JPH042603A - Formation of superconductive film - Google Patents

Formation of superconductive film

Info

Publication number
JPH042603A
JPH042603A JP2104108A JP10410890A JPH042603A JP H042603 A JPH042603 A JP H042603A JP 2104108 A JP2104108 A JP 2104108A JP 10410890 A JP10410890 A JP 10410890A JP H042603 A JPH042603 A JP H042603A
Authority
JP
Japan
Prior art keywords
film
coating film
superconductor
coating
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2104108A
Other languages
Japanese (ja)
Inventor
Yasue Nakanishi
中西 保江
Kenji Matsui
健治 松井
Toshio Irisawa
入沢 敏夫
Takeaki Kouno
河野 武亮
Hirosuke Kawachi
河内 啓輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2104108A priority Critical patent/JPH042603A/en
Publication of JPH042603A publication Critical patent/JPH042603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To extremely readily obtain a thick superconductor film by blending the composition power of the superconductor with a binder, coating the blended product on a substrated, sintering the formed coating film as the precursor of the superconductive film by irradiation of laser beams and subsequently gradually cooling the sintered film. CONSTITUTION:The composition powder of a superconductor prepared so as to give the composition ratio of the superconductor is blended and kneaded with binder and subsequently coated on a substrate 2 to form a coating film 3. The coating film is irradiated with laser beams 4 to heat the coating film 3 at a temperature lower than the melting point of the composition powder for sintering the coating film. The coating film is gradually cooled with the sufficient absorption of oxygen in the coating film (the gradual cooling may be performed in the atmosphere but the feed of oxygen 10 from an oxygen- blowing device 9 permits to accelerate the oxygen absorption of the coating film).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導膜の生成方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing a superconducting film.

[従来の技術] 従来より水銀、すす、鉛等の金属や合金を夫々固有の臨
界温度以下に冷却すると電気抵抗が無くなる、即ち超電
導状態になることが知られている。
[Prior Art] It has been known that when metals and alloys such as mercury, soot, and lead are cooled below their respective critical temperatures, their electrical resistance disappears, that is, they become superconducting.

ところが最近、金属や合金だけではなく、酸化物系セラ
ミック類に超電導性を現すものがあることが発見された
Recently, however, it has been discovered that not only metals and alloys, but also oxide ceramics exhibit superconductivity.

上記超電導性を現すセラミックとして現在、イツトリウ
ム・バリウム・銅を1:2:3の組成比で作ったイツト
リウム系超電導体、ビスマス−ストロンチウム・カルシ
ウム・銅を2:2:2:3の組成比で作ったビスマス系
超電導体、タリウム・バリウム・カルシウム・銅を2:
2:2:3の組成比で作ったタリウム系超電導体等が知
られており、しかもこれらは従来の金属や合金の臨界温
度が絶対温度に近い極低温の領域であったのに対し、相
対的に高い臨界温度を有し、安価な液体窒素の温度(マ
イナス196度)でも超電導性を現す為、MHD発電や
リニア・モーター・カー等の実用化に向けて前記超電導
性を現すセラミックの研究が盛んになっている。
Ceramics that exhibit the above-mentioned superconductivity are currently made of yttrium-based superconductors made of yttrium, barium, and copper in a composition ratio of 1:2:3, and bismuth-strontium, calcium, and copper made in a composition ratio of 2:2:2:3. The bismuth-based superconductors that we made, thallium, barium, calcium, and copper, are 2:
Thallium-based superconductors made with a composition ratio of 2:2:3 are known, and in contrast to the critical temperature of conventional metals and alloys, which are in the extremely low region close to the absolute temperature, these superconductors have a relative As it has a high critical temperature and exhibits superconductivity even at the temperature of inexpensive liquid nitrogen (-196 degrees Celsius), we are researching ceramics that exhibit superconductivity for practical use in MHD power generation, linear motor cars, etc. is becoming popular.

