JPH02258698A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02258698A
JPH02258698A JP8215389A JP8215389A JPH02258698A JP H02258698 A JPH02258698 A JP H02258698A JP 8215389 A JP8215389 A JP 8215389A JP 8215389 A JP8215389 A JP 8215389A JP H02258698 A JPH02258698 A JP H02258698A
Authority
JP
Japan
Prior art keywords
film
laser beams
laser
crystal
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215389A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Izumi Hirabayashi
泉 平林
Toshiaki Suga
菅 敏昭
Toru Shiobara
融 塩原
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kansai Electric Power Co Inc
SWCC Corp
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kansai Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Kansai Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP8215389A priority Critical patent/JPH02258698A/en
Publication of JPH02258698A publication Critical patent/JPH02258698A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title superconductor with its crystal unidirectionally solidified throughout the width direction of the film by irradiating an oxide superconducting substance with laser beams at a specified tilt angle against said width direction to effect melting said substance followed by cooling and crystallization. CONSTITUTION:A thin film 1 of an oxide superconducting substance or a substance capable of forming the same by melting and sintering is formed on a continuous base 2. The film 1 is then irradiated with laser beams 3 at a tilt angle against the scanning direction; during the process, a scanning is made in the arrow A direction to heat and melt the irradiated zone 1a. As the laser beams 3 move, the melted zone is cooled from behind to effect recrystallization. The irradiation angle theta of the laser beams is regulated so as to accomplish an optimum orientation according to laser output and film thickness. Thereby, the zone 1a begins to cool from behind successively, however, there is no temperature gradient in the width direction at a part where cooling begins and a nearly uniform temperature has been attained, thus crystal will grow parallel to the film surface in the scanning direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、YBCO系あるいはBi系などの酸化物超電
導体の製造方法に関し、特に、結晶の一方向凝固を可能
にした酸化物超電導体の製造方法に係わる。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing oxide superconductors such as YBCO-based or Bi-based oxide superconductors, and particularly relates to a method for producing oxide superconductors that enable unidirectional solidification of crystals. It is related to the manufacturing method.

[従来の技術及び発明が解決しようとする課題]従来か
ら、酸化物超電導体は、その特性が結晶方位により大き
く異なり異方性があることが知られている。特に、結晶
の垂直方向(C軸)は水平面(a、b面)内に比べ電気
抵抗値が遥かに大きく、酸化物超電導体の特性はaSb
面の構造が支配していると考えられる。
[Prior Art and Problems to be Solved by the Invention] It has been known that oxide superconductors have properties that vary greatly depending on crystal orientation and are anisotropic. In particular, the electrical resistance value in the vertical direction (C axis) of the crystal is much larger than in the horizontal plane (a, b plane), and the characteristics of the oxide superconductor are aSb
It is thought that the structure of the surface is dominant.

ところで、通常の合成方法では、特に焼結体(バルク)
の場合、その結晶方位がランダムとなるため、電気・磁
気特性共に実用的なレベルに達していない。
By the way, in normal synthesis methods, especially sintered bodies (bulk)
In the case of , the crystal orientation is random, so both the electrical and magnetic properties have not reached a practical level.

結晶の配向性を上げる方法として、酸化物超電導体を溶
融し、温度勾配を有する電気炉中で相対的に移動させて
再結晶させる方法がある。ここで結晶の配向性は温度勾
配が大きいほど一方向に揃うことが知られているが、電
気炉では熱伝導により均熱化され易く急峻な温度勾配を
形成することが不可能であり、配向性の制御は困難であ
る。
As a method of increasing crystal orientation, there is a method of melting an oxide superconductor and recrystallizing it by moving it relatively in an electric furnace having a temperature gradient. It is known that the larger the temperature gradient, the more aligned the crystal orientation is in one direction, but in an electric furnace, the temperature is easily equalized by heat conduction, making it impossible to form a steep temperature gradient. Controlling sexuality is difficult.

また、酸化物超電導物質にレーザ光を照射して局部的に
加熱溶融し、それを移動(走査)させることにより走査
方向に温度勾配を付けて照射部分を順次結晶化させる試
みが行なわれている。特にレーザ光として特定の光強度
パターンを有するものを用いた場合には走査方向に配向
した結晶が得られる。
In addition, attempts have been made to irradiate oxide superconducting materials with laser light to locally heat and melt it, and then move (scan) it to create a temperature gradient in the scanning direction and sequentially crystallize the irradiated areas. . In particular, when a laser beam having a specific light intensity pattern is used, crystals oriented in the scanning direction can be obtained.

