approximately equal to the direction of movement. become parallel. Since crystallization progresses in one direction along this temperature gradient, crystals are formed in this region that are substantially single-phase and uniaxially oriented in the scanning direction, and furthermore, the C-axis is oriented perpendicularly to the substrate.

なお、上述のレーザによる帯域溶融は酸素等の雰囲気圧
のコントロール下で行うことが好ましい. の蒸発,発泡を防ぐと共に、再結晶化に伴ってクラック
が生じるのを防ぐ目的でレーザ照射に先行してハロゲン
ランプ等の予熱源により予め熱処理を行うことが望まし
い。
Note that it is preferable that the zone melting using the laser described above be performed under the control of atmospheric pressure such as oxygen. It is desirable to perform heat treatment in advance using a preheating source such as a halogen lamp prior to laser irradiation in order to prevent evaporation and foaming of the material as well as to prevent cracks from occurring due to recrystallization.

火i里ユ 厚さ1μ1、幅200μ■の長尺のYBCO系超電導物
質の薄膜に出力5W、ビーム半径50μ頂、ビーム焦点
間間隔100μmのツインビームを用い、走査速度10
cm/secで照射し、再結晶化させた。
A twin beam with an output of 5 W, a beam radius of 50 μm, and a beam spacing of 100 μm was used on a long thin film of YBCO superconducting material with a thickness of 1 μ1 and a width of 200 μm, and a scanning speed of 10 μm.
It was irradiated at cm/sec and recrystallized.

再結晶化相におけるa軸(またはb軸)配向の状態とそ
の制御の可能性および外部磁界Oの時の臨界電流密度J
c(^/cm2)の値を、シングルビーム(1つの丸ビ
ーム)を用いた場合(比較例1)、および温度勾配30
℃/cmの炉で溶融結晶化させた場合(比較例2)の結
果と比較した。結果を表1また、レーザによる急激な加
熱に伴う材料成分表 度勾配を形成することができ、結晶方向の制御が容易で
、高い配同性を有する酸化物超電導体の作製が可能であ
る。
The state of the a-axis (or b-axis) orientation in the recrystallization phase, the possibility of its control, and the critical current density J at the external magnetic field O
The value of c(^/cm2) is calculated using a single beam (one round beam) (Comparative Example 1) and a temperature gradient of 30
The results were compared with those obtained when melting and crystallizing in a furnace at .degree. C./cm (Comparative Example 2). The results are shown in Table 1.Also, it is possible to form a material component surface gradient due to rapid heating by a laser, and it is possible to easily control the crystal direction and to produce an oxide superconductor having high conformation.

表1から明らかなように、本発明に従った温度分布を有
するツインビームを用いることにより、a軸(またはb
軸)の配同性およびその制御性が著しく改善される.さ
らに臨界電流密度Jcは従来法に比べて1桁または2桁
以上高い値が得られる。
As is clear from Table 1, by using twin beams with temperature distribution according to the present invention, the a-axis (or b-axis
The arrangement and controllability of the axis) are significantly improved. Furthermore, the critical current density Jc can be one or two orders of magnitude higher than that of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による酸化物超電導体の製造方法にお2
ナるレーザ溶融の状態を示す斜視図、第2図は特定の光
強度分布を有するレーザ光の発生装置の概略図、 第3図および第4図はそれぞれレーザ光の加熱領域およ
びその温度分布を示す図、 第5図は特定の光強度分布を有するレーザ光の他の実施
例を示す図である。 [発明の効果] 以上の実施例からも明らかなように、本発明による酸化
物超電導体の製造方法によれば、試料を溶融する熱源と
して特定の温度分布を有するレーザを用い、これを試料
に対し高速で走査するようにしたので、試料上に走査方
向に揃った急峻な温1・・・酸化物超電導物質(試料)
、 2・・・基板、 3・・・レーザ光、 A・・・走査方向。 3レーイ光 1a 第1図 第2図 第4図
Figure 1 shows the method for producing an oxide superconductor according to the present invention.
Fig. 2 is a schematic diagram of a laser beam generator with a specific light intensity distribution, and Figs. 3 and 4 respectively show the heating area of the laser beam and its temperature distribution. FIG. 5 is a diagram showing another example of laser light having a specific light intensity distribution. [Effects of the Invention] As is clear from the above examples, according to the method for producing an oxide superconductor according to the present invention, a laser having a specific temperature distribution is used as a heat source for melting the sample, and the laser is applied to the sample. On the other hand, since we scanned at high speed, a steep temperature 1 uniform in the scanning direction was formed on the sample...Oxide superconducting material (sample)
, 2...Substrate, 3...Laser light, A...Scanning direction. 3 Ray light 1a Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)酸化物超電導物質または溶融・焼結によって酸化物
超電導物質を生成する物質にレーザ光を走査し前記酸化
物超電導物質または前記物質を結晶化するにあたり、前
記レーザ光として走査方向と直角方向のエネルギー分布
が中央から両端に向かって高くなるようなレーザ光を用
いることを特徴とする酸化物超電導体の製造方法。
1) When crystallizing the oxide superconducting material or the substance by scanning a laser beam on an oxide superconducting substance or a substance that generates an oxide superconducting substance by melting and sintering, the laser beam is used in a direction perpendicular to the scanning direction. A method for manufacturing an oxide superconductor, characterized by using a laser beam whose energy distribution increases from the center toward both ends.
JP1056235A 1989-03-10 1989-03-10 Production of oxide superconductor Pending JPH02239102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056235A JPH02239102A (en) 1989-03-10 1989-03-10 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056235A JPH02239102A (en) 1989-03-10 1989-03-10 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02239102A true JPH02239102A (en) 1990-09-21