このような超電導性を現すセラミック(以下、超電導体
と称す)の作製には、真空排気されたチャンバ内で超電
導体の原料を溶融・蒸発させ、対向して配置した基板に
前記原料の組成微粒子を付着させて超電導膜を形成する
PVD法(物理的蒸着法)や、超電導体の組成金属をア
ルキル金属化合物等の反応ガスとして、該反応ガスをチ
ャンバ内で高温に加熱し、前記反応ガスの気相化学反応
(熱分解、水素還元、酸化、置換反応等)によって前記
チャンバ内に備えた基板上に超電導膜を形成するCVD
法(化学的蒸着法)等か用いられている。
To produce such a ceramic exhibiting superconductivity (hereinafter referred to as a superconductor), the superconductor raw material is melted and evaporated in an evacuated chamber, and fine particles of the composition of the raw material are placed on opposing substrates. The PVD method (physical vapor deposition method) in which a superconducting film is formed by depositing a CVD for forming a superconducting film on a substrate provided in the chamber by a gas phase chemical reaction (thermal decomposition, hydrogen reduction, oxidation, substitution reaction, etc.)
(chemical vapor deposition method), etc. are used.

[発明か解決しようとする課題] しかしなから、前記PVD法やCVD法では、厚膜の超
電導膜を生成することが困難であるという問題かあり、
又蒸着用のチャンバ等の大かがすな設備を整えなければ
超電導膜を生成することができない欠点があった。
[Problem to be solved by the invention] However, there is a problem in that it is difficult to produce a thick superconducting film using the PVD method or CVD method.
Another disadvantage is that a superconducting film cannot be produced unless large-scale equipment such as a chamber for vapor deposition is prepared.

従って、前記PVD法やCVD法では、膜厚が非常に薄
いため、わずかなきすでも超電導性か損われるなど工業
的見地からの取扱いに問題かあった。
Therefore, in the PVD method and CVD method, since the film thickness is very thin, there are problems in handling from an industrial point of view, as even the slightest scratch can impair superconductivity.

又、前記PVD法やCVD法では大面積や複雑な形状の
超電導膜を生成することが困難であった。
Furthermore, it is difficult to produce a superconducting film with a large area or a complicated shape using the PVD method or CVD method.

本発明は上述の実情に鑑みて成したもので、蒸着用のチ
ャンバ等の設備を必要とすることなく、大気中にて極め
て容易に厚膜の超電導膜を生成することができ、且つ大
面積や複雑な形状の超電導膜も生成し得る超電導膜の生
成方法を提供することを目的としている。
The present invention was developed in view of the above-mentioned circumstances, and it is possible to extremely easily produce a thick superconducting film in the atmosphere without requiring any equipment such as a chamber for vapor deposition, and in addition, over a large area. The purpose of the present invention is to provide a method for producing a superconducting film that can also produce superconducting films with complex shapes.

[課題を解決するための手段] 本発明は超電導体の組成比となるよう調合された超電導
体の組成粉末をバインダでといて基板に塗布することに
より該基板上に被膜を形成し、該被膜にレーサービーム
を照射して前記組成粉末の融点より低い温度で所要時間
加熱することにより前記被膜を焼結し、次いで前記被膜
に十分な酸素吸収を行わせつつ徐冷することを特徴とす
る超電導膜の生成方法にかかるものである。
[Means for Solving the Problems] The present invention involves forming a film on a substrate by applying a composition powder of a superconductor prepared to have the composition ratio of the superconductor with a binder to the substrate, and forming a film on the substrate. The superconductor is characterized in that the film is sintered by irradiating it with a laser beam and heating at a temperature lower than the melting point of the composition powder for a required period of time, and then slowly cooling while causing the film to absorb sufficient oxygen. This relates to a method for producing a film.

[作   用] 従って本発明では、バインダでといた組成粉末を基板に
塗布することにより、超電導膜の前駆体となる被膜を形
成し、この被膜をレーザビームにより焼結し、次いて徐
冷することによって前記基板上に超電導膜を生成する。
[Function] Therefore, in the present invention, a composition powder mixed with a binder is applied to a substrate to form a film that becomes a precursor of a superconducting film, and this film is sintered by a laser beam, and then slowly cooled. A superconducting film is thereby produced on the substrate.