しかしながら、第3図に示すようにレーザ光を基板2上
に形成した試料の膜1に対し垂直に照射した結合、膜の
厚さ方向に温度勾配が発生する。
However, as shown in FIG. 3, when the laser beam is irradiated perpendicularly to the sample film 1 formed on the substrate 2, a temperature gradient occurs in the thickness direction of the film.

このため、膜表面近傍では外から冷却されるので表面に
沿って結晶が成長するが、一方、膜の内部の基板2近傍
では基板に熱をうばわれるため内部に向って結晶が成長
し、従って、結晶方向が膜面と平行で且つ走査方向に揃
った配向結晶がうることができない。
For this reason, near the film surface, it is cooled from the outside, so crystals grow along the surface.On the other hand, near the substrate 2 inside the film, crystals grow inward because heat is carried away by the substrate. , it is not possible to obtain oriented crystals whose crystal direction is parallel to the film surface and aligned in the scanning direction.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、膜の厚
さ方向全体に亘って結晶の一方向の凝固が可能となる酸
化物超電導体の製造方法を提供することを目的とする。
[Objective of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties, and it is an object of the present invention to provide a method for producing an oxide superconductor that enables unidirectional solidification of crystals throughout the thickness of the film. purpose.

[課題を解決するための手段] このような目的を達成するために本発明の酸化物超電導
体の製造方法によれば、酸化物超電導物質または溶融・
焼結によって酸化物超電導物質を生成する物質にレーザ
光を照射し前記酸化物超電導物質または前記物質を溶融
後冷却して結晶化するにあたり、前記レーザ光を前記膜
の厚さ方向に対し所定の角度をもって照射するものであ
る。
[Means for Solving the Problems] In order to achieve such objects, according to the method for producing an oxide superconductor of the present invention, an oxide superconductor or a molten
When irradiating a material that generates an oxide superconducting material by sintering with a laser beam, melting the oxide superconducting material or the substance, and then cooling and crystallizing the material, the laser beam is applied to a predetermined direction in the thickness direction of the film. It irradiates at an angle.

[発明の実施例] 以下、本発明による酸化物超電導体の製造方法の一実施
例を図面に従って詳述する。
[Embodiments of the Invention] Hereinafter, an embodiment of the method for producing an oxide superconductor according to the present invention will be described in detail with reference to the drawings.

第1図に示すように試料1は、長尺の基板2上に形成さ
れた薄膜であり、レーザ光3を照射しながら矢印A方向
に走査することにより、照射部分1aが加熱・溶融され
、レーザ光3の移動に伴い後方より冷却され再結晶化ま
たは結晶化する。
As shown in FIG. 1, the sample 1 is a thin film formed on a long substrate 2, and by scanning in the direction of arrow A while irradiating the laser beam 3, the irradiated portion 1a is heated and melted. As the laser beam 3 moves, it is cooled from the rear and recrystallized or crystallized.

ここで、試料1は酸化物超電導物質または溶融・焼結に
よって酸化物超電導物質を生成する物質の何れでもよく
、後者の溶融・焼結によって酸化物超電導物質を生成す
る物質は、例えばY、 Ba、Cuの酸化物などの超電
導材料を固相法によりベレット化したもの、金属アルコ
キシドその他の有機・金属化合物および無機化合物を利
用した超電導体溶融のコーテイング膜、ドクターブレー
ド法により作成した原料粉体と有機バインダー等からな
る溶液のスラリーの厚膜等である。
Here, the sample 1 may be either an oxide superconducting material or a material that produces an oxide superconducting material by melting and sintering, and the latter material that produces an oxide superconducting material by melting and sintering is, for example, Y, Ba, etc. , pelletized superconducting materials such as Cu oxides using the solid phase method, superconductor melt coating films using metal alkoxides and other organic/metallic compounds and inorganic compounds, and raw material powders created using the doctor blade method. It is a thick film of a slurry of a solution consisting of an organic binder or the like.

また、酸化物超電導体原料の高温溶融液中に基板を浸漬
し、急冷することによって作成したアモルファスの厚膜
なども採用することができる。この場合、レーザ溶融後
の密度変化は小さく、クラック等が生じにくい。
Furthermore, an amorphous thick film created by immersing a substrate in a high-temperature melt of an oxide superconductor raw material and rapidly cooling it can also be used. In this case, the change in density after laser melting is small and cracks are less likely to occur.