Family

ID=13021442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056235A Pending JPH02239102A (en) 1989-03-10 1989-03-10 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02239102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279507A (en) * 1989-04-20 1990-11-15 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
US5312804A (en) * 1991-10-29 1994-05-17 Alcatel Cable Method of fabricating a superconductive flexible ceramic conductor having a high critical temperature
US5356474A (en) * 1992-11-27 1994-10-18 General Electric Company Apparatus and method for making aligned Hi-Tc tape superconductors
JP2012236744A (en) * 2011-05-12 2012-12-06 Japan Steel Works Ltd:The Method for producing oxide superconductor film having alleviated internal stress

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279507A (en) * 1989-04-20 1990-11-15 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
US5312804A (en) * 1991-10-29 1994-05-17 Alcatel Cable Method of fabricating a superconductive flexible ceramic conductor having a high critical temperature
AU658016B2 (en) * 1991-10-29 1995-03-30 Societe Anonyme Dite : Alcatel Cable A method of fabricating a superconductive flexible conductor, having a high critical temperature, and a conductor resulting therefrom
US5356474A (en) * 1992-11-27 1994-10-18 General Electric Company Apparatus and method for making aligned Hi-Tc tape superconductors
JP2012236744A (en) * 2011-05-12 2012-12-06 Japan Steel Works Ltd:The Method for producing oxide superconductor film having alleviated internal stress

Similar Documents

Publication Publication Date Title
US5149681A (en) Melt texturing of long superconductor fibers
JPH01179473A (en) Film formation by use of light
JPH06318411A (en) Preparation of high critical temperature superconductive flexible conductor
EP0498306B1 (en) Method of preparing oxide superconducting material
US5021399A (en) Spray pyrolysis process for preparing superconductive films
JPH02239102A (en) Production of oxide superconductor
JPH01309956A (en) Production of oxide superconductor
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
JPH02258693A (en) Production of oxide superconductor
JPH02258698A (en) Production of oxide superconductor
JPH02258695A (en) Production of oxide superconductor
JPH02258694A (en) Production of oxide superconductor
JPH02258669A (en) Production of oxide superconductor
JPH02258697A (en) Production of oxide superconductor
JPH02258699A (en) Production of oxide superconductor
JPH02258696A (en) Production of oxide superconductor
JP2754494B2 (en) Method for producing an oriented layer of Bi-Sr-Ca-Cu-oxide or T1-Ba-Ca-Cu-oxide high temperature superconductor
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JPH02257525A (en) Manufacture of oxide superconductor
JPS63276822A (en) Patterning method for superconductive thin film
JPH02255505A (en) Production of oxide superconductor
JPH01226735A (en) Production of superconducting material
JP3095408B2 (en) Method for producing oxide-based superconducting wire
JPH05101726A (en) Manufacture of oxide superconductive wire rod
JPH042603A (en) Formation of superconductive film