[実 施 例] 以下、本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第3図は本発明の一実施例である。1 to 3 show an embodiment of the present invention.

前述した超電導性を現すイツトリウム系、ビスマス系、
タリウム系等の超電導体の組成比となるよう調合された
組成粉末lを、焼結時に容易に蒸発するような有機溶媒
等のバインダにといて基板2上面に塗布することにより
、該基板2上面に前記バインダでといた組成粉末1の被
膜3を形成する(第1図参照)。
Yttrium-based, bismuth-based, which exhibits superconductivity as mentioned above,
A composition powder l prepared to have a composition ratio of a thallium-based superconductor or the like is mixed with a binder such as an organic solvent that easily evaporates during sintering and applied to the upper surface of the substrate 2. A coating 3 of the composition powder 1 dissolved with the binder is formed on the substrate (see FIG. 1).

例えば、イツトリウム系超電導膜を生成したい場合には
、イツトリウム・バリウムφ銅の組成比が1:2:3と
なるよう調合された組成粉末をバインダにといて基板2
上面に塗布する。
For example, when it is desired to produce an yttrium-based superconducting film, a composition powder prepared such that the composition ratio of yttrium/barium φ copper is 1:2:3 is mixed into a binder and then deposited on the substrate.
Apply to the top surface.

尚、前記バインダには組成粉末lと化学反応しないもの
を選定することは勿論である。
It goes without saying that the binder should be selected to be one that does not chemically react with the composition powder 1.

次いて、第2図に示すように、周知のレーザー装置から
レンズ系を介して導かれたレーザービーム4を、集束レ
ンズ5、固定ミラー6、揺動ミラー7を介して前記基板
2上面に照射し、被膜3を焼結する。図中、4aは焦点
を示す。
Next, as shown in FIG. 2, a laser beam 4 guided from a well-known laser device through a lens system is irradiated onto the upper surface of the substrate 2 through a focusing lens 5, a fixed mirror 6, and a swinging mirror 7. Then, the coating 3 is sintered. In the figure, 4a indicates a focal point.

この時、前記揺動ミラー7を第2図中矢印Aで示すよう
に揺動し、被膜3に対するレーザ照射位置を常に変化さ
せるようにして、前記被膜3面を均等に加熱する。
At this time, the oscillating mirror 7 is oscillated as shown by arrow A in FIG. 2, and the laser irradiation position on the coating 3 is constantly changed, so that the surface of the coating 3 is evenly heated.

又、被膜3の焼結温度は、該被膜3を形成する組成粉末
lの融点より低い温度に設定されており、前記被膜3の
組成粉末1を溶融することなく前記被膜3の焼結が完了
するまで所定時間保持される。
Further, the sintering temperature of the coating 3 is set to a temperature lower than the melting point of the composition powder 1 forming the coating 3, and the sintering of the coating 3 is completed without melting the composition powder 1 of the coating 3. It is held for a predetermined period of time.

例えば、イツトリウム系では約950℃の焼結温度で約
2時間保持される。
For example, in the case of yttrium, the sintering temperature is maintained at about 950° C. for about 2 hours.

尚、バインダは前記焼結の際に蒸発する。Note that the binder evaporates during the sintering.

又、第3図に示すように大面積の被膜3に対しては、レ
ーザービーム4側を徐々に水平方向(図中矢印B方向)
に移動したり、或いは基板2側を徐々に水平方向(図中
矢印C方向)に移動したりして部分的な焼結を連続して
行うことによって、前記大面積の被膜3全体を焼結する
ようにすれば良い。
In addition, as shown in Fig. 3, for a large-area coating 3, the laser beam 4 side is gradually moved horizontally (in the direction of arrow B in the figure).
The entire large-area coating 3 is sintered by sequentially performing partial sintering by moving the substrate 2 side in a horizontal direction (in the direction of arrow C in the figure). All you have to do is do it.