また酸化物超電導物質としては、上記物質を溶融後焼結
させたものの他、エキシマレーザによるレーザスパッタ
法、CVD法、スプレーパイロリシス法などの方法で基
板2上に形成したもの等を用いることができる。
Furthermore, as the oxide superconducting material, in addition to those obtained by melting and sintering the above-mentioned materials, those formed on the substrate 2 by a method such as a laser sputtering method using an excimer laser, a CVD method, or a spray pyrolysis method can be used. can.

また、基板2は板状体、テープのいずれでもよく、その
材料としては銀、ジルコニウムなどの金属基板、金属基
板上に酸化マグネシウム、イツトリウム安定化ジルコニ
ウム(YSZ)、チタン酸ストロンチウム等のバッファ
層を設けたもの、あるいは酸化マグネシウム、YSZ等
の絶縁性基板の何れも用いることができる。但し、基板
として金属基板を用いる場合には、レーザ照射後、基板
2を強制冷却し、基板表面と試料1との反応を防止し、
また冷却する際、放射状の熱拡散が生じないようにする
必要がある。
The substrate 2 may be a plate or a tape, and its material may be a metal substrate such as silver or zirconium, or a buffer layer such as magnesium oxide, yttrium stabilized zirconium (YSZ), or strontium titanate on the metal substrate. Either an insulating substrate made of magnesium oxide, YSZ, etc. can be used. However, when using a metal substrate as the substrate, after laser irradiation, the substrate 2 is forcibly cooled to prevent a reaction between the substrate surface and the sample 1.
Also, when cooling, it is necessary to prevent radial heat diffusion from occurring.

レーザ光3は通常の丸ビームでもよいが、広範囲に亘っ
てその走査方向に配向した結晶を得るためには、第2図
に示すようなパターンを有するツインビーム3a1トリ
プルビーム3bあるいはスリットビーム3cを用いる。
The laser beam 3 may be an ordinary round beam, but in order to obtain crystals oriented in the scanning direction over a wide range, a twin beam 3a1 triple beam 3b or a slit beam 3c having a pattern as shown in FIG. use

このような特定のパターンを有するレーザ光を用いた場
合には、加熱領域が移動するに従って走査方向と同方向
の急峻な温度勾配を形成することができ、結晶化はこの
温度勾配に沿って進行するので高度に配向した結晶が形
成される。レーザ光の出力は、試料の膜厚により異なる
が、通常、例えばYAGレーザの場合、5W以上の出力
のものを使用する。また、レーザ光の走査速度はレーザ
ビーム出力、レーザビーム径により異なるが、上記レー
ザビーム出力のレーザでビーム半径50μm1ビーム焦
点間間隔100μmのものの場合、10 cm / s
ec程度とする。
When using a laser beam with such a specific pattern, it is possible to form a steep temperature gradient in the same direction as the scanning direction as the heated region moves, and crystallization progresses along this temperature gradient. As a result, highly oriented crystals are formed. The output of the laser beam varies depending on the film thickness of the sample, but typically, for example, in the case of a YAG laser, one with an output of 5 W or more is used. The scanning speed of the laser beam varies depending on the laser beam output and the laser beam diameter, but in the case of a laser with the above laser beam output and a beam radius of 50 μm and a distance between beam focal points of 100 μm, it is 10 cm / s.
Approximately ec.

このようなレーザ光は、試料の膜1に対し走査前方から
斜めに照射される。レーザ光を斜めに照射することによ
り加熱領域1′と後方の未加熱領域との境は膜面に対し
ほぼ垂直となる。ここでレーザ光の照射角θはレーザ出
力及び膜圧に応じ最適な配向性が得られるように適宜調
整するものとする。
Such laser light is applied obliquely to the film 1 of the sample from the front of the scan. By irradiating the laser beam obliquely, the boundary between the heated region 1' and the rear unheated region becomes almost perpendicular to the film surface. Here, the irradiation angle θ of the laser beam is appropriately adjusted according to the laser output and the film thickness so as to obtain the optimum orientation.

このようにレーザ光を膜に対し、斜めに照射しながら矢
印へ方向に相対的に移動することにより、加熱領域1゛
は後方より順次冷却し始め結晶化するが、ここで膜の冷
却が始る部分の厚さ方向では温度勾配がなくほぼ均一な
温度となっているので、結晶は膜面に平行に走査方向に
成長する。しかも、ここでレーザ光を斜めに照射するこ
とにより進行方向前方では予熱されることになるので、
急激な加熱による試料の蒸発を防ぐことができる。
In this way, by irradiating the laser beam obliquely onto the film and moving it relatively in the direction of the arrow, heating area 1' begins to cool down sequentially from the rear and crystallizes, but the cooling of the film begins here. Since there is no temperature gradient in the thickness direction of the film and the temperature is almost uniform, the crystal grows parallel to the film surface in the scanning direction. Moreover, by irradiating the laser beam diagonally here, the front part in the direction of travel is preheated.
Evaporation of the sample due to rapid heating can be prevented.

この場合の冷却は空冷によるものであるが、−般に酸化
物の場合、熱伝導度が低く空冷だけでは急峻な温度勾配
をつけることが困難であるので、好ましい態様において
はレーザビームパターン(加熱領域)の直後に強制冷却
域を設けるものとする。
Cooling in this case is by air cooling, but in the case of oxides, the thermal conductivity is generally low and it is difficult to create a steep temperature gradient with air cooling alone, so in a preferred embodiment, a laser beam pattern (heating A forced cooling zone shall be provided immediately after the

強制冷却域を設ける手段としては、例えば液体ガリウム
、液体窒素、液体空気等の冷媒が用いられる。これら冷
媒を試料1及び基板2の一側又は両側よりノズル等によ
って吹きつけ強制冷却を行なう。冷媒は回収タンクをノ
ズルに対向して、あるいはノズルを取り囲むように設け
ることにより回収する。
As means for providing the forced cooling region, for example, a refrigerant such as liquid gallium, liquid nitrogen, or liquid air is used. These coolants are sprayed from one or both sides of the sample 1 and the substrate 2 using a nozzle or the like to perform forced cooling. The refrigerant is recovered by providing a recovery tank opposite the nozzle or surrounding the nozzle.

このように強制冷却域を設けることによって加熱領域を
強制的に冷却することによりレーザ走査方向の温度勾配
を大きくし、結晶化を高めると共に、任意に核生成して
凝固するのを防ぎ所望の配向性を有する結晶を得ること
ができる。
By forcibly cooling the heated region in this way, the temperature gradient in the laser scanning direction is increased, increasing crystallization and preventing arbitrary nucleation and solidification to achieve the desired orientation. It is possible to obtain crystals with properties.

尚、以上のようにしてレーザ溶融により得た配向性を有
する結晶は非常に酸素欠損した結晶になり易いので、後
処理として酸素アニールを必要とする。この場合、結晶
の方向性を維持して酸素アニールしなければならない。
It should be noted that the oriented crystal obtained by laser melting as described above tends to become a crystal that is highly oxygen-deficient, so oxygen annealing is required as a post-treatment. In this case, oxygen annealing must be performed while maintaining the crystal orientation.

例えば、比較的低温下(YBCO系の場合、400’C
x1Ohrs)で高酸素圧雰囲気または酸素気流中で熱
処理を行なう。好ましくは、アニール用の熱源として、
結晶の配向方向に温度勾配を生じるように配向方向と垂
直な方向に平行な帯状のレーザを用いる。これにより結
晶の方向性を乱すことなく加熱、酸素吸収が可能となる
For example, at a relatively low temperature (400'C in the case of YBCO type)
Heat treatment is performed in a high oxygen pressure atmosphere or in an oxygen stream. Preferably, as a heat source for annealing,
A belt-shaped laser parallel to the direction perpendicular to the crystal orientation direction is used to generate a temperature gradient in the crystal orientation direction. This allows heating and oxygen absorption without disturbing the orientation of the crystal.

実施例 厚さ10mμ、幅200μの長尺のYBCO系超電導物
質の薄膜に出力15W1ビ一ム半径50μm1ビーム焦
点間間隔100μmのツインビームを用い、照射角θ=
80度で走査速度10 crabsecで照射し、再結
晶化させた。
Example A twin beam with an output of 15W, a beam radius of 50 μm, and a beam spacing of 100 μm was used on a thin film of YBCO superconducting material having a thickness of 10 μm and a width of 200 μm, and the irradiation angle θ=
Recrystallization was performed by irradiation at 80 degrees and a scanning speed of 10 crabsec.

得られた超電導体の臨界電流密度Jc(外部磁界OT、
77K ; A/cd)は試料に垂直に照射した場合の
臨界電流密度(Jc=10”〜104)より20%向上
することが認められた。
Critical current density Jc of the obtained superconductor (external magnetic field OT,
77K; A/cd) was found to be 20% higher than the critical current density (Jc=10'' to 104) when the sample was irradiated perpendicularly.