更に、前述の如くして基板2上面に焼結した被膜3を、
該被膜3に照射されるレーザービーム4の出力を徐々に
低下したり、或いはレーザービーム4の照射を停止して
ヒータ等の補助熱源(図示せず)を用いて徐々に加熱温
度を低下したりすることによって、前記被膜3に十分な
酸素吸収を行わせつつ、ゆっくりと時間をかけて徐冷を
行い、前記基板2上面に超電導膜8を生成する(第4図
参照)。
Furthermore, the coating 3 sintered on the upper surface of the substrate 2 as described above is
The output of the laser beam 4 irradiated to the coating 3 is gradually reduced, or the irradiation of the laser beam 4 is stopped and the heating temperature is gradually lowered using an auxiliary heat source (not shown) such as a heater. By doing so, the film 3 is slowly cooled down over time while sufficiently absorbing oxygen, and a superconducting film 8 is formed on the upper surface of the substrate 2 (see FIG. 4).

この時、前記被膜3の徐冷は、大気中にて行うようにす
れば良いが、酸素送気装置9から酸素lOを供給するこ
とにより前記被膜3周囲を酸素付加雰囲気とすれば、更
に被膜3の酸素吸収を促進することができ、超電導性質
か良好となる。
At this time, the film 3 may be slowly cooled in the atmosphere, but if the surroundings of the film 3 are made into an oxygen-added atmosphere by supplying oxygen lO from the oxygen supply device 9, the film 3 can be slowly cooled. Oxygen absorption of No. 3 can be promoted, and superconductivity becomes good.

従って、上記によれば、蒸着用のチャンバ等の設備を必
要とすることなく、大気中にて極めて容易に厚膜の超電
導膜を生成することかできる。
Therefore, according to the above, a thick superconducting film can be extremely easily produced in the atmosphere without requiring equipment such as a chamber for vapor deposition.

更に、本発明の超電導膜の生成方法では、超電導体の組
成粉末lをバインダでといて基板2に塗布することによ
り超電導膜の前駆体となる被膜3をその面積や形状に制
限なく形成し、且つこの被膜3をレーサービーム4の照
射で容易に焼結することかできるので、大面積や複雑な
形状の超電導膜8を得ることができる。
Further, in the method for producing a superconducting film of the present invention, a composition powder l of a superconductor is dissolved with a binder and applied to a substrate 2, thereby forming a coating 3, which is a precursor of a superconducting film, without any restrictions on its area or shape. Moreover, since this coating 3 can be easily sintered by irradiation with the laser beam 4, a superconducting film 8 having a large area and a complicated shape can be obtained.

又、前記レーサービーム4は、基板2上に被膜3を形成
した位置にミラー等を介して容易に導くことができるの
で、基板3を焼結の為に加熱炉等へ持ち運ぶ手間かなく
、作業性が極めて良好である。
Furthermore, since the laser beam 4 can be easily guided to the position where the coating 3 is formed on the substrate 2 via a mirror or the like, there is no need to carry the substrate 3 to a heating furnace or the like for sintering. The properties are extremely good.

尚、本発明の超電導膜の生成方法は、上述の実施例にの
み限定されるものではなく、本発明の要旨を逸脱しない
範囲内において種々変更を加え得ることは勿論である。
It should be noted that the method for producing a superconducting film of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[発明の効果コ 以上説明したように、本発明の超電導膜の生成方法によ
れば、下記の如き種々の優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the method for producing a superconducting film of the present invention, various excellent effects as described below can be achieved.

(D  蒸着用のチャンバ等の設備を必要とすることな
く大気中で極めて容易に厚膜の超電導膜を生成すること
ができる。
(D) A thick superconducting film can be produced extremely easily in the atmosphere without requiring equipment such as a chamber for vapor deposition.

<n>  超電導膜をその面積や形状に制限なく生成す
ることができるので、大面積や複雑な形状の超電導膜を
得ることができる。
<n> Since a superconducting film can be produced without any restrictions on its area or shape, a superconducting film with a large area or a complicated shape can be obtained.

[相] 基板に被膜を形成した位置で該被膜の焼結を行
うことができるので、作業性か極めて良好である。
[Phase] Since the coating can be sintered at the position where the coating is formed on the substrate, the workability is extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例において基板上に被膜を形成
した状態を示す図、第2図はレーザビームを照射して被
膜を焼結する一例を示す概略図、第3図は大面積の被膜
を焼結する一例を示す概略図、第4図は超電導膜を生成
した状態を示す図である。 図中、1は組成粉末、2は基板、3は被膜、4はレーサ
ービーム、8は超電導膜、10は酸素を示す。
Fig. 1 is a diagram showing a state in which a film is formed on a substrate in an embodiment of the present invention, Fig. 2 is a schematic diagram showing an example of sintering the film by irradiating a laser beam, and Fig. 3 is a diagram showing a large area. FIG. 4 is a schematic diagram showing an example of sintering a film of the present invention, and FIG. 4 is a diagram showing a state in which a superconducting film is produced. In the figure, 1 is a composition powder, 2 is a substrate, 3 is a coating, 4 is a laser beam, 8 is a superconducting film, and 10 is oxygen.

Claims (1)

【特許請求の範囲】[Claims] 1)超電導体の組成比となるよう調合された超電導体の
組成粉末をバインダでといて基板に塗布することにより
該基板上に被膜を形成し、該被膜にレーザービームを照
射して前記組成粉末の融点より低い温度で所要時間加熱
することにより前記被膜を焼結し、次いで前記被膜に十
分な酸素吸収を行わせつつ徐冷することを特徴とする超
電導膜の生成方法。
1) A superconductor composition powder prepared to have the composition ratio of the superconductor is mixed with a binder and applied to a substrate to form a film on the substrate, and a laser beam is irradiated onto the film to remove the composition powder. A method for producing a superconducting film, comprising sintering the film by heating at a temperature lower than the melting point of the film for a required period of time, and then slowly cooling the film while allowing the film to absorb sufficient oxygen.
JP2104108A 1990-04-19 1990-04-19 Formation of superconductive film Pending JPH042603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104108A JPH042603A (en) 1990-04-19 1990-04-19 Formation of superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104108A JPH042603A (en) 1990-04-19 1990-04-19 Formation of superconductive film

Publications (1)

Publication Number Publication Date
JPH042603A true JPH042603A (en) 1992-01-07

Family

ID=14371933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104108A Pending JPH042603A (en) 1990-04-19 1990-04-19 Formation of superconductive film

Country Status (1)

Country Link
JP (1) JPH042603A (en)

Similar Documents

Publication Publication Date Title
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
JP2855614B2 (en) Method of forming superconducting circuit
US5021399A (en) Spray pyrolysis process for preparing superconductive films
EP0265886A2 (en) Process for forming an ultrafine-particle film
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
JPH01309956A (en) Production of oxide superconductor
JPH042603A (en) Formation of superconductive film
JPH04182317A (en) Formation of oxide superconducting thin film
JPH01208327A (en) Production of thin film of superconductor
JPH02239102A (en) Production of oxide superconductor
US20010036214A1 (en) Method and apparatus for in-situ deposition of epitaxial thin film of high-temperature superconductors and other complex oxides under high-pressure
JPH0238302A (en) Formation of superconducting thin film
JPH01100816A (en) High temperature superconducting material
JPH01100818A (en) High temperature superconducting material
JPH03174305A (en) Production of oxide superconductor
JPH02258693A (en) Production of oxide superconductor
JPH06216420A (en) Manufacture of oxide superconducting thin-film
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH01203258A (en) Production of oxide superconducting sintered body
JPH02196098A (en) Production of superconducting film
JPH02258694A (en) Production of oxide superconductor
JPH0375207A (en) Production of thin film of oxide superconductor
JPH0375362A (en) Production of thin oxide superconductor film
JPH02258699A (en) Production of oxide superconductor