[発明の効果] 以上の実施例からも明らかなように、本発明による酸化
物超電導体の製造方法によれば、試料にレーザを照射し
て結晶化させる際、これを試料の厚さ方向に対し斜めか
ら照射し走査するようにしたので厚さ方向に均一で走査
方向に揃った急峻な温度勾配を形成することができ、高
度に配向した酸化物超電導体を得ることができる。
[Effects of the Invention] As is clear from the above examples, according to the method for producing an oxide superconductor according to the present invention, when a sample is irradiated with a laser to crystallize it, the crystallization is performed in the thickness direction of the sample. On the other hand, since the irradiation is performed obliquely and scanned, a steep temperature gradient that is uniform in the thickness direction and aligned in the scanning direction can be formed, and a highly oriented oxide superconductor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による酸化物超電導体の製造方法を示す
図、第2図は酸化物超電導体の製造方法に用いられるレ
ーザビームパターンの具体例を示す図、第3図は従来の
酸化物超電導体の製造方法を示す図である。 1・・・・・・膜 2 ・・・・・・基板 3 ・・・・・・レーザ光
FIG. 1 is a diagram showing a method for manufacturing an oxide superconductor according to the present invention, FIG. 2 is a diagram showing a specific example of a laser beam pattern used in the method for manufacturing an oxide superconductor, and FIG. 3 is a diagram showing a conventional oxide superconductor manufacturing method. It is a figure showing the manufacturing method of a superconductor. 1... Film 2... Substrate 3... Laser light

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導物質または溶融・焼結によって酸化物超電
導物質を生成する物質にレーザ光を照射し前記酸化物超
電導物質または前記物質を溶融後冷却して結晶化するに
あたり、前記レーザ光を前記膜の厚さ方向に対し所定の
角度をもって照射することを特徴とする酸化物超電導体
の製造方法。
When irradiating an oxide superconducting material or a material that generates an oxide superconducting material by melting and sintering with a laser beam to melt and crystallize the oxide superconducting material or the material, the laser beam is applied to the film. A method for manufacturing an oxide superconductor, characterized in that irradiation is performed at a predetermined angle with respect to the thickness direction.
JP8215389A 1989-03-31 1989-03-31 Production of oxide superconductor Pending JPH02258698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215389A JPH02258698A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215389A JPH02258698A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02258698A true JPH02258698A (en) 1990-10-19

Family

ID=13766493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215389A Pending JPH02258698A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02258698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507539A2 (en) * 1991-04-01 1992-10-07 General Electric Company Method of making oriented dielectric films on metal substrates and articles formed thereby
EP0512679A2 (en) * 1991-05-02 1992-11-11 General Electric Company Method of making laser ablated oriented films on metal substrates and articles formed thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507539A2 (en) * 1991-04-01 1992-10-07 General Electric Company Method of making oriented dielectric films on metal substrates and articles formed thereby
EP0507539A3 (en) * 1991-04-01 1993-01-27 General Electric Company Method of making oriented dielectric films on metal substrates and articles formed thereby
EP0512679A2 (en) * 1991-05-02 1992-11-11 General Electric Company Method of making laser ablated oriented films on metal substrates and articles formed thereby
EP0512679A3 (en) * 1991-05-02 1993-01-27 General Electric Company Method of making laser ablated oriented films on metal substrates and articles formed thereby

Similar Documents

Publication Publication Date Title
US4589951A (en) Method for annealing by a high energy beam to form a single-crystal film
US5015618A (en) Laser zone melted Bi--Sr--Ca--Cu--O thick films
US5149681A (en) Melt texturing of long superconductor fibers
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
EP0498306B1 (en) Method of preparing oxide superconducting material
JP2004153232A (en) Method for manufacturing semiconductor element and semiconductor element manufactured by the method
JPH02258698A (en) Production of oxide superconductor
Levinson et al. Laser zone‐melted Bi‐Sr‐Ca‐Cu‐O thick films
JPH01309956A (en) Production of oxide superconductor
JPH02239102A (en) Production of oxide superconductor
JPH02258693A (en) Production of oxide superconductor
JPH02258669A (en) Production of oxide superconductor
JPH02258694A (en) Production of oxide superconductor
JPH02258699A (en) Production of oxide superconductor
JPH0347959A (en) Thin organic superconducting film
JPH02258697A (en) Production of oxide superconductor
JPH02258695A (en) Production of oxide superconductor
JPH02258696A (en) Production of oxide superconductor
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
RU2135648C1 (en) Method of preparing crystalline fullerenes
JPH02257525A (en) Manufacture of oxide superconductor
JPH0562546A (en) Manufacture of thick film of oxide type superconductor
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JP3522402B2 (en) Method and apparatus for producing oxide superconducting conductor
JPH0355975B2 (